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Abstract

We study the optimal distance ‘opt in random networks in the presence of disorder implemented

by assigning random weights to the links. The optimal distance between two nodes is the length

of the path for which the sum of weights along the path (“cost”) is a minimum. We study the

case of strong disorder for which the distribution of weights is so broad that its sum along any

path is dominated by the largest link weight in the path. We 1nd that in random graphs, ‘opt

scales as N 1=3, where N is the number of nodes in the network. Thus, ‘opt increases dramatically

compared to the known small-world result for the minimum distance ‘min, which scales as logN .

We also study, theoretically and by simulations, scale-free networks characterized by a power

law distribution for the number of links, P(k) ∼ k−�, and 1nd that ‘opt scales as N 1=3 for �¿ 4

and as N (�−3)=(�−1) for 3¡�¡ 4. For 2¡�¡ 3, our numerical results suggest that ‘opt scales

logarithmically with N .
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Much attention has been focused on the topic of complex networks characterizing

many biological, social, and communication systems [1–3]. The networks can be vi-

sualized by nodes representing individuals, organizations, or computers and by links

between them representing their interactions. The classical model for random networks
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is the Erdős–RDenyi model where two nodes are chosen randomly from the total N

nodes in the system and are connected by a link [4]. An important quantity charac-

terizing networks is the minimum distance ‘min between two nodes in the network.

For the Erdős–RDenyi network, ‘min scales as logN , consistent with the “six degrees of

separation” concept (e.g., if N = 106; ‘ ≈ 6).

Here, we study a more realistic problem in which all links are not assumed to be

equivalent. Hence, we assign to each link a weight or “cost”. For example, the cost

could be the time required to transit the link, e.g., there are often many traGc routes

from point A to point B with a set of delay times 
i associated with each link along

the path. The fastest (optimal) path is the one for which
∑

i 
i is a minimum, and

often the optimal path has more links than the shortest path.

If the distribution of weights is such that all the links have the same weight, the

average length of the optimal path between any two nodes is the minimal length ‘min.

In that case, it is well known that ‘min ∼ logN [5] (or, for some scale-free networks

‘min ∼ log logN [6]). If the distribution is narrow, the average length of the optimal

path ‘opt, in general, is greater than ‘min but scales the same as ‘min [7,8]. If the

random distribution is broad, in the limit of in1nite broadness, the disorder is called

“strong” and only the largest weight in the path dominates the sum. The strong disorder

limit is implemented by assigning to each link a potential barrier �i so that 
i is the

waiting time to cross this barrier. Thus 
i = e�i , and the optimal path corresponds to

the minimum (
∑

i 
i) over all possible paths. When  = 1=kT → ∞, only the largest


i dominates the sum. Thus, T → 0 (very low temperatures) corresponds to the strong

disorder limit.

We focus here on the case of strong disorder. This is believed to be the case for

many computer and traGc networks, since the slowest link in communication networks

determines the connection speed. We study this problem both theoretically and numer-

ically and 1nd that for random graphs ‘opt, the average length of the optimal path,

scales as N 1=3.

To obtain the optimal path in the strong disorder limit, we present the following

theoretical argument. It has been shown [9,10] that the optimal path for → ∞ between

two nodes A and B on the network can be obtained by the following algorithm:

(1) Sort the edges by descending weight.

(2) If the removal of the highest weight edge will not disconnect A from B—

remove it.

(3) Go back to step 2 until all edges have been processed.

Since the edge weights are random, so is the ordering. Therefore, in fact, one needs not

even select edge weights to begin with. This “bombing” algorithm can be replaced by

simply removing randomly chosen edges one at a time, where an edge is not removed

if its removal will cause the connectivity between A and B to be lost. The 1nal path

left is the optimal path between A and B in the limit → ∞.

Since randomly removing links is a percolation process, the optimal path must be

on the percolation backbone connecting A and B. Since the network is not embedded

in space but has an in1nite dimensionality, we expect from percolation theory that
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Fig. 1. Log–log plot of ‘opt as a function of N for the optimal path length in strong disorder using the

two methods discussed in the text: (i) the results obtained using the “bombing” approach (◦) and (ii) the

results obtained using the ultrametric approach (×). The dashed line shows the slope 1
3
.

at criticality loops are not relevant. Thus, the shortest path must be the same as the

optimal path. It is also known from percolation theory that at criticality the mass S of

the incipient in1nite cluster scales as ‘2
min [11]. Since the spanning cluster S scales at

criticality as N 2=3 [12], it follows that

‘min ∼ ‘opt ∼ N
�opt ; (1)

where �opt = 1
3
.

