

DEPENDENCY NETWORK AND NODE INFLUENCE: OVERVIEW AND APPLICATIONS

Dror Y. Kenett Department of Physics, Boston University, USA

Outline

- (1) Introduction to network science
 - Terminology
 - Network properties
 - Matrix representation
- (2) Correlation based networks
 - Estimating correlations from time series
 - Partial correlations
 - Dependency network
 - Node influence
 - Applications in financial markets
 - Applications in other systems
- (3) Node influence
 - I. Cascading failures in industry networks
 - II. Overlapping communities in networks
 - III. Failure and recovery in networks
 - IV. Evolution of networks
 - V. Cascading failures in the financial system
 - VI. Interdependent networks
- (4) Discussion

Outline

- (1) Introduction to network science
 - Terminology
 - Network properties
 - Matrix representation
- (2) Correlation based networks
 - Estimating correlations from
 - Partial correlations
 - Dependency network
 - Node influence
 - Applications in financial markets
 - Applications in other systems
- (3) Node influence
 - I. Cascading failures in industry networks
 - II. Overlapping communities in networks
 - III. Failure and recovery in networks
 - IV. Evolution of networks
 - V. Cascading failures in the financial system
 - VI. Interdependent networks
- (4) Discussion

What is a network?

components: nodes, vertices

What is a network?

• components: nodes, vertices N

• interactions: links, edges L

What is a network?

• components: nodes, vertices N

• interactions: links, edges L

• system: network, graph (N,L)

Network representation?

The choice of the proper network representation determines our ability to use network theory successfully.

In some cases there is a unique, unambiguous representation. In other cases, the representation is by no means unique.

For example,, the way we assign the links between a group of individuals will determine the nature of the question we can study.

Undirected

Links: undirected (symmetrical)

Graph:

Undirected links:

coauthorship links Actor network protein interactions

Directed

Links: directed (arcs)

Digraph = directed graph:

An undirected link is the superposition of two opposite directed links.

Directed links:

URLs on the www phone calls metabolic reactions

The Adjacency Matrix

Undirected

 $A_{ii}=1$ if there is a link between node *i* and *j*

 $A_{ii}=0$ if nodes *i* and *j* are not connected to each other.

$$\mathbf{A}_{ij} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \qquad A_{ij} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$$A_{ij} = \left(\begin{array}{cccc} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{array} \right)$$

Note that for a directed graph (right) the matrix is not symmetric.

$$A_{ij} = A_{ji}$$
$$A_{ii} = 0$$

$$k_{j} = \sum_{j=1}^{N} A_{ij}$$
$$k_{j} = \sum_{i=1}^{N} A_{ij}$$

$$L = \frac{1}{2} \sum_{i=1}^{N} k_{i} = \frac{1}{2} \sum_{ij}^{N} A_{ij}$$

$$A_{ij} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$$k_i^{out} = \sum_{i=1}^{N} A_{ij}$$

$$A_{ij} \neq A_{ji}$$
$$A_{ij} = 0$$

$$A_{ii} = \sum_{l=i}^{N} A_{ij}$$

$$k_i^{out} = \sum_{j=1}^N A_{ij}$$

Undirected

Example of topological properties of a network: Node Degree

$$\mathbf{A}_{ij} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \qquad k_i = \sum_{j=1}^{N} \mathbf{A}_{ij}$$

$$\mathbf{A}_{ij} = \mathbf{A}_{ij}$$

$$\mathbf{A}_{ij} = \mathbf{A}_{ij}$$

$$A_{ij} = A_{ji}$$
$$A_{ii} = 0$$

$$k_i = \sum_{j=1}^N A_{ij}$$

$$k_j = \sum_{i=1}^N A_{ij}$$

$$L = \frac{1}{2} \sum_{i=1}^{N} k_{i} = \frac{1}{2} \sum_{ij}^{N} A_{ij}$$

Directed

$$\mathbf{A}_{ij} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} \qquad \begin{matrix} {}^{!} \mathbf{y} & \sum_{i=1}^{T=!} \mathbf{z} \\ {}^{!} \mathbf{y} \\ {}^{N} & \sum_{i=1}^{T=!} \mathbf{z} \\ {}^{N} \mathbf{z} \\ {}^{N} & {}^{N} & {}^{N} \\ {}^{N}$$

