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Failure and recovery in dynamical 
networks
L. Böttcher1, M. Luković1, J. Nagler1, S. Havlin2,3 & H. J. Herrmann1,4

Failure, damage spread and recovery crucially underlie many spatially embedded networked systems 
ranging from transportation structures to the human body. Here we study the interplay between 
spontaneous damage, induced failure and recovery in both embedded and non-embedded networks. 
In our model the network’s components follow three realistic processes that capture these features: 
(i) spontaneous failure of a component independent of the neighborhood (internal failure), (ii) failure 
induced by failed neighboring nodes (external failure) and (iii) spontaneous recovery of a component. 
We identify a metastable domain in the global network phase diagram spanned by the model’s control 
parameters where dramatic hysteresis effects and random switching between two coexisting states 
are observed. This dynamics depends on the characteristic link length of the embedded system. 
For the Euclidean lattice in particular, hysteresis and switching only occur in an extremely narrow 
region of the parameter space compared to random networks. We develop a unifying theory which 
links the dynamics of our model to contact processes. Our unifying framework may help to better 
understand controllability in spatially embedded and random networks where spontaneous recovery of 
components can mitigate spontaneous failure and damage spread in dynamical networks.

Failure, damage spread and recovery crucially underlie many spatially embedded networked systems ranging 
from transportation structures to the human body1–4. Advances in the study of networks have led to important 
progress in understanding resilience and controllability in terms of the interaction between topology and various 
underlying spreading dynamics5–10. In the case of a simple contagion or contact process such as an epidemic, it 
is possible for the disease to spread from a single infected source to other neighboring individuals. On the other 
hand, many phenomena such as the diffusion of innovations11,12, political mobilization13, viral marketing14 and 
coordination games15 are characterized by a complex contagion where nodes need to be connected to multiple 
sources in order to induce a change of their state16,17. In addition to this induced transition, individuals may spon-
taneously change their opinion or banks can spontaneously fail18,19.

The consequences of the interplay between spontaneous damage, induced failure and recovery of components 
in spatially embedded systems are crucial for systemic risk20, controllability but have not yet been systematically 
explored. Many real-world networks such as power grids, computer networks and social networks are embedded 
in Euclidean space4. We here show how the process of embedding and the related characteristic link length impact 
the dynamics of failure-recovery processes in networks.

Our model is based on three fundamental processes (i) spontaneous failure independent of the neighborhood 
(internal failure), (ii) failure induced by failed neighboring nodes if their number exceeds a threshold (exter-
nal failure) and (iii) spontaneous recovery (see Fig. 1). The interplay between these three processes results in a 
phase diagram with a metastable regime where hysteresis and switching between two coexisting states have been 
observed21. In technological systems, hysteresis effects might be potentially harmful since slight changes of the 
system’s control parameters can entail drastic and abrupt transitions from a seemingly globally stable state to mac-
roscopic inactivity or large-scale outage9,22–35. Hysteresis and spontaneous switching between coexisting states in 
multistable dynamical systems has received great attention for processes ranging from decision making36, mul-
tistable perception37–39 over fluid phase transitions40, protein folding and unfolding41 to chemical oscillations42, 
magnetic systems43 and human sleep stages44. We therefore propose that the extent of the metastable regime in 
the parameter space of the phase diagram can be regarded as a measure of the system’s inherent instability. Based 
on this measure we find that metastability is enhanced by the degree of randomness of the underlying network. In 
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particular, for the Euclidean lattice which is perfectly regular, hysteresis only occurs in a very small range of the 
spontaneous failure rate - compared to random networks with the same average degree.

Our analytical approach is based on mapping the dynamics to a generalized contact process where a certain 
minimum number of failed neighboring nodes is necessary to activate the induced failure45. This strongly sug-
gests that the dynamics does not belong to the Ising universality class as conjectured earlier21. In addition, we 
show that our model system is inherently linked to complex contagion phenomena16,17 and cusp catastrophes46–48. 
Our unifying framework for random and partially embedded networks helps to better understand the dynamics 
in systems where spontaneous recovery can mitigate spontaneous failure and damage spread.

Materials and Methods
We study a modified version of the failure-recovery model proposed in ref. 21. The failure dynamics in ref. 21 
is based on two failure processes that occur with rates r and p, respectively, whereas recovery occurs after fixed 
recovery times τ ≠​ 0 and τ′​ =​ 1. We consider instead a fully rate based sequential kinetic Monte Carlo model 
(Gillespie algorithm)49,50 where all processes are defined by rates as follows: The system’s components (i.e. nodes) 
are regarded as either active (not damaged) or inactive (failed). The dynamics is based on three fundamental pro-
cesses: (i) a node spontaneously fails in a time interval dt with probability pdt (internal failure), (ii) if fewer than 
or equal to m nearest neighbors of a certain node are active, this node fails due to external causes with probability 
rdt (external failure) and (iii) spontaneous recovery with probability qdt (internal recovery) or probability q′​dt 
(external recovery). The threshold m, similar to threshold rules in complex contagion models16,51,52 determines if 
the neighborhood is critically damaged or healthy (Fig. 1). A low value of m describes the case where a large num-
ber of infected neighbors is required in order to sustain the spread of an innovation, opinion or damage. Hence, 
unlike in an epidemic, where a single infected neighbor can infect a susceptible node, in complex contagion pro-
cesses spread requires more than one infected neighbor. Let a(t) ∈​ [0, 1] denote the total fraction of failed nodes 
and z(t) =​ 1 −​ a(t) the fraction of active ones. Thus, a(t) =​ uint(t) +​ uext(t) with uint(t) and uext(t) being the fractions 
of internal and external failure respectively. The total fraction of failed nodes in the stationary state is referred to 
as ast. For the derivation of the mean-field rate equations we assume perfect mixing and first concentrate on the 
internal failure dynamics. The rate equation of internally failed nodes is given by:

= − −
du t

dt
p a t qu t( ) (1 ( )) ( ), (1)

int
int

where the first term accounts for the fact that active nodes internally fail with rate p and the second term corre-
sponds to the recovery of internally failed nodes.

