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• Presents an econophysics alternative to mainstream econometric models.
• Using entropy analysis demonstrates how the main assumption used commonly in mainstream econometrics is violated on small time

scales.
• Models short-term fluctuations in the foreign exchange markets using an adapted Ising spin model.
• Shows how to build high-frequency foreign exchange trading models based on econophysics.
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a b s t r a c t

The study contrasts mainstream economics – operating on time scales of hours and days
– with behavioural finance, econophysics and high-frequency trading, more applicable to
short-term time scales of the order of minutes and seconds. We show how the central
theoretical assumption underpinning prevailing economic theories is violated on small
time scales. We also demonstrate how an alternative behavioural econophysics can model
reactions of market participants to short-term movements in foreign exchange markets
and, in a direct contradiction of the orthodox economics, design a rudimentary IsingFX
automated trading system.

By replacing costly human forex dealers with banks of Field-Programmable Gate Array
(FPGA) devices that implement in hardware high-frequency behavioural trading models
of the type described here, brokerages and forex liquidity providers can expect to gain
significant reductions in operating costs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The orthodox econometrics as well as the Random Walk Hypothesis (itself consistent with the Efficient Markets
Hypothesis built upon Rational Expectations) treat logarithmic financial returns as a collection of i.i.d. (independently and
identically distributed) random variables [1], which simplifies the use of statistical methods in finance. In essence, modern
finance assumes that financial time series are random, investors make rational decisions and active short-term trading (as
opposed to passive buy-and-hold investing) is referred to as futile ‘‘noise trading’’ [2]. In a perfect world this might well be
true. However, back in the ‘‘real world’’ humans often act irrationally and, consequently, the i.i.d. assumption underpinning
rational econometric models may not necessarily hold true. The irrationality of human behaviour is simply averaged out
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from mainstream economics and econometrics. Due to its inability to model erratic human behaviour, over the long run
econometrics conveniently averages out irrationality from existence [3]. As once stated by the famous economist John
Maynard Keynes, ‘‘in the long run we are all dead’’ [4], yet the readers of this article are most certainly alive. Similarly,
extreme events and crashes still happen, andwill keep comingwith regularity for the foreseeable future since human nature
never changes. Indeed, financialmarkets are driven by crowd behaviour, by fear and greed of irrational short-term traders, in
otherwords by subjective psychological phenomena. Statistical testingwhether or not financialmarkets are efficient is often
obscured by making these tests conditional upon not necessarily correct parametric regression models, as has been made
clear in Refs. [5,6]. The inability of mainstream economists to anticipate short-term fluctuations of financial markets stands
behind the recent rise in prominence [7] of the alternative behavioural finance, evidenced by the 2013 NobelMemorial Prize
in Economics co-awarded to the behavioural economist Robert J. Shiller. (In an interesting twist of fate, in 2013 the Nobel
Memorial Prize was also awarded to Eugene F. Fama and Lars Peter Hansen, proponents of the mainstream econometrics
which competes directly with behavioural finance. This only goes to show how difficult it is to form consensus on major
issues in economics.) Since psychology aswell as behavioural finance both belong to the category of soft social sciences, they
may not necessarily offer ready-to-use mathematical tools for building financial trading systems on top of them. Instead,
their subjective findings need to be translated into objective trading rules, intended to execute automatically on computers
without human interference. Statistical physics, and econophysics [8–11] in particular may offer somemodels and tools for
expressing in quantitative ways subjective human behaviour.

Human irrationality manifests itself in many ways. One effect acknowledged by the mainstream theoretical economists
as well as practitioners is collective herding behaviour of traders. Using existing entropy analysis, in this article we reveal
evidence of systematic violations of the i.i.d. assumption. It is often said that extraordinary claims require extraordinary
evidence. Subsequently we also demonstrate how to build realistic foreign exchange trading systems based upon the idea
of herding behaviour, as enforced through the use of the Ising spin model, common in statistical physics, and adapted to the
financial domain by the author. The idea of applying the Ising model to financial markets or social phenomena is not new
[12,13]. The large body of existing econophysics literature, reviewed in for example Ref. [12], tends to focus on running
artificial agent-based simulations with realistic supply/demand-based artificial price formation mechanisms, in order to
reproduce so-called ‘‘stylised facts’’ (volatility clustering, fat tails etc.). In contrast, the IsingFXmodel described in this paper
does not include any price formation mechanism. Nor is it used to generate any artificial price time series, to be compared
against the dynamics of a real market. Instead the spins (artificial traders) within the IsingFXmodel react to real forex prices
streamed in real-time using a C/C++ FIX API connection to the author’s foreign exchange trading account. As the output
of the real-prices-driven IsingFX, the net lattice magnetisation is translated into BUY/SELL trading decisions, ready to be
transmitted to the forex market using the FIX protocol (an industry standard).