To test Eq. (1), we apply two numerical approaches. The 1rst approach is to 1nd

the optimal path (which minimizes the sum of weights) using the ultrametric approach

described in Ref. [10]. The second approach is based on the “bombing” algorithm of

Ref. [9]. In Fig. 1, we show a double logarithmic plot of ‘opt as a function of N . To

evaluate the asymptotic value for �opt we use for both approaches successive slopes,

de1ned as centered diLerences of the values in Fig. 1. One can see from Fig. 2 that

their value approaches 1
3

as N → ∞, supporting Eq. (1).

In Fig. 3, using the result �opt = 1
3

obtained by extrapolation of successive slopes,

we show ‘opt as a function of N 1=3. The linear behavior supports the theoretical value

�opt = 1
3
.

Next, we describe in more detail the two numerical methods for computing ‘opt

between any two nodes in strong disorder. We can assume that the energy spectra �i is

discrete. We can make  so large that, even for the closest values of energy spectra,

the waiting times 
i = exp[�i] diLer by at least a factor of 2. In this limit, the sum

is dominated by the maximum value exp[�max]. When all the links on the paths have

diLerent weights, the optimal path is the one that has the smallest maximal link weight

among all the paths. In general, as a consequence of the existence of loops, there are

links in common between diLerent paths. Such a link might provide the maximum �i of

both paths. In this case, we compare the second highest weight and take the path with

the lower value and so forth until the optimal path is determined. This procedure is
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Fig. 2. Successive slopes �opt(N ) as a function of 1=N 1=3 for the optimal path length in strong disorder

using the two methods described in the text. The symbols denote the same as in Fig. 1. The dashed line is

the quadratic 1tting of the results showing that the extrapolated value of the eLective exponent in the limit

N → ∞ approaches 1
3
. This result coincides with our theoretical value 1

3
.

Fig. 3. ‘opt as a function of N 1=3 for the optimal path length in strong disorder using the two methods

discussed in the text. The symbols denote the same as in Fig. 1. The dashed line is the linear 1tting of the

results showing the linear relation between ‘opt and N 1=3. This result also supports the theoretical value 1
3
.

equivalent to comparing integers written in binary codes and hence indeed minimizes∑

i for → ∞.

First, we describe the ultrametric algorithm [10]. We assign weights 
i = e�i to

all the links in the graph where the order of magnitude �i is taken from a uniform

distribution. As we see above, in the limit of strong disorder, the sum of the weights

is dominated by the largest value along the path. Next, we start from one node (the

origin—see Fig. 4) and visit all the other nodes connected to the origin using a burning

algorithm [13]. If a node at distance ‘0 (from the origin) is being visited for the 1rst

time, this node will be assigned a list S0 of weights 
0i ; i = 1; : : : ; ‘0 of the links by
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Fig. 4. In (a) we show schematically a network consisting of 1ve nodes (A;B;C;D, and E). The links

between them are shown in dashed lines. The origin (A) is marked in grey. All the links have been

assigned a random weight, shown beside the links. In (b) one node (C) has been visited for the 1rst time

(marked in black) and assigned the sequence (8) of length ‘ = 1. The path is marked by a solid arrow.

Notice that there is no other path going from the origin (A) to this node (C) so ‘opt = 1 for that path.

In (c) another node (B) is visited for the 1rst time (marked in black) and assigned the sequence (10; 8)

of length 2. The sequence has the information of all the weights of that path arranged in decreasing order.

In (d) another node (D) is visited for the 1rst time and assigned the sequence (8; 7) of length 2. In (e),

node (B) visited in (c) with sequence (10; 8) is visited for the second time with sequence (8; 7; 6). The last

sequence is smaller than the previous sequence (10; 8) so that node (B) is reassigned the sequence (8; 7; 6)

of length 3. The new path is shown as a solid line. In (f) a new node (E) is assigned with sequence (8; 7; 4).

In (g) node (B) is reached for the third time and reassigned the sequence (8; 7; 4; 3) of length 4. The optimal

path for this con1guration from A to B is denoted by the solid arrows in (g).

which we reach that node sorted in descending order,

S0 = {
01; 
02; 
03; : : : ; 
0l0} (2)

with 
0j¿
0j+1 for all j. If we reach a node for a second time by another path of

length ‘1, we de1ne for this path a new list S1,

S1 = {
11; 
12; 
13; : : : ; 
1l1} (3)

and compare it with a S0 previously de1ned for this node.

DiLerent sequences can have weights in common because some paths have links in

common, so it is not enough to identify the sequence by its maximum weight; in this

case, it must also be compared with the second maximum, the third maximum, etc.

We de1ne Sp¡Sq if there exists a value m; 16min(‘p; ‘q) such that


pj = 
qj for 16 j¡m
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and


pj¡
qj for j = m (4)

or if ‘q¿‘p and 
pj = 
qj for all j6 ‘p.

