
Author's personal copy

Physica A 391 (2012) 4181–4185

Contents lists available at SciVerse ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Crossover from weak to strong disorder regime in the duration
of epidemics
C. Buonoa,⇤, C. Lagorio a, P.A. Macri a, L.A. Braunstein a,b

a Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR)-Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar
del Plata-CONICET, Funes 3350, (7600) Mar del Plata, Argentina
b Center for Polymer Studies, Physics Department, Boston University, Boston, MA 02215, USA

a r t i c l e i n f o

Article history:
Received 28 December 2011
Received in revised form 28 February 2012
Available online 13 April 2012

Keywords:
Complex systems
Epidemic
Percolation
Disorder

a b s t r a c t

We study the susceptible–infected–recovered (SIR) model in complex networks,
considering that not all individuals in the population interact in the same way. This
heterogeneity between contacts is modeled by a continuous disorder. In our model, the
disorder represents the contact time or the closeness between individuals. We find that
the duration time of an epidemic has a crossover with the system size, from a power-law
regime to a logarithmic regime depending on the transmissibility related to the strength of
the disorder. Using percolation theory, we find that the duration of the epidemic scales as
the average length of the branches of the infection. Our theoretical findings, supported by
simulations, explains the crossover between the two regimes.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Complex networks have became a topic of interest among scientists in recent years, due to the fact thatmany real systems
such as protein interaction, the Internet, communication systems [1–3], among others, can be properly described by complex
networks, making this theoretical framework inherently interdisciplinary. On complex networks, nodes can represent the
individuals of a population in the case of social networks, computers in communication systems, and so on, and the links
represent the interactions. The research on networks goes from the study of its topology to the study of transport processes
that use the networks as the underlying substrate on which to propagate. In particular, many researchers have focused on
the propagation of seasonal diseases on social networks due to the appearance of new infections such as SARS, Avian Flu,
and the recent A(H1N1) influenza epidemic.

Several models have been developed to characterize the spreading of these kinds of disease. One of the most used
models is the susceptible–infected–recovered (SIR)model, first introduced byKermack andMcKendrick [4] in the fullmixing
approximation and then extended to complex networks [5,6]. In thismodel, the individuals of the population can be in three
different states: S (susceptible), I (infected), or R (recovered or removed). An S individual becomes infectedwith a probability
� by contact with an infected individual. Infected individuals recover after tr time steps since theywere infected, and cannot
infect or change their state thereafter. The system reaches the steady state when all the infected individuals recover. In this
model, the size of the disease, defined as the number of recovered individuals, depends only on the effective probability of
transmission between individuals, given by

T = 1 �
Z

(1 � �)tr P(�) d�, (1)

where P(�) is the density distribution of � , with P(�) = �(� � �0) for a constant probability of infection.
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It has been shown that the steady state of the SIRmodel on static complex networks can bemapped into a link percolation
problem [6,7] in which the order parameter of the SIR is the fraction of recovered individuals [8], and the control parameter
is the transmissibility T , which plays the role of the fraction of links p in percolation. Thus there exists a critical threshold Tc
(or pc) in the SIR (or percolation) model above which a nonzero fraction of individuals (size of biggest cluster) are infected
(is finite). It was shown that, in finite systems, the critical threshold Tc ⌘ pc of link percolation depends strongly on the
network size N with Tc(N) � Tc(N ! 1) ⇠ N�1/3 in the mean field (MF) approximation; i.e., finite size effects are strong
[9]. Then, in finite systems, for T > Tc(N), the disease becomes an epidemic, while for T < Tc(N) the disease reaches a small
fraction of the population (outbreaks) [6,10–12].

Usually, the study of disease transmission or any type of transport process such as information flow [13] or rumor
spreading [14] through a network is made assuming that all the contacts are equivalent. However, this assumption does
not give a very realistic description of real networks, such as social networks [15], where not all individuals in a society
have the same interaction. A way to improve the description of real networks is to consider the heterogeneity of the social
contacts. This canbedoneby consideringweighted (disordered) networks,where theweights in the contacts could represent
the closeness or the contact time between the individuals [16–18]. The contact time is a parameter that can be controlled
by health policies as a strategy to mitigate the duration of the spreading of the disease. Using different strategies such as
broadcasting, brochures, etc., the public health agencies can induce people to change their contact time or the closeness of
any contact, for example, encouraging people to reduce their contact time. This strategy, which is a social distancing, was
used by some governments in the recent wave of the A(H1N1) influenza epidemic in 2009 [19]. It is known that disorder
can dramatically alter some topological properties of networks such as the average length of the optimal paths [16,20–22].
In the optimal path problem, defined as the path between any two nodes that minimizes the total weight along the path
[16,20,21], it was shown that the average length of the optimal path lopt scales as N⌫opt in the strong disorder (SD) limit,
where ⌫opt = 1/3 for homogeneous networks (MF), and as lopt ⇠ lnN in the weak disorder (WD) regime, where the SD
limit is related to percolation at criticality [16,20,23]. However, the exact mapping between the order parameter of both
second-order phase transitions (percolation and SIR) is not affected by the disorder when the disorder is not correlated
[6,11]. Nevertheless, the disorder could affect the duration of a disease.