$$A_{ij} \neq A_{ji}$$
$$A_{ii} = 0$$

$$\bigwedge_{i = i}^{N} \sum_{i = i}^{N} A_{ij}$$

$$k_i^{out} = \sum_{j=1}^N A_{ij}$$

$$A_{ij} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \qquad k_i = \sum_{j=1}^{N} A_{ij}$$

$$k_j = \sum_{i=1}^{N} A_{ij}$$

$$\begin{array}{l} \boldsymbol{A}_{ij} = \boldsymbol{A}_{ji} \\ \boldsymbol{A}_{ij} = 0 \end{array}$$

$$K_i = \sum_{j=1}^N A_{ij}$$

$$k_j = \sum_{i=1}^N A_{ij}$$

$$L = \frac{1}{2} \sum_{i=1}^{N} k_{i} = \frac{1}{2} \sum_{ij}^{N} A_{ij}$$

$$A_{ij} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$${}^{[i]} V \sum_{N}^{I=i} = {}^{i}_{ui} Y$$

$${}^{[i]} K_{i}^{out} = \sum_{i=1}^{N} A_{ij}$$

$$A_{ij} \neq A_{ji}$$
$$A_{ii} = 0$$

$$_{i}A\sum_{i=i}^{N}=_{i}^{ni}A$$

$$K_i^{out} = \sum_{j=1}^N A_{ij}$$

$$A_{ij} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$k_i = \sum_{j=1}^{N} A_{ij}$$

$$k_j = \sum_{i=1}^{N} A_{ij}$$

$$A_{ij} = A_{ji}$$
$$A_{ij} = 0$$

$$k_i = \sum_{j=1}^N A_{ij}$$

$$k_j = \sum_{i=1}^N A_{ij}$$

$$L = \frac{1}{2} \sum_{i=1}^{N} k_{i} = \frac{1}{2} \sum_{ij}^{N} A_{ij}$$

$$A_{ij} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$${}^{I=!}_{V} \stackrel{i=!}{\sum}_{i=1}^{N} A_{ij}$$

$$A_{ij} \neq A_{ji}$$
$$A_{ii} = 0$$

$$_{i}A\sum_{i=i}^{N}=_{i}^{ni}\lambda$$

$$k_i^{out} = \sum_{i=1}^N A_{ij}$$

$$A_{ij} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$k_i = \sum_{j=1}^{N} A_{ij}$$

$$k_j = \sum_{i=1}^{N} A_{ij}$$

$$A_{ij} = A_{ji}$$
$$A_{ij} = 0$$

$$K_i = \sum_{j=1}^N A_{ij}$$

$$k_j = \sum_{i=1}^N A_{ij}$$

$$L = \frac{1}{2} \sum_{i=1}^{N} k_{i} = \frac{1}{2} \sum_{ij}^{N} A_{ij}$$

$$A_{ij} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$$K_i^{out} = \sum_{i=1}^{N} A_{ij}$$

$$A_{ij} \neq A_{ji}$$
$$A_{ij} = 0$$

$$\lambda \sum_{i=i}^{N} = \sum_{i=i}^{N} \lambda_i$$

$$K_i^{out} = \sum_{i=1}^N A_{ij}$$

$$A_{ij} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$k_i = \sum_{j=1}^{N} A_{ij}$$

$$k_j = \sum_{i=1}^{N} A_{ij}$$

$$\begin{array}{l} \boldsymbol{A}_{ij} = \boldsymbol{A}_{ji} \\ \boldsymbol{A}_{ij} = 0 \end{array}$$

