
VOLUME 82, NUMBER 15 P HY S I CA L REV I EW LE T T ER S 12 APRIL 1999

Small-World Networks: Evidence for a Crossover Picture
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Watts and Strogatz [Nature (London) 393, 440 (1998)] have recently introduced a model for
disordered networks and reported that, even for very small values of the disorder p in the links, the
network behaves as a “small world.” Here, we test the hypothesis that the appearance of small-world
behavior is not a phase transition but a crossover phenomenon which depends both on the network size
n and on the degree of disorder p. We propose that the average distance , between any two vertices
of the network is a scaling function of nynp. The crossover size np above which the network behaves
as a small world is shown to scale as npsp ø 1d , p2t with t ø 2y3. [S0031-9007(99)08892-4]
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Two limiting-case topologies have been extensively
considered in the literature. The first is the regular lattice,
or regular network, which has been the chosen topology
of innumerable physical models such as the Ising model
or percolation [1–3]. The second is the random graph, or
random network, which has been studied in mathematics
and used in both natural and social sciences [4–16].
Erdös and co-workers studied extensively the properties

of random networks—see [17] for a review. Most of
this work concentrated on the case in which the number
of vertices is kept constant but the total number of links
between vertices increases [17]: The Erdös-Rényi result
[18] states that for many important quantities there is a
percolationlike transition at a specific value of the average
number of links per vertex. In physics, random networks
are used, for example, in studies of dynamical problems
[19,20], spin models and thermodynamics [20,21], random
walks [22], and quantum chaos [23]. Random networks
are also widely used in economics and other social sciences
[8,24,25] to model, for example, interacting agents.
In contrast to these two limiting topologies, empiri-

cal evidence [26,27] suggests that many biological, tech-
nological, or social networks appear to be somewhere
in between these extremes. Specifically, many real net-
works seem to share with regular networks the concept
of neighborhood, which means that if vertices i and j are
neighbors then they will have many common neighbors—
which is obviously not true for a random network. On
the other hand, studies on epidemics [14,15,26] show that
it can take only a few “steps” on the network to reach
a given vertex from any other vertex. This is the fore-
most property of random networks, which is not fulfilled
by regular networks.
To bridge the two limiting cases, and to provide a

model for real-world systems [28,29], Watts and Strogatz
[26,27] have recently introduced a new type of network
which is obtained by randomizing a fraction p of the links
of the regular network. As in Ref. [26], we consider as
an initial structure (p ­ 0) the one-dimensional regular
network where each vertex is connected to its z nearest

neighbors. For 0 , p , 1, we denote these networks
disordered, and keep the name random network for the
case p ­ 1. Reference [26] reports that for a small
value of the parameter p—which interpolates between the
regular (p ­ 0) and random (p ­ 1) networks—there
is an onset of “small-world” behavior. The small-world
behavior is characterized by the fact that the distance
between any two vertices is of the order of that for a
random network and, at the same time, the concept of
neighborhood is preserved, as for regular lattices (Fig. 1).
The effect of a change in p is extremely nonlinear as is
visually demonstrated by the difference between Figs. 1a
and 1d and Figs. 1b and 1e where a very small change
in the adjacency matrix leads to a dramatic change in the
distance between different pairs of vertices.
Here, we study the origins of the small-world behavior
[28,29]. In particular, we investigate if the onset of
small-world networks is a phase transition or a crossover
phenomena. To answer this question, we consider not only
changes in the value of p but also in the system size n.
The motivation for this study is the following. In a
regular one-dimensional network with n vertices and z

links per vertex, the average distance , between two
vertices increases as nys2zd—the distance is defined as
the minimum number of steps between the two vertices.
The regular network is similar to the streets of Manhattan:
Walking along 5th Avenue from Washington Square Park
on 4th Street to Central Park on 59th Street, we have
to go past 55 blocks. On the other hand, for a random
network, each “block” brings us to a point with z new
neighbors. Hence, the number of vertices increases with
the number of steps k as n , zk , which implies that ,

increase as ln ny ln z. The random network is then similar
to a strange subway system that would directly connect
different parts of Manhattan and enable us to go from
Washington Square Park to Central Park in just one stop.
In view of these facts, it is natural to enquire if the change
from large world (, , n) to small world (, , ln n) in
disordered networks occurs through a phase transition for
some given value of p [30] or if, for any value of p, there
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FIG. 1. Effect of disorder on the distance between vertices of the network (go to http: //polymer.bu.edu/ a˜ maral /Networks.html
for color pictures). We consider here matrices with z ­ 10, n ­ 128, and with periodic boundary conditions, that is, vertex 1
follows vertex n. Adjacency matrices for (a) a regular one-dimensional network where each vertex is connected to its z nearest
neighbors, (b) a disordered network with p ­ 0.01, and (c) a random network. Black indicates that a link is present between the
two vertices while gray indicates the absence of a link. Note that (a) and (b) are nearly identical. Distance matrices for (d) the
regular network, (e) the disordered network with p ­ 0.01, and (f) the random network. We use the relief of the surface and a
gray scale to represent the distance between two vertices. Greater height indicates larger distance. The gray scale is the same for
the relief and for the contour lines: Distance increases from very dark gray to gray to light gray to dark gray. For the regular
network, the contour lines are parallel to the diagonal. On the other hand, for the disordered network the contour lines “circle”
around specific links that act as “throughways” of the network. This effect prevents the distance between any two vertices from
ever becoming large, that is, of the order of the system size.