2. Entropy analysis

Approximate Entropy (ApEn), being ‘‘a model independent measure of sequential irregularity’’ [14], has been employed
in this study to demonstrate beyond reasonable doubt that high frequency foreign exchange time series do exhibit
certain sequential regularities incompatible with the i.i.d. assumption made by mainstream econometricians [1]. A recent
application of ApEn to study speculative bubbles conditions in Tunisian and French stock markets can be found in Ref. [15].
Itself non-parametric, Approximate Entropy is also capable [16] of either endorsing or rejecting parametric econometric
models such as ARIMA or GARCH [1].

Tick data collected from the foreign exchange market during the three-week period between 10th and 29th March 2014
are used to construct time series of logarithmic returns log st − log st−1 for ten selected currency pairs, where st are middle
prices between bid and ask quotes. Employing a sliding window of the length N = 129, let us assume a logarithmic
returns sequence {xi}, i = 1 . . .N . The value of Approximate Entropy ApEn(m, r,N) for a particular sequence (sliding
window) is calculated using the following parameters: m = 2 and r = 0.4 × mad, where mad denotes a mean absolute
deviation of {xi+1 − xi} (robustness to outliers), as opposed to the standard deviation used in the original Approximate
Entropy measure [14,16]. Based on the sequence {xi}, delay vectors of the length m are constructed: the ith delay vector
x(i) = [xi, xi+1, . . . , xi+m−1] and the jth delay vector x(j) =


xj, xj+1, . . . , xj+m−1


. Let us define a quantity Cm

i (r) to be

Cm
i (r) =


the number of x(j) such that distance (x(i), x(j)) < r


/(N − m + 1)

with the distance measure such that distance (a, b) = maxk=1...m |ak − bk| and distance (x(i), x(i)) = 0. Then Approximate
Entropy for the sequence {xi} is defined to be

ApEn(m, r,N) = Φm(r) − Φm+1(r)

where Φm(r) = (N − m + 1)−1 N−m+1
i=1 log Cm

i (r).
In the world of algorithmic high frequency trading three weeks is more than enough to ‘‘make or break’’ an algorithm.

Each logarithmic returns time series contains over one million price ticks coming at time intervals ranging from sub-
second to few seconds, depending on the time of the day. Fig. 1 shows an experimental implementation of the algorithm
to compute the Approximate Entropy using Xilinx Field-Programmable Gate Array (FPGA) technology. The real reason for
making an extra effort to implement ApEn in hardware was to practise bit-level digital hardware design in VHDL (VHSIC
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Fig. 1. FPGA hardware acceleration. Computation of the Approximate Entropy for N = 129 and m = 2 has been offloaded onto a custom digital circuit,
designed by the author in VHDL (VHSIC Hardware Description Language) and implemented in a Xilinx Kintex-7 FPGA (Field-Programmable Gate Array)
device. The hardware-accelerated FPGA implementation has been found to be over 15 times faster compared with a C/C++ code running on an Intel CPU
whilst consuming an order of magnitude less power. As an invaluable exercise in CPU-FPGA integration, the author has also created a C/C++MathLink/PCI
Express interface between Wolfram Mathematica and Xilinx FPGA, enabling one to stream financial time series from Mathematica directly to FPGA and
have the FPGA send back calculated entropy values.

Hardware Description Language). In recent years the FPGA technology has foundwidespread use within the high-frequency
trading [17] community as well as global investment banks (for example JP Morgan [18,19]), desperate to win the speed
race to reduce trading latencies.

In order to ascertain the presence of sequential regularities, the logarithmic returns series is randomly reshuffled –
destroying any sequential information – and Approximate Entropy is then re-calculated for the randomised time series. Had
the original time series been i.i.d. (identically and independently distributed), therewould be little difference inApproximate
Entropies (measuring sequential irregularities) obtained for the original and randomly reshuffled time series. Fig. 2 shows
histograms of Approximate Entropies obtained from the original and reshuffled logarithmic returns time series. For the ten
currency pairs under consideration, in all but one case original time series clearly exhibit lower entropy levels than what
would be expected by chance, indicative of the presence of sequential regularities in high frequency financial data. One
notable exception stands out: EUR/CHF. One could speculate that the on-going exchange rate floor maintained by the Swiss
National Bank distorts free markets and alters natural speculative positioning in the EUR/CHF currency pair.