If S1¡S0, we replace S0 by S1. The procedure continues until all paths have been

explored and compared. At this point, S0 = Sopt, where Sopt is the sequence of weights

for the optimal path of length ‘opt.

A schematic representation of this ultrametric algorithm is presented in Fig. 4.

Using this method, we obtain systems of sizes up to 4000 nodes, typically 105

realizations of disorder. We compute ‘opt by averaging the length of the optimal path

for all the pairs of nodes of the con1guration and over all realizations.

An alternative method of obtaining the optimal path in strong disorder is called the

“bombing” algorithm [9]. We 1rst choose a pair of nodes on the graph and begin

removing links randomly, making sure that the connectivity between the two chosen

nodes is not destroyed as each link is removed. The last path remaining is equivalent

to the optimal path obtained by the ultrametric algorithm.

The bombing algorithm is slow, as one must test the connectivity after removal of

each link. To improve the speed, we 1rst 1nd the minimal path in the network and

then select links in random order. We remove the selected link from the graph. If the

removed link belongs to the minimal path, we check if the connectivity between the

two nodes is still present and recompute the new minimal path. If the connectivity

between the two nodes is destroyed, we restore the link.

The advantage of this procedure is that one has to test for connectivity only if the

selected link appears to belong to the minimal path. Since checking the connectivity

is the most time-consuming part in the original bombing algorithm, we could reach

systems of sizes up to 216 nodes with 105 realizations of weight disorder. Figs. 1–3

demonstrate that both algorithms yield very similar results, supporting the theoretical

result ‘opt ∼ N
1=3.

In addition, we studied this problem for scale-free graphs [1–3]. In this case, the

number k of links is distributed as a power law P(k) ∼ k−�. Presenting analogous

arguments as for the random graph, we conjecture that ‘opt must scale as the short-

est path ‘min at the percolation threshold. The percolation problem was solved an-

alytically for a tree-like graph using a generating function approach [14] (see also

Refs. [15,16]). This is, in fact, an exact solution, since at the critical point a graph in

an in1nite-dimensional space can be approximated by a tree [17]. Using these results

we 1nd that at criticality, the average largest cluster size S scales with the distance ‘ as

‘d‘ , where d‘ = 2 for �¿ 4 and d‘ = (�− 2)=(�− 3) for 3¡�¡ 4. Further, S scales

as N 2=3 for �¿ 4 and as N (�−2)=(�−1) for 3¡�¡ 4. Hence we conclude that ‘min,

which is equal to ‘opt at criticality, scales as N 1=3 for �¿ 4 and as N (�−3)=(�−1) for

3¡�¡ 4. Our simulation results for the bombing and ultrametric approaches con1rm

this prediction for ‘opt. For �¡ 3, we 1nd numerically that ‘opt scales logarithmically

with N .

Finally, we repeated our simulations for the case in which disorder weights are

associated with the nodes of the graph, and obtained the same scaling laws as for the

disordered links case.
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In summary, we study the optimal distance in random networks in the presence of

strong disorder. We 1nd that in random graphs the optimal distance ‘opt scales as

N 1=3. We also study scale-free networks theoretically and by simulations and 1nd that

‘opt scales as N 1=3 for �¿ 4 and as N (�−3)=(�−1) for 3¡�¡ 4. Also, our simulations

suggest that, for 2¡�¡ 3; ‘opt scales logarithmically with N , which is also much

faster than the ultrasmall world result ‘ ∼ log logN [6]. Thus, the optimal distance in

strong disorder increases dramatically when it is compared to the known small-world

result for the distance ‘ ∼ logN for random graphs and scale-free graphs with �¿ 3.
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[12] P. Erdős, A. RDenyi, Publ. Math. Inst. Hungarian Acad. Sci. 5 (1960) 17–61.

[13] H.J. Herrmann, D.C. Hong, H.E. Stanley, J. Phys. Lett. A 17 (1984) L261–L265.

[14] R. Cohen, S. Havlin, D. ben-Avraham, in: S. Bornholdt, H.G. Shuster (Eds.), Handbook of Graphs and

Networks, Wiley, New York, 2002 (Chapter 4).

[15] S.V. Buldyrev, S. Havlin, J. KertDesz, R. Sadr, A. Shehter, H.E. Stanley, Phys. Rev. E 52 (1995)

373–388.

[16] A.-L. BarabDasi, S.V. Buldyrev, H.E. Stanley, B. Suki, Phys. Rev. Lett. 76 (1996) 2192–2195.

[17] R. Cohen, K. Erez, D. ben-Avraham, S. Havlin, Phys. Rev. Lett. 85 (2000) 4626.