is a crossover size npspd below which our network is a
large world and above which it is a small world.
In the present Letter, we report that the appearance of

the small-world behavior is not a phase transition but a
crossover phenomena. We propose the scaling ansatz,

,sn, pd , npF

µ
n

np

∂
, (1)

where Fsu ø 1d , u, Fsu ¿ 1d , ln u, and np is a func-
tion of p [31]. Naively, we would expect that, when the
average number of rewired links, pnzy2, is much less than
one, the network should be in the large-world regime. On
the other hand, when pnzy2 ¿ 1, the network should be a
small world [32]. Hence, the crossover size should occur
for npp ­ Os1d, which implies np , p2t with t ­ 1.
This result relies on the fact that the crossover from large to

small worlds is obtained with only a small but finite frac-
tion of rewired links. We find that the scaling ansatz (1)
is indeed verified by the average distance , between any
two vertices of the network. We also identify the crossover
size np above which the network behaves as a small world,
and find that it scales as np , p2t with t ø 2y3, distinct
from the trivial expectation t ­ 1.
Next, we define the model and present our results.
We start from a regular one-dimensional network with n

vertices, each connected to z neighbors. We then apply
the “rewiring” algorithm of [26] to this network. The
algorithm prescribes that every link has a probability p

of being broken and replaced by a new random link.
We replace the broken link by a new one connecting
one of the original vertices to a new randomly selected
vertex. Each of the other n 2 2 vertices—we exclude
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the other vertex of the broken link—has an a priori
equal probability of being selected, but we then make sure
that there are no duplicate links. Hence, the algorithm
preserves the total number of links which is equal to nzy2.
A quantity that is affected by the rewiring algorithm is
the probability distribution of local connectivities. For
p . 0, this probability is narrowly peaked around z, but
it gets broader with increasing p. For p ­ 1, the average
and the standard deviation of the local connectivity are of
the same order of magnitude and equal to z.
Once the disordered network is created, we calculate the

distance between any two vertices of the network and its
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FIG. 2. Determination of the crossover size np. (a) Semilog
plot of , versus network size for two representative values of
p and for z ­ 20. Following Eqs. (1)–(3), we can determine
np—apart from a multiplicative constant—from the asymptotic
slope of , against lnn. (b) Scaling of np with p for the three
values of z discussed in the text. The curves for z ­ 20 and 30

have been shifted up so as to coincide in the region where they
scale as a power law. Following Eq. (3), we make a power-law
fit to npspd for p ø 1 and obtain t ø 2y3.

average value ,. To calculate the distance for each pair of
vertices, we use the Moore-Dijkstra algorithm [33] whose
execution time scales with network size as n3 ln n. We
perform between 100 and 300 averages over realizations
of the disorder for each pair of values of n and p.
Here, we present results for three values of connectivity

z ­ 10, 20, and 30 and system sizes up to 1000. The
scaling ansatz (1) enables us to determine npspd from ,snd
at fixed p. Indeed, ,sn ¿ npd , np ln n which implies
that np is the asymptotic value of d,ydsln nd [Fig. 2(a)].
Figure 2(b) shows the dependence of np on p for different
values z. We hypothesize that

np
2

1

ln z
, p2tgspd , (2)

where the term in z arises from the fact that , ­ ln ny ln z
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FIG. 3. Data collapse of ,sn, pd for z ­ 10 and different
values of p and n. (a) Plot of the scaled average distance
between vertices ,ynp versus scaled system size nynp. (b)
Same data as in (a) but in a semilog plot. Note the linear
behavior of the data for n , np and the logarithmic increase of
, for large system sizes.
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for a random network (p ­ 1), and gsp ! 1d ! 0.
Moreover, gspd approaches a constant as p ! 0,
leading to

np , p2t
, (3)

for small p. Because of the effect of g and the fact
that n , 1000 in our numerical simulations, we are
constrained to estimate t from the region 2.5 3 1024

,

p , 2 3 1022. For all values of z, we obtain t ­

0.67 6 0.10 (Fig. 2).
Using this value of t and the scaling form (1), we are

able to collapse all the values of ,sn, pd onto a single
curve (Fig. 3). This data collapse confirms our scaling
ansatz and estimate of t.
In summary, we have shown that the onset of small-

world behavior is a crossover phenomena and not a phase
transition from a large world to a small one. The crossover
size scales as p2t with t . 2y3. The surprising fact
that t , 1 shows that the rewiring process is highly
nonlinear and can have dramatic consequences on the
global behavior of the network. This implies that in order
to decrease the radius of a network it is necessary to rewire
only a few links. We also note that the value of the
exponent t will likely depend on the dimensionality of the
initial regular network. This point will be addressed in
future work.
We believe that the disordered networks introduced in

[26] may constitute a promising topology for more realistic
studies of many important problems such as flow in elec-
tric power or information networks, spread of epidemics,
or financial systems. The results reported here support this
hypothesis because they suggest that, for any given degree
of disorder of the network, if the system is larger than the
crossover size, the network will be in the small-
world regime.
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