Test 2: Are there time Correlations?

((economists knew these results, qualitatively, as volatility

clustering....so calculate autocorrelation function and get a “law™))
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» Returns are UN-correlated after 4 min

 Absolute value of returns (volatility)
1s long range correlated, so returns
CAN NOT BE serially independent.
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BY EYE. What do these data tellus? ¥ €47

Q: can your eye sce the power law? that 1t 1s inverse cubic?

Returns non-Gaussian (known qualitatively, but under-appreciated!)

Large events cluster (like earthquakes) (also known qualitatively)

tAftershocks?’ Omori-correlated (Palermo 03; BU 07)

(11
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Bachelier 1900 Market “model? :
UN-CORRELATED DRUNK
L T [ ] 1




INVENTED IN ANAGNI
ITALY (1104 Churc
Floor)

BUT
discovered in 198
by a 5-year old gir
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Tile your Kitchen floor economically....saving tiles
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QO: How to QUANTIFY???

logl —log?2

ML) = A L*.

log p 4 df - 10g3/ 10g2 = 1.58 ..

{ ,
24 d=3: You remove a BABY

2;’5 tetrahedron from middle of

81/256 the Great Pyramid

de = log(d + 1)/ log 2.
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Measuring the length of a coastline

NG0) =12
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Length = N(L) * L
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0 7 14 21 28

L = size of ruler or grid
N = number laid down
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00 042 084 127 169 2112 254 297 339 382

L = size of ruler or grid N=118003.11
N = number laid down
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Fractals Everywhere

e Spatial structure: tree, lung, coral, etc
* Symbolic sequence: DNA, computer code, etc

* Temporal dynamics: weather temperature, music,
volatility of stock price, cic

* Feature: lack of characteristic spatial and temporal
scale
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Random Walk
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— 10 layers
—— 20 layers
~ 40 layers

The characteristic scale describing the distribution 1s
its “width”
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slope = 1/2

10
# of layers
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Self-S1milarity of a Thime Series

)

- = window n, .
— window n, g
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Detrended Fluctuation Analvsis (DFA)
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(a) DFA Analysis

® Healthy subject, a=1.04
Randomized control, o=0.51
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® Healthy Young
¢ Healthy Elderly
A Heart Failure




Higher Dimensions |(4) = ) _ AP,

($)t=Z$CPc=O. (T)i =O

($2)t=t. Irlz)t = ¢
($4)t=3t2.“2t=3t2 [ —2_?} (|1t =282 1 112:

phenomena is that the exponents are quite robust but ampiitudes depend mor
sensitively on what particular system is being studied.
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Linear polymers are topologically linear chains of monomers held together by
chemical bonds (like a string of beads). Let us make an oversimplified model
of such a linear polymer by assuming that the chain of monomers adopts a
conformation in three-dimensional space that has the same statistics as the frail
of the ant. By the trail we mean the object formed if the ant leaves behind a
litlle piece of bread at each site visited. After a time ¢, the ant has left behind ¢
pieces of bread; hence the analog of the time is the number of monomers in the
polymer chain. An unrealistic feature of this simple model arises whenever the
ant re-visits the same site. Then more than one piece of bread occupies the same
site, while two monomers cannot occupy the same point of space. In Sect. 5.8,
we shall see that statistical properties of a random walk provide a useful upper
bound on the properties of real polymers, and that this upper bound becomes the
exact value of df for space dimensions above a critical dimension d..

Thus we find identical scaling properties no matter what definition we choose
— the moment £y of (5.13), the radius of gyration R, of the trail, or the end-to-
end displacement of the entire walk. In this sense, there is only ‘one characteristic
length’. When such a characteristic length is referred to, generically, it is cus-
tomary to use the symbol ¢.
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Functional Equations and Scaling: One Variable

We have seen that sevéral different definitions of the characteristic length ¢ all

scale as Vi, Equivalently, if ¢(¢) is the characteristic time for the ant to ‘trace
out’ a domain of linear dimension ¢, then -

t ~ E2, | (5.18)

Moye formally, for all positive values of the parameter )\ such that the product
A 1s large, $(§) is, asymptotically, a homogeneous function,

t(A1/2€) = Ay(e). (5.19)

THE SOLUTION OF THE FUNCTIONAL EQUATION (5.19) ISA
POWER LAW ... CONVERSELY THE POWER

LAW (5.18) OBEYS THE FUNCTIONAL EQUATION (5.19)