When the data sampling frequency is lowered (for example by taking every second, fifth, tenth etc. datum from the tick
time series), differences between original and reshuffled entropy histograms gradually diminish. Fig. 3 plots χ2-distances
between histograms as a function of a sampling scale (distances are calculated using a computer science method described
in Ref. [20]). Distances between histograms from Fig. 2 show a declining tendency as sampling intervals increase. The degree
to which financial data satisfies the i.i.d. assumption seems to depend on the time scale at which the price is sampled. At
small time scales, corresponding to seconds and minutes, the foreign exchange data exhibits more regularity than implied
by pure chance. Private retail traders are unlikely to be able to exploit sub-second market inefficiencies due to prohibitive
trading costs (large bid/ask spreads). However, high frequency trading firms and market makers (liquidity provider banks)
operating at sub-second time scales, at which currency markets are not random, are subject to substantially lower trading
costs, enabling them to make profits at the expense of longer-term investors and small market players.

After repeatedly reshuffling the original data using different pseudo-random number sequences, the histogram differ-
ences shown in Figs. 2 and 3 have been found to be insensitive to the initial choice of pseudo-random number generator
(PRNG) seeds. The large number of samples combined with a relatively high quality of theMersenne Twister 19937 genera-
tor used in this study provides a plausible explanation for such a finding. The value of ApEn depends on taking logarithms of
average numbers of delay vectors that appear similar. Random reshuffling using a high-quality PRNG does not seem to alter
to a large enough extent the average counts of similar vectors, especially as the number of counts is large. In theory there is
nothing to prevent random reshuffling from producing a new time series that is very similar to the original financial time
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Fig. 2. Entropy analysis. Histograms of Approximate Entropy obtained for ten selected currency pairs using tick-level time series (sub-second time
resolution). Lower entropy values are indicative of increased sequential regularities present in the time series. A notable exception is the EUR/CHF currency
pair.

series. However, in practice one would need to wait prohibitively long before finding significant deviations from average
similarity counts.

3. IsingFX

Is it possible to exploit market inefficiencies and sequential regularities revealed by the entropy analysis? The following
section attempts to answer this question. Short-term fluctuations in foreign currency prices arise mainly as a result of



322 C.A. Zapart / Physica A 419 (2015) 318–327

Fig. 3. Histogram differences. χ2-distances between histograms of Approximate Entropy seen in Fig. 2 calculated using an empirical histogram
comparison method described in Ref. [20]. scale = 1 corresponds to sampling data at each tick, scale = 10 implies using every 10th sample, and so
on. The distance calculation method bears no relation to statistical p-value χ2 tests. In addition, histogram differences have been found to be insensitive
to reshuffling original data using different pseudo-random number generator seeds, which makes it difficult to plot any error bars (different experimental
runs result in the same histogram differences for a given currency pair). Instead a natural variability amongst ten different currency pairs provides a proxy
to error bars.

Fig. 4. Microscopic interactions. Foreign exchange price changes caused by interactions between market participants. Econometrics observes the
resulting time series (effects) whilst ignoring the underlying causes of those price changes. Using amedical analogy, this is equivalent to treating symptoms
instead of going after root causes of a disease.

three factors: a random arrival of news, scheduled releases of economic indicators that influence interest rate differentials,
and internal dynamics of the market (interactions between market participants) caused by for example stop-loss hunting,
attempts to trigger binary options, positioning by big players in the direction of a prevailing trend, short-term mean-
reversion etc. Whilst forecasting the impact of news is rather difficult, after the news has been released it may be feasible to
model human reactions to price changes and/or incurred profits/losses resulting froma randomarrival of news, as illustrated
in Fig. 4. To emphasise, the author does not claim to be able to predict the arrival of shocks and dislocations in financial assets.
Instead behavioural econophysics attempts to model traders’ reactions to profits and losses incurred due to shocks. After
a release of economic indicators, those traders caught on the wrong side are often forced to change the direction of their
positions due to the use of leverage that grossly amplifies losses, breaching their risk limits.