$$k_i = \sum_{j=1}^N A_{ij}$$

$$k_j = \sum_{i=1}^N A_{ij}$$

$$L = \frac{1}{2} \sum_{i=1}^{N} k_{i} = \frac{1}{2} \sum_{ij}^{N} A_{ij}$$

$$A_{ij} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 1 & 0 \end{pmatrix}$$

$$A_{ij} \neq A_{ji}$$
$$A_{ii} = 0$$

$$\bigwedge_{i = i}^{N} = \prod_{i=1}^{N} \lambda_{i}$$

$$K_i^{out} = \sum_{j=1}^N A_{ij}$$

Outline

- (1) Introduction to network science
 - Terminology
 - Network properties
 - Matrix representation
- (2) Correlation based networks
 - Estimating correlations from time series
 - Partial correlations
 - Dependency network
 - Node influence
 - Applications in financial markets
 - Applications in other systems
- (3) Node influence
 - I. Cascading failures in industry networks
 - II. Overlapping communities in networks
 - III. Failure and recovery in networks
 - IV. Evolution of networks
 - V. Cascading failures in the financial system
 - VI. Interdependent networks
- (4) Discussion

S&P500 Price

$$r_i(t) = \log[P_i(t)] - \log[P_i(t-1)]$$

S&P500 Return

Quantifying functional relationships

Correlation

$$C(i,j) = \frac{\left\langle \left(r_i - \left\langle r_i \right\rangle \right) \cdot \left(r_j - \left\langle r_j \right\rangle \right) \right\rangle}{\sigma_i \cdot \sigma_j}$$

Quantifying functional relationships

Correlation

$$C(i,j) = \frac{\left\langle \left(r_i - \left\langle r_i \right\rangle \right) \cdot \left(r_j - \left\langle r_j \right\rangle \right) \right\rangle}{\sigma_i \cdot \sigma_j}$$

Partial Correlation

$$PC(i,j \mid m) = \frac{C(i,j) - C(i,m) \cdot C(j,m)}{\sqrt{(1 - C^{2}(i,m)) \cdot (1 - C^{2}(j,m))}}$$

PARTIAL CORRELATION:

The partial correlation (residual correlation) between i and j given m, is the correlation between i and j after removing their dependency on m; thus, it is a measure of the correlation between i and j after removing the affect of m on their correlation

Quantifying functional relationships

Correlation

$$C(i,j) = \frac{\left\langle \left(r_i - \left\langle r_i \right\rangle \right) \cdot \left(r_j - \left\langle r_j \right\rangle \right) \right\rangle}{\sigma_i \cdot \sigma_j}$$

Partial Correlation

$$PC(i,j \mid m) = \frac{C(i,j) - C(i,m) \cdot C(j,m)}{\sqrt{(1 - C^{2}(i,m)) \cdot (1 - C^{2}(j,m))}}$$

PARTIAL CORRELATION:

The partial correlation (residual correlation) between i and j given m, is the correlation between i and j after removing their dependency on m; thus, it is a measure of the correlation between i and j after removing the affect of m on their correlation

	a	b	С	d	е	f
a	0	0.1	0.11	0.4	0.2	0.5
b	0.1	0	0.3	0.12	0.32	0.05
С	0.11	0.3	0	0.7	0.21	0.5
d	0.4	0.12	0.7	0	0.17	0.13
е	0.2	0.32	0.21	0.17	0	0.15
f	0.5	0.05	0.5	0.13	0.15	0

Stock Dependency Networks

- **1.** Calculate partial correlation $PC(i,k \mid j)$ j = 1,2,...,N
- 2. Correlation Influence

$$D(i,k \mid j) \equiv C(i,k) - PC(i,k \mid j)$$

3. Dependency Matrix
$$d(i | j) = \frac{1}{N-1} \sum_{k \neq j,i}^{N-1} D(i,k | j)$$

- 4. Construct Planar Graph (PMFG, Tumminello et al., PNAS 2005)
- 5.Influence and Relative Influence $R_u(s) = \frac{o(s) i(s)}{o(s) + i(s)}$