THE CONNECTION BETWEEN A POWER LAW AND A
FUNCTIONAL EQUATION IS CALLED SCALING SYMMETRY...
A VERY BASIC SYMMETRY IN MANY BRANCHES OF PHYSICS
& ECONOMICS.
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Fractal dimension of the unbiased random walk

HAL) = A (g), | (5.20b)

then we see that dr plays the role of a scaling exponent governing the rate at
which we must scale the time if we wish to trace out a walk of greater spatial
extent. For example, if we wish a walk whose trail has twice the size, we must
wait a time 2. Similarly, if we wish to ‘design’ a polymer with twice the radius
of gyration, we must increase the molecular weight by the factor 2.

It is significant that the fractal dimension dr of a random walk is 2, regardiess
of the dimension of space. This means that a time exposure of a ‘drunken firefly’
in three-dimensional space is an object with a well-defined dimension,

de =2, (5.21)

Similarly, a time ¢xposure in a Euclidean space of any dimension d produces an
object with the identical value of the fractal dimension, df = 2.
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Let us place our ant again on a one-dimesional lattice, but now imagine that
its coin is biased. The probability to be heads is
_1+e
p — 2 ?
while the probability to be tails is ¢g=1-p=(~1-¢)/2. From (5.22) we see
that the parameter -

(5.22)

e=2p—1=p—gq. | (5.23)

defined in (5.22) is the difference in probabilities of heads and tails; ¢ is called
the bias. We say that such an ant executes a bigsed random walk.

Now the expectation value (z), is not zero, as it was for the unbiased ant.
we find that (5.8) is replaced by

{(z): = (p — @)t = ¢t.

Thus the bias ¢ plays the role of the drift velocity of the center of mass of the
probability cloud of the ant, since the time derivative of (z), is the analog of

velocity.
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(£%); = [(p — OtT* + 4pgt = 22 + (1 — ). (5.26)

If ¢ = p— ¢ =0, the results (5.25) and (5.26) reduce to (5.8) and (5.9). We thus
recover the unbiased ant, for which the characteristic length ¢ scales as +/%. For
any non-zero value of ¢, no matter how small, we see from (5.25) and (5.26)
that asymptotically

Ci = ¥/(z*) ~t. | (5.27)

for k£ = 1,2 respectively (the general-k result is a bit of an exercise!). Thus we
conclude that the ¢ scales linearly in time: the fractal dimension of the walk
changes discontinuously with ¢ from dr = 1 for all non-zero s to de =2 for ¢ = 0

24
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BIG BIG PARADOX:

Here is a paradox! The dependence of dr on bias ¢ is a discontinuous function
of ¢, yet the actual motion of the ant cannot differ much as e changes infinites-
imally. To resolve this paradox, consider a specific example of a biased walk
with an extremely small value of bias, say ¢, = 1075, The r.h.s. of (5.26) has
two terms. If only the first term- were present, the ant would simply ‘drift’ to the
right with uniform velocity ¢. If only the second term were present, the motion
of the biased ant would be the same as that of the unbiased ant, except that the
width of the probability distribution would be reduced by a factor (1 — £2). To
see which term dominates, we express the r.h.s. as [¢*¢+ 1]¢. We can now define

an important concept, the crossover time t = 1/e*. For t < t, the second te
dominates and the ant has the statistics of an umbigsed random walk; we sa
that the trail has an apparent fractal dimension df = 2. For t > {«, the first
term dominates and the ant has the statistics of a biased random walk; the trai
assurnes its true or asymptotic fractal dimension dg = 1 (Fig. 5.3b). Note that the
crossover time i, is quite large if the bias is small. If the bias is, say, 0.001
then the ant must walk a million steps before its trail becomes distinguishable

om that of an unbiased ant!
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Fig. 5.3, (&) The discontinuous
change in fractal dimension df for
the biased random walk as the active
parameier ¢ = p — q is varied. (b)
The continuous change in (z?) as a
function of time for a small value of
the bias parameter ¢ = p — ¢ = 10~
Note the crossover between the
apparent fractal dirnension dy = 2 for
t & ty to the asymptotic fractal
dimension df = 1 for ¢ >» {y«, where
ty = 1/&2 is the crossover time.