In this paper, we introduce disorder in the links and show how a broad disorder affects the duration of an epidemic in
the SIR model.

Using theoretical arguments, supported by intensive simulations, we find that the average time of the duration of the
epidemic tf goes as the average length of the branches lb of the infection. Thus, relating lb with the optimal path problem, we
find that tf has a crossover from theWDregime to the SD regimewith the same exponent as in the optimal path problem [21].

The paper is organized as follows. In Section 2, we present our model, and in Section 3 we show theoretically, and by
simulation, the crossover for the duration time of the disease from theWD regime to the SD regime. Finally, in Section 4, we
present our conclusions.

2. SIR model with disorder

In our model, we assign to each link i between any two nodes a random number �i drawn from the distribution

P(�i) = 1
a�i

, (2)

where a is the parameter that controls the broadness of the distribution of link weights, i.e., the strength of the disorder,
and �i is defined in the interval [ e�a, 1]. With this distribution, we randomly assign a weight to each link of the network, of
the form

�i = e�a ri , (3)

where ri is a random number taken from an uniform distribution ri✏[0, 1]. Thus �i is the probability of infection between
any pair of nodes. This type of weight has been widely used [20,23,22,24] because it is a well-known example of many
distributions that produce WD and SD crossover [25]. In a disordered medium, the SD limit can be thought of as a potential
barrier ✏i such that ⌧i is the time to cross this barrier in a thermal activation process; then ⌧i = e✏i/kT̂ , where k is the
Boltzmann constant and T̂ is the absolute temperature. Therefore, we can associate �i as the inverse of the time needed to
cross this barrier, ⌧i.

With this weight distribution, the transmissibility T (see Eq. (1)) is given by

T = 1 �
Z 1

e�a

(1 � �)tr

a�
d�. (4)

In our initial stage, all the individuals are in the susceptible state. We choose a node at random from the biggest connected
cluster, or giant component (GC) and infect it (patient zero); then the process follows the rules of the SIR model but in a
weighted network. After the system reaches the steady state, we compute the duration of the infection t⇤, defined as the
time at which the last infected individual recovers, and the length of the branches of the infection as a function of t⇤. As the
substrate for disease spreadingweuse only an Erdös–Rényi network (ER) [26], characterized by a Poisson degree distribution
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Fig. 1. P(t⇤) as a function of t⇤ for an ER network with hki = 2,N = 214, tr = 19, a = 4.36 (full line) and a = 3.24 (dashed line). The arrows indicate
the separation between outbreaks (left) and epidemics (right). In the inset, we show in symbols the fitting with Eq. (5) of the data for a = 3.24 (see main
plot), from which we obtain tf ' 363.8. All simulations were done over 105 realizations.

Fig. 2. Log–log plot of the integral of lb as a function of t⇤ , for an ER network with hki = 2,N = 214 and tr = 19. For the undisordered problem T = Tc (⇤),
and for the disordered problem with T = Tc and a = 6.55 (�), and T > Tc and a = 3.97 (4). The dashed line is used as a guide to show the slope 2. All
simulations were done over 105 realizations. (Color online).

P(k) = ehkihkikk!, where k is the connectivity and hki is the average degree. However, the results obtained are similar for all
networks with a finite value of Tc in the MF approach.

3. Crossover fromWD regime to SD regime in the duration of epidemics

Weonly consider those propagations that lead to epidemic states, and disregarded the outbreaks (see Fig. 1). Fig. 1 shows
P(t⇤) as a function of t⇤; the arrows show the separation between the outbreak and epidemic regimes. The criterion used to
distinguish between outbreaks and epidemics is the observation of the behavior of the cluster size distribution,which decays
as a power law close to Tc for the outbreaks and has a maximum for the epidemics. The same criterion is used in percolation
to distinguish the finite cluster sizes from the giant component with size ⇠ N . We find that P(t⇤) in the epidemic regime
can be well represented by a log-normal distribution,

P(t⇤) = 1
t⇤�

p
2⇡

e� ln(t⇤/tf )
2

2�2 , (5)

where tf and � are the average and the standard deviation of the distribution of t⇤. Log-normal distributions have been
observed in several phenomena, such as the size of crushed ore [27], fragmentation of glass [28], income distribution [29],
events in medical histories [30], and food fragmentation by human mastication [31]. By fitting our data with a log-normal
distribution, we obtain tf (see the inset of Fig. 1).