Data

N = 300 T = 748

Index	Sector	# stocks		
1	Basic Materials	24		
2	Consumer Cyclical	22		
3	Consumer Non Cyclical	25		
4	Capital Goods	12		
5	Conglomerates	8		
6	Energy	17		
7	Financial	53		
8	Healthcare	19		
9	Services	69		
10	Technology	34		
11	Transportation	5		
12	Utilities	12		

Stock Dependency Network: S&P Stocks

D.Y. Kenett, M. Tumminello, A. Madi, G. Gur-Gershgoren, R.N. Mantegna and E. Ben Jacob (2010), Dominating clasp of the financial sector revealed by partial correlation analysis of the stock market, PLoS ONE 5(12) e15032, doi:10.1371/journal.pone. 0015032

Stock Dependency Network: S&P Stocks

D.Y. Kenett, M. Tumminello, A. Madi, G. Gur-Gershgoren, R.N. Mantegna and E. Ben Jacob (2010), Dominating clasp of the financial sector revealed by partial correlation analysis of the stock market, PLoS ONE 5(12) e15032, doi:10.1371/journal.pone. 0015032

Sector Dependency Network

Sector Dependency Network

Factor models

Factor models are simple and widespread model of multivariate time series

A general multifactor model for N variables $x_i(t)$ is

$$x_i(t) = \sum_{j=1}^{K} \gamma_i^{(j)} f_j(t) + \gamma_i^{(0)} \epsilon_i(t)$$

 $\gamma_i^{(j)}$ s a constant describing the weight of factor j in explaining the dynamics of the variable $x_i(t)$.

The number of factors is K and they are described by the time series $f_i(t)$.

 $\epsilon_i(t)$ is a (Gaussian) zero mean noise with unit variance

Factor models: examples

Multifactor models have been introduced to model a set of asset prices, generalizing CAPM

$$\mathbf{R}(t) = \mathbf{a} + \mathbf{B}\mathbf{f}(t) + \epsilon(t)$$

where now **B** is a (NxK) matrix and f(t) is a (Kx1) vector of factors.

The factors can be selected either on a theoretical ground (e.g. interest rates for bonds, inflation, industrial production growth, oil price, etc.) or on a statistical ground (i.e. by applying factor analysis methods, etc.)

Examples of multifactor models are Arbitrage Pricing Theory (Ross 1976) and the Intertemporal CAPM (Merton 1973).

Factor models and Principal Component Analysis (PCA)

A factor is associated to each relevant eigenvalue-eigenvector

Number of relevant eigenvalues

i-th component of the h-th eigenvector of C

$$x_{i}(t) = \sum_{h=1}^{K} \gamma_{i}^{(h)} \sqrt{\lambda_{h}} f^{(h)}(t) + \sqrt{1 - \sum_{h=1}^{K} \gamma_{i}^{(h)^{2}} \lambda_{h}} \epsilon_{i}(t)$$

h-th eigenvalue h-th factor

Idiosyncratic term

$$f^{(h)}(t)$$
 for $h = 1,...,K$ and $\varepsilon_i(t)$ for $i = 1,...,n$

are i.i.d. random variables with mean 0 and variance 1

How many eigenvalues should be included?

Random Matrix Theory

The idea is to compare the properties of an empirical correlation matrix C with the null hypothesis of a random matrix.

$$Q = T/N \ge 1$$
 fixed; $T \to \infty$; $N \to \infty$

Density of eigenvalues of a Random Matrix

$$\rho(\lambda) = \frac{Q}{2\pi\sigma^2} \frac{\sqrt{(\lambda_{MAX} - \lambda)(\lambda - \lambda_{MIN})}}{\lambda}$$

$$\lambda_{MIN}^{MAX} = \sigma^2 \left(1 + 1/Q \pm 2\sqrt{1/Q} \right)$$
 For correlation matrices $\sigma^2 = 1$