Econometricians tend to ignore the microscopic interactions between market participants, preferring to focus on the
‘‘big picture’’ (macroeconomics, top-down stochastic processes), although there are notable exceptions [21]. In contrast,
behavioural econophysics borrows from the Ising spin model (common in statistical physics) to model a subset of human



C.A. Zapart / Physica A 419 (2015) 318–327 323

Fig. 5. 2D Ising lattice. A representative visualisation of a 2D Ising lattice adapted to forex trading. Each square represents an imaginary trader, with buy
and sell decisions denoted by different colours.

interactions. It does so by assuming a 2D square lattice, an example of which appears in Fig. 5, containing N imaginary
traders that form an artificial foreign exchange market. Each trader makes either buy or sell decisions subject to minimising
the following energy (cost) function:

hi = −α

j∈Ni

JijSiSjpj  
copy successful traders

− β min (pi, 0)  
cut own losses

+ γ max (pi, 0)  
take profits

, α, β, γ ∈ R+,

where hi, i = 1 . . .N is the ith trader’s energy function, α, β and γ are tunable model parameters, Ji,j ∈ [−1, 1] controls the
strength of interactions between the ith and jth traders, Ni denotes an immediate neighbourhood of the ith trader (readers
are assumed to be familiar with the Ising spin model [22]), Si, Sj ∈ {−1, 1} encode binary sell or buy decisions, respectively,
and pi, i = 1 . . .N holds current profits/losses. By changing the sign of Ji,j one can simulate either herding (trend following)
or minority game-like mean reversion. The model employs a Monte Carlo method in order to minimise the total energy
of the 2D lattice. Upon receiving a new currency quote from the forex broker, one trader randomly selected from the 2D
lattice undergoes a trial spin flip in an attempt to minimise its energy hi. If, upon flipping a spin (changing the position
from for example buy to sell), the energy hi decreases, the spin flip is accepted. On the other hand, if the energy change
dE is greater than zero, a spin flip is accepted with a probability given by the Boltzmann factor exp (−dE/kBT ), where kB
denotes the Boltzmann constant and T is the temperature (akin to temperature used in Simulated Annealing). However, in
a departure from the standard Simulated Annealing Monte Carlo method, the algorithm automatically increases or decreases
the temperature T so as to maintain the acceptance probability of dE > 0 spin flips constant on average. The author has
chosen the name ‘‘IsingFX’’ for this model.

Econometricians usually pay a great deal of attention tomodel parameter estimation. Unfortunately no amount of fitting
distributions to past data prior to the stock market meltdown in 2008 would have revealed the severity of the incoming
downturn. In contrast, the model described in this article does not involve any sort of fitting statistical models to past
time series nor optimising Sharpe Ratio-based fitness functions. Hence it completely avoids the problem of over-fitting
that plagues econometrics. Once the α, β and γ parameters governing the desired behaviour of artificial traders have been
decided upon, the IsingFX model does not require any further tuning nor fitting to past data.

Simulated trading performance of the IsingFX model operating in a tick-level high frequency mode is shown in Fig. 6.
Cumulative profits/losses are averaged over all 32 × 32 = 1024 traders. Positive net magnetisation of the 2D spin lattice
corresponds to the majority of traders holding a long (buy) position. Conversely negative magnetisation implies a net short
(sell) position. Imaginary traders change the trading direction at a very high frequency, whichwould be impossible tomatch
by average retail traders paying high bid/ask transaction costs. The value of kBT is automatically adjusted in order to keep
the dE > 0 spin flip acceptance probability constant around 0.2. To do so we keep track of log-odds [23] of spin flips given
dE > 0 using a statistical ensemble [22] consisting of 128 independent IsingFX models. The author does not recommend
using time averages for estimating the dE > 0 spin flip conditional probability. Given the non-stationary nature of financial
markets, the correct approach [24,25] is to use statistical ensemble averages, as illustrated in Fig. 7. Time averages are only
applicable to cases in which the stationarity assumption holds [24,25]. The 0.2 conditional probability of dE > 0 spin flips
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Fig. 6. Simulated trading. EUR/USD high frequency trading performance of the IsingFX model plotted every 100th tick for the period between 10th
and 29th March 2014. Only high frequency trading firms – able to trade within the bid/ask spread – are capable of approaching trading profits seen in
the ‘‘cumulative profit/loss’’ curve. Private retail traders, subject to large transaction costs, are effectively prevented from being able to rebalance their
positions with the frequency seen in the ‘‘magnetisation’’ curve. Position sizing is proportional to the net magnetisation of the 2D Ising lattice, with the
trading direction (long or short) given by the sign of the magnetisation.

corresponds to the log-odd value of −1.39, which the control algorithm can be seen to maintain on average, as seen in
Fig. 8. Due to the stochastic nature of financial markets the log-odds are seen to oscillate around the target value of −1.39
as kBT is being continuously adjusted. There is no theoretical basis for targeting specifically the value of 0.2 for the dE > 0
spin flip acceptance probability. Being a probability, its value must lie between 0 and 1. Setting it to zero would prevent
Simulated Annealing-style hill-climbing (exploration) of the energy landscape. However, setting it to 1 would be equally
counter-productive as the behaviour of the IsingFX model would have become purely random. Therefore a trading system
designer has to make a heuristic choice of a value between 0 and 1. The entity kBT can probably be interpreted as a proxy
for intrinsic volatility, quickly rising during highly volatile times and falling promptly to a small non-zero baseline level after
the shocks have passed.

