Generalized Preferential
Attachment Model (GPMG)



The goal of the model is to explain
stylized facts

(I). The size distribution of firms is highly skewed;
(IT). The growth rate distribution is not Gaussian but “tent-shaped” in the
vicinity of the mean growth rate;
(ITT). Smaller firms have a lower probability of survival, but those that survive
tend to grow faster than larger firms;
(IV). The variance of growth rates is systematically higher for smaller firms

Assumption of the model

— the number of constituent elementary units in a firm grows in proportion
to the number of preexisting units (proportional growth in the number of
elementary units):

— The size of each unit grows in proportion to its size, independently of
other units (proportional growth in size).



(1) Sales distribution is skewed
world wide pharmaceutical database
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Number of products in the pharm firms
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(2) Growth rate distribution
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(3,4) average growth rate and its std.
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GPMG=Bose-Einstein + Simon + Gibrat

"Old Firms"
Firm 1 Firm 2
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First set of Assumptions

(1). At time ¢, the system consists of N(¢) firms. Each firm 7 consists of K;(t)
units, while N3 () indicates the number of firms with exactly k& units. By

definition,
N(t) =) Ni(t). (3.1)
The total number of elementary units in the system n(t) is
n(t) = io: EN(t) = (K(t))N(t), (3.2)
k=0

where (K (t)) is the average number of units per firm. We assume that
at time ¢t = 0 there are Ni(0) firms consisting of & units. We denote

the initial number of firms and units as N(0) = Ngp and n(0) = no,
respectively. Accordingly, we introduce
(k) = ng/No = (K(0)), (3.3)

which indicates the initial average number of units per firm at time ¢ =
0 We define the initial of firm size distribution, measured in terms of
number of elementary units, as P = Ni(0)/No 2.



(2).

(2-3) Bose-Einstein ; (4) Simon
At each time interval At, a number of new units Ayn is created in pro-
portion to the total number of elementary units: Ayxn = An(t)At, where
A 1s the growth rate. These units are distributed among existing firms

with probability p;, proportional to the number of units detained by a
firm i: p; = K;(t)/n(t).

. At each time step, one unit can be deleted., with probability pu. As a

consequence, the number of units deleted during At is A,n = pn(t)At.
The probability that a deleted unit belongs to the firm 7 is (proportional
to the number of its units) p; = K;(t)/n(t).

. At each interval At, a number of new firms A, N = /n(t)At is created,

where ©// indicates the new firms birth rate. We assume that there is a
probability P/ that a new firm has & units. Thus, for each time interval,
the total number of units added by the entry of new firms is Ay,n =
vn(t)At, where

v=1 Z Pk =v"(k) (3.4)
k

and (k)" is the average number of units in new firms.



(5).

(7).

Second set of Assumptions (Gibrat Law)

At time ¢, each firm ¢ in made by K;(t) units of size &;(t), j = 1.2, ... K;(?)
where §; > 0 are Independent random variables extracted from the
distribution P:. We assume that E[Ing;(t)] = me and Var[lng;(t)] =
E[(In&)?] — mg = Ve, where E[z]| and Var[z| are respectively the mathe-
matical expectation and the variance of a random variable x. Accordingly,
the size of a firm 7 is denoted by S;(t) = Z]K:i(lt) & (1).

. For each time interval At, the size of each unit j is decreased or increased

by a random factor 7n;(t) > 0, so that

§i(t +at) = E(t) n;(t)

We assume that 7;(¢), the growth factor of unit j, is a random vari-
able taken from a given probability distribution F,. We assumed that
Elln7;(t)] = my,, while Var[lnn;(t)] = E[(Inn;)?] —m; = V,;; n; is inde-
pendent of ;. /{'; and all other random variables Whlch characterized the
firm 1.

The size of each new unit arriving at time ¢ is drawn randomly from the
distribution of unit sizes P (cfr. Assumption 5).



Pure Gibrat Model
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Stilized Facts (2-4) are violated:
(2) The shape of the growth rate is parabolic

(3,4) The Growth rate and variance are independent
of firm size.

Moreover, variance grows linearly with time



Pure Bose-Einstein: no new firms

Size distribution is Geometric
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Growth rate is tent shape

In P (r)
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Simon Model: new firms can be created
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Finite time Behavior
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In P(r)

Growth rate : disaster!
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Stylized Facts (3,4): Same as Bose.
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Full Blown GPMG
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Growth rate for Bose-Einstein
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Growth rate for Simon

J .. » == b=0.0, approximation e N
VAN m—— b=(.0, Bs function .\
. —— b=0.1. Bs function '
------ b=1.0. Bs function

Laplassian Cusp



Size variance
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