Random Matrix Theory

Random Matrix Theory helps to select the relevant eigenvalues

$$N = 406$$
 assets of the

$$Q = 3.22$$

$$\sigma^2 = 1 - \frac{1}{\lambda_1} \approx 0.85$$
 (dotted line)

best fit:
$$\sigma^2 = 0.74$$
 (solid line)

V. Plerou et al.

PRL 83, 1471 (1999)

L.Laloux et al,

PRL 83, 1468 (1999)

Theoretical Models

Simple Index

$$r_i = \gamma_i f + \sqrt{1 - \gamma_i^2 f} \varepsilon_i, \qquad i = 1, ..., N,$$

$$\langle r_i f \rangle = \gamma_i \langle f^2 \rangle = \gamma_i,$$

$$\rho_{i,j}(SI) = \langle r_i r_j \rangle = \gamma_i \gamma_j$$

RMT

$$r_{i} = \sum_{h=1}^{K} \gamma_{i,h} \sqrt{\lambda_{h}} f_{h} + \sqrt{1 - \sum_{h=1}^{K} \gamma_{i,h}^{2} \lambda_{h} \varepsilon_{i}} \qquad i = 1, ..., N$$

$$\lambda_{\text{max}} = \left(1 - \frac{\lambda_1}{N}\right) \left(1 + \frac{N}{T} + 2\sqrt{\frac{N}{T}}\right)$$

$$\rho_{i,j}(RMT) = \langle r_i r_j \rangle = \sum_{h=1}^K \gamma_{i,h} \gamma_{j,h} \lambda_h$$

Case study - Tel-Aviv market

Market states

Dynamics analysis of Dependency networks

Interdependencies in the global financial village

Network analysis of influence and dependencies between Companies/Countries

Stock dependency network

Country dependency network

Dror Y. Kenett, Matthias Raddant, Lior Zatlavi, Thomas Lux and Eshel Ben-Jacob (2012), Correlations in the global financial village, International Journal of Modern Physics Conference Series 16(1) 13-28.

Investigating market structure

Dror Y. Kenett, Xuqing Huang, Irena Vodenska, Shlomo Havlin, and H. Eugene Stanley (2014 Applications for financial markets, arXiv:1402.1405

Application to other systems

Immune system Dependency network

Semantic Dependency network

Outline

- (1) Introduction to network science
 - Terminology
 - Network properties
 - Matrix representation
- (2) Correlation based networks
 - Estimating correlations from
 - Partial correlations
 - Dependency network
 - Node influence
 - Applications in financial markets
 - Applications in other systems
- (3) Node influence
 - I. Cascading failures in industry networks
 - II. Overlapping communities in networks
 - III. Failure and recovery in networks
 - IV. Evolution of networks
 - V. Cascading failures in the financial system
 - VI. Interdependent networks
- (4) Discussion

I. Cascading failures in industry networks

Wei Li, Dror Y. Kenett, Kazuko Yamasaki, H. Eugene Stanley, Shlomo Havlin (preprint), Ranking the economic importance of countries and industries

II. Overlapping communities

$$\dot{\phi}_{i} = \omega_{i} + \frac{d}{k_{i} + k_{p_{i}}} \sum_{i=1}^{N} \sin(\phi_{i} - \phi_{i}) + \frac{d_{p}k_{p,i}}{k_{i} + k_{p_{i}}} \sin(\phi_{p_{i}} + \phi_{i}) \qquad i = 1, ..., N$$

Ammar Tareen, Dror Y. Kenett, H. Eugene Stanley, Shlomo Havlin (preprint), Overlapping behavior of financial assets

III. Failure and recovery in networks

Antonio Majdandzic, Boris Podobnik, Sergey Buldyrev, Dror Y. Kenett, Shlomo Havlin, and H. Eugene Stanley (2014), Spontaneous recovery in dynamical networks, Nature Physics 10, 34-38.

IV. Evolution of networks

V. Cascading failures in the financial system

Bipartite Model

 B_i : Total asset of bank i. $B_{i,m}$: The amount of asset m that bank i owns.