As an alternative to adjusting kBT in accordance with the probability of dE > 0 flips, statistical physics also offers a
temperature-less Demon Monte Carlo spin flip dynamics. Compared to the variable kBT scheme, an experimental Demon
Monte Carlo version of IsingFX (appropriately named DemonFX) has been found to offer similar trading performance.
However, the VHDL FPGA hardware implementation [26] of DemonFX is easier to realise on a practical basis than the
IsingFX model discussed in this paper. Fig. 9 illustrates a VHDL hardware design of a 32-core high-frequency trading chip
implemented using a Kintex-7 Xilinx FPGA.

4. Conclusions

As an immediate practical application, the IsingFX can contribute towards reducing operating costs and increasing profits
at brokerages and forex liquidity providers. Foreign exchange brokers typically internalise customer order flow (match buys
with sells). The remaining imbalance (Net Open Position or NOP) would normally be hedged in the interbank forex market
at some future point. The exact timing of hedging the NOP is left to the discretion of skilled forex dealers. Some brokerages
may be trading against their customers by choosing not to offset the NOP in the hope that their customers would be forced
to close their positions at a loss later on, thus helping to reduce the NOP without resorting to the interbank market. The
IsingFX model can help dealers decide on the optimum timing of hedging the NOP. In an extreme case, expensive human
forex dealers could conceivably be replaced by banks of Field-Programmable Gate Array (FPGA) devices implementing in
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Fig. 7. Statistical ensemble. Mainstream econometrics (Kalman filtering, moving averages, historical volatility) implicitly relies on time averages to
estimate the mean value of x at time t using past values x(t), x(t − 1), x(t − 2), . . . , which introduces undesirable time lags. In contrast, econophysics
utilises the statistical ensemble approach inwhich an ensemble ofN independentmodels (or re-runs of an experiment) provides an instantaneous (intrinsic)
mean value of x(t).
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Fig. 8. Constant log-odds. A zoom-in look at the results from Fig. 6. To estimate the probability of dE > 0 spin flips the model keeps track of log-odds of
dE > 0 flip events measured using a statistical ensemble consisting of 128 independent IsingFX models.

hardware high-frequency behavioural trading models of the type described here. A prototype VHDL FPGA implementation
of IsingFX/DemonFX has been discussed in Ref. [26].

The IsingFX model conveniently bypasses the problem of over-fitting to past data by replacing fitting econometric time
seriesmodels withmodelling the underlying behaviour of human traders. However, an initial guidance from an experienced
forex trader and/or trading system designer is still required in order to decide which aspects of human behaviour should be
expressed using Ising spins.

When asked a question ‘‘Is the RandomWalk Theory correct?’’, it seems the answerwould depend onwhat time scale one
looks at. Atmedium to large time scales the RandomWalk probably provides a reasonable first approximation tomovements
of financial markets. However, on the scale of minutes and seconds – the domain reservedmainly to high-frequency trading
firms and market making liquidity providers – the markets seem far from being efficient and random; consequently the
RandomWalk Theory cannot be said to explain how foreign exchange markets work. In contrast with econometrics, which
makes randomness and unpredictability of financial markets as its central tenets, non-parametric behavioural econophysics
of the kind presented here is capable of making short-term directional calls that can be exploited to design high frequency
trading systems. The author feels the time is right to recognise econophysics as a refreshing alternative to overly dogmatic
econometrics.
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Fig. 9. DemonFX ensemble in hardware. A Register Transfer Level VHDL design of a parallel 32-core DemonFX statistical ensemble. The floating-point
implementation of 32 DemonFX cores fits comfortablywithin the Kintex-7 XC7K325T Xilinx FPGA. By replacing floating-pointwith a fixed-point arithmetic
it is quite possible to fitmore parallel coreswithin the same FPGAdevice. Alternatively a newer,muchbigger KintexUltraScale-class FPGA can accommodate
64 or 128 floating-point DemonFX cores.
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