Application: Quasi-2-dimensional maéets
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Functional Equations & Scaling for > 1 variables

to two independent variables. We say a function f(u,v) is a generalized homo-
geneous function if there exist two numbers ¢ and b (termed scaling powers)

such that for all positive values of the parameter A\, f(u,v) obeys the obvious
generalization of (5.19),

FOu, M%) = A f(u,v). (5.28)

We can see by inspection of (4.46¢) that the free energy near the critical point
obeys a functional equation of the form of (5.28), so generalized homogeneous
functions must be important! To get a geometric feeling for such functions and
their properties, consider the simple Bernoulli probability I7(x,) — the condi-
tional probability that an ant is found at position z at time ¢ given that the ant
started at z = 0 at ¢ = 0. In the asymptotic limit of large ¢, IT(x, t) is expressible
in closed form (unlike the free energy near the critical point!). The result is the
familiar Gaussian probability density

2
Hg(z,t) = exp [ ] (5.29)
\/—
Note that IIg(z,t) clearly satisfies (5.28), with scaling powers ¢ = —1 and
=2
I\ "'z, A728) = Mg(z,b). (5.30)
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“DATA COLLAPSE” FROM 2d TO 1d

The predictions of the scaling relations (5.30) are given by the properties
of generalized homogeneous functions. Among the most profound and useful of
these properties is that of data collapsing. If (5.30) holds for all positive ), then
it must hold for the particular choice A = #!/2. With this choice, (5.30) becomes

Ig(z,1) z .
i—1/2 = llg (;i'/_za 1) = F(z), (5.31a)
where we have defined the scaled variable 7 by
. _

Equation (5.31a) states that if we ‘scale’ the probability distribution by dividing
it by a power of ¢, then it becomes a function of a single scaled distance variable
obtained by dividing # by a different power of t. Instead of data for II(z, ¢)
falling on a family of curves, one for each value of ¢, data collapse onto a
single curve given by the scaling function F(z) (Fig. 5.4). This reduction from
a function of . variables to a function of n — 1 scaled variables is a hegllmark of
fractals and scaling. The ‘surprise’ is that the function F (%) defined in (5.31a
at first sight would seem to be a function of two variables, but 1t 1s n fact ¢

function of only a single scaled variable .
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“DATA COLLAPSE” FROM 2d TO 1d

i

A\
: > X > A

0 (a) t¥2 (b)

Fig. 5.4. Schematic illustration of scaling and data collapse as premcted by (5.31) for IIg(z, t), the
Gaussian probability density.
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A remarkable fact is that in sufficiently high spatial dimensions the SAW
has the identical fractal dimension as the unbiased random walk, because in
sufficiently high dimension the probability of intersection is so low as to be
negligible. To see this, we first note that the co-dimension d — dg of the fractal
trail is an exponent governing how the fraction of space ‘carved out’ by the
wrail decreases with length scale L, since from (5.1) o decreases as olL) ~
M(L)/L? ~ (1/L)*—%. Now if two fractal sets with dimensions d; and dy
intersect in a set of dimension d, then the sum of the co-dimensions of the two
sets is equal to the co-dimension of the intersection set,

d—dn=(d—d)+(d—de). | (5.32)

This general result follows from the fact that a site belongs to the intersection
only if it belongs to both fracials: since statistically independent probabilities
mulsiply (p. 116), the fraction of space (with exponent d — d) carved out by
both fractals is the product of the fractions of space (with exponents d— d; and
d — d; ) carved out by each.

To apply (5.32) to the trail of a random walk, consider the trail as being two
semi-infinite trails — say red and blue — each with random walk statistics. if we
substitute d; = d; =2 in (5.32), we find that for d equal to a critical dimension
d. = 4 the red and blue chains will intersect in a sct of zero dimension. Thus for
d > d., the ‘classical’ random walk suffices to describe the statistical properties
of self-avoiding polymers!
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Take Home Message: The Self-
Avoiding Constraint irrelevant above d=4
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~ Fig. 5.5a-b. Schematic illustration of (a)

a random walk, and (b) a self-avoiding
walk (SAW). Each has taken 6 steps.
We show just one of the 4% possible 6-
step walks — many of these have zero
weight for the SAW case. Shown also
are schematic log-log plots showing how
many steps are needed (the ‘mass’ M of
the trail) for the walk to explore a region
of characteristic size £, where here £ is
identified with the mean end-to-end dis-

‘tance Keg.