 A_m : Total market value of asset m.

fail when asset < liability

assets depreciate $\alpha B_{i,m}$

1-p: initial shock to an asset

 α : liquidity parameter

describes market's reaction to bank failure

VI. Interdependent networks

Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., & Havlin, S. (2010). Catastrophic cascade of failures in interdependent networks. Nature, 464(7291), 1025-1028.

Summary

- Dependency Networks
- Node influence
- Network in finance and economics
- Topology of networks
- Dynamics in networks and of networks
- Interdependent networks
- Cascading failures and targeted attacks
- Recovery in networks

References

- 1. Dror Y. Kenett, Michele Tumminello, Asaf Madi, Gitit Gur-Gershgoren, Rosario N. Mantegna, and Eshel Ben-Jacob (2010), Dominating clasp of the financial sector revealed by partial correlation analysis of the stock market, PLoS ONE 5(12), e15032.
- 2. Dror Y. Kenett, Yoash Shapira, Asaf Madi, Sharron Bransburg-Zabary, Gitit Gur-Gershgoren, and Eshel Ben-Jacob (2011), Index cohesive force analysis reveals that the US market became prone to systemic collapses since 2002, PLoS ONE 6(4): e19378
- 3. Asaf Madi, Dror Y. Kenett, Sharron Bransburg-Zabary, Yifat Merbl, Francisco J. Quintana, Stefano Boccaletti, Alfred I. Tauber, Irun R. Cohen, and Eshel Ben-Jacob (2011), Analyses of antigen dependency networks unveil immune system reorganization between birth and adulthood, Chaos 21, 016109.
- 4. Yoed N. Kenett, Dror Y. Kenett, Eshel Ben-Jacob and Miriam Fuast (2011), Global and Local Features of Semantic Networks: Evidence from the Hebrew Mental Lexicon, PLoS ONE 6(8): e23912
- 5. Dror Y. Kenett, Matthias Raddant, Lior Zatlavi, Thomas Lux and Eshel Ben-Jacob (2012), Correlations in the global financial village, International Journal of Modern Physics Conference Series 16(1) 13-28.
- 6. Dror Y. Kenett, Tobias Preis, Gitit Gur-Gershgoren, Eshel Ben-Jacob (2012), Dependency network and node influence: Application to the study of Financial Markets, International Journal of Bifurcation and Chaos 22(7), 1250181.
- 7. Dror Y. Kenett, Matthias Raddant, Lior Zatlavi, Thomas Lux and Eshel Ben-Jacob (2012), Correlations in the global financial village, International Journal of Modern Physics Conference Series 16(1) 13-28.
- 8. Shlomo Havlin, Dror Y. Kenett, Eshel Ben-Jacob, Armin Bunde, Hans Hermann, Jurgen Kurths, Scott Kirkpatrick, Sorin Solomon, Juval Portugali (2012), Challenges of network science: applications to infrastructures, climate, social systems and economics, European Journal of Physics Special Topics 214, 273-293.
- 9. Antonio Majdandzic, Boris Podobnik, Sergey Buldyrev, Dror Y. Kenett, Shlomo Havlin, and H. Eugene Stanley (2014), Spontaneous recovery in dynamical networks, Nature Physics 10, 34-38.
- 10. Dror Y. Kenett, Jianxi Gao, Xuqing Huang, Shuai Shao, Irena Vodenska, Sergey V. Buldyrev, Gerald Paul, H. Eugene Stanley, and Shlomo Havlin (2014), Network of interdependent networks: Overview of theory and applications. In Networks of Networks: The Last Frontier of Complexity, pages 3–36. Springer.
- 11. Dror Y. Kenett, Xuqing Huang, Irena Vodenska, Shlomo Havlin, and H. Eugene Stanley (2014 Analysis: Applications for financial markets, arXiv:1402.1405

Thank You

Questions?

Email: drorkenett@gmail.com