From Fig. 1, we can see that tf increases with a for a fixed value of tr . This behavior can be understood if we take into
account that,when a increases, the barrier that the disease needs to overcome in order to propagate is bigger. Therefore, even
though the transmissibility decreases as a increases for fixed tr , the epidemic will last longer due to the disorder, allowing
the health services to make earlier interventions.

We also study the average length of the branches of the infection, lb. The length of a branch is defined as the number of
links between patient zero and the last patient in that branch. In Fig. 2, we plot the integral of lb as a function of t⇤ in log–log
scale, from which it is easy to see that, independent of the disorder, in the epidemic region the integral of lb has slope 2;
thus lb ⇠ t⇤. If we compare lb between the disordered and the undisordered substrates, we can see that, in the disordered
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Fig. 3. Results for an ER network with hki = 2, tr = 19 and T = Tc(N = 212). (a) Linear–linear plot of tf /N0.36 as a function of N; the dashed line is used
as a guide to show that the exponent 0.36 is correct. (b) Linear–log plot of tf as a function of ln(N); the dashed line correspond to a logarithmic fit. Notice
that, in the WD regime, Tc(N = 212) > Tc(N > 212). All simulations were done over 105 realizations.

case, the lengths of the branches are larger than in the undisordered case, even for the same values of T and tr . This is due
to the fact that the link of the smallest crossing probability e�a that the disease has to traverse is smaller than the required
value of � for the same values of T and tr in the undisordered case (see Eq. (1)).

For the SIR problem, at the threshold Tc in theMF approximation, the fraction of recovered individuals R growswith time
t⇤ as R ⇠ t⇤2 [32] up to tf , then, at tf , R ⇠ t2f , and, for t

⇤ > tf , R ⇡ const., due to finite size effects. Percolation in complex
networks predicts that, at criticality, T ⇡ Tc , the size R of the epidemic scales with the chemical length l, as shown in [33].

R ⇠ `dl ⇠ t2f , (6)

with dl = 2 in the MF approximation,

tf ⇠ `, (7)

where ` ⇠ N1/3. For the WD regime,

R ⇠
⇢
et

⇤
for t⇤ . tf ;

const. for t⇤ > tf .
(8)

Then, at tf ,

R ⇠ exp(tf ). (9)

Using the fact that, in the WD regime, R ⇠ N and ` ⇠ lnN , we obtain that also in this regime

tf ⇠ `. (10)

Thus, from the theoretical arguments presented above,

tf ⇠
⇢
N1/3 if T ' Tc
ln(N) if T > Tc .

(11)

In order to corroborate Eq. (11), we compute tf as a function of N for fixed values of T = Tc(N = 212), a, and tr , and found
that, for T ' Tc(N), tf behaves as a power law with exponent 0.36, compatible with the one found for the SD regime in the
optimal path problem. The slight difference between the exponent obtained and the theoretical one (1/3) is due to finite
size effects [9]. Notice that the SD power-law regime holds only until N ' 15 000. In Fig. 3(a), we plot the ratio tf /N0.36 as
a function of N . We can see that, for values of N for which T ' Tc(N), this ratio goes to a constant, in agreement with our
prediction. However, for T > Tc(N), we can see from Fig. 3(b) that tf behaves logarithmically with N , in agreement with the
WD regime T > Tc of Eq. (11). Thus, we can see clearly that there is a crossover from WD to SD, in full agreement with our
theoretical prediction.

4. Conclusions

In this paper, we study the SIR model on a broad disordered network, where the disorder represents the duration of the
interactions between the individuals of a population, and the broadness of the disorder is a control parameter.

We found that, as the broadness of the disorder increases, the spreading of the disease is delayed. Thus, recommending
people to decrease the duration of their contacts as a social distancing could be a good strategy to delay the spreading of an
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epidemic. Moreover, this social distancing strategy is more suitable than a quarantine, where contacts are broken, due to
the fact that it is less expensive from an economic point of view.

Using percolation arguments, we found that the duration time of the epidemic goes as the average length of the branches
of the infection. Our theoretical results are strongly supported by simulations. Thus, in the same way as in the optimal path
problem, the duration of the disease has a crossover with the system size, from a power-law regime (SD) to a logarithmic
regime (WD).
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