A node is said to be located in a critically damaged neighborhood (CDN) if its number of active neighbors is 
smaller than or equal to m. External failure is only acting on nodes in a CDN. According to ref. 20, the probability 
that a node of degree k is located in a CDN is = ∑
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with fk being the degree distribution. The first term describes the failure of active nodes in a CDN with rate r and 
the second term accounts for recovery of externally failed nodes with rate q′​.

Figure 1.  Model. (a) Independent of the number of active nodes n, i.e. for n ≤​ m and n >​ m, spontaneous 
failure (A →​ X) and spontaneous recovery (X →​ A) takes place with rates p and q, respectively. (b) A node may 
also fail (become inactive) dependent on its neighborhood, if too few active nodes n ≤​ m sustain the node’s 
activity (A →​ Y with rate r). In addition, a failed node Y recovers (Y →​ A) with rate q′​. Illustration for m =​ 1. 
Active nodes (A) are purple while failed ones (X and Y) are grey.
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Results
Time evolution and phase-switching in embedded systems.  The coupled mean-field rate equations 
Eqs (1) and (2) determine the time evolution of the dynamics as shown in Fig. 2. Internal failures first dominate 
the dynamics but after some time externally induced failures start becoming prevalent in the system. Interestingly, 
due to the system wide spread of the total failure after a transient phase, indicated by the small fraction of active 
nodes, the relative abundance of the nodes susceptible to external (active in a CDN) and to internal failure 
(active) saturate at the same level. However, the process with the higher spreading rate (here external failure 
with r/q′​ >​ p/q) soon dominates the dynamics. This explains the relatively small contribution of internal failure 
in this parameter range which could not be observed employing the mean-field theory of ref. 21 which assumes 
that internal and external failure are effectively decoupled processes (case 1 ≈​ τ′​ ≪​ τ). Therefore, our dynamical 
theory allows to analytically describe the time evolution of the model’s compartments, i.e. nodes in a certain state.

In Fig. 3 we show the phase diagrams of a regular random graph with k =​ 10, m =​ 4 and of a square lattice with 
k =​ 4, m =​ 1. The dynamics exhibits a metastable domain (purple) and a region where the number of failed nodes 
only makes up a small fraction of the total number of nodes (low density) or where most of the nodes in the sys-
tem failed (high density). Continuous transitions between low and high density states outside the hysteresis region 
are indicated by a color gradient. There exists one stable stationary state outside the hysteresis region and two 
stable states and one unstable state in the interior of this region as also discussed in ref. 21 and in Appendix A. The 
inset of Fig. 3 (right) also illustrates this fact: In the three-dimensional phase diagram one can easily identify three 
stationary states inside the metastable domain, enclosed by black bifurcation lines. Another observation is that 
the dynamics shows only one stationary state outside this region. Strictly speaking, the notion of stability and 
metastability is only meaningful in the thermodynamic limit. Due to fluctuations in small systems the metastable 

Figure 2.  Model dynamics on a square lattice. (left) Phase switching for p =​ 0.1065, r =​ 0.95, q =​ 1.0, q′​ =​ 0.1 
and m =​ 1 on a square lattice with N =​ 50 ×​ 50 nodes (z the fraction of active nodes). (right) Time evolution of 
different model compartments, i.e. nodes in a certain state (see Fig. 1), with p =​ 0.9, r =​ 0.95, q =​ 1.0, q′​ =​ 0.1 and 
m =​ 1 for a square lattice with N =​ 1024 ×​ 1024 nodes. All nodes are initially active, z(0) =​ 1.

Figure 3.  Phase diagrams of a regular random graph with k = 10 and a square lattice. (left) The phase space 
of a regular random graph with N =​ 100,000 nodes and k =​ 10, m =​ 4 (red dots) compared to the mean-field 
prediction (black lines). (right) The phase diagram of the square lattice (red spinodals) for m =​ 1 obtained 
through simulations on a system with N =​ 2048 ×​ 2048 nodes. Inset shows a blow-up of the hysteresis region. 
As an inset in the lower left corner, we show a typical cusp catastrophe surface47 (mean-field k =​ 4, m =​ 1) 
whose bifurcation lines (black) enclose the hysteresis region. For both plots the recovery rates are kept constant 
(q =​ 1.0, q′​ =​ 0.1 – no oscillatory regime since q >​ q′​) and r, p are varied. Low and high density correspond to the 
situation where the fraction of failed nodes of the stationary state is small or large respectively. States in between 
are indicated by the color gradient. Note that here and in subsequent phase-space plots we plot the effective 
rates p/q against r/q′​ which allows for a better comparison of the phase-spaces for different parameter sets but 
does not represent a parameter space.
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domain would look more blurry. If fluctuations are strong enough inside or close to this region, the order param-
eter will show switching between the two, in the thermodynamic limit, stable states independent of the initial 
condition (fraction of failed nodes). The situation is different in large systems with negligible fluctuations. Here, 
the initial condition (fraction of failed nodes) determines the final state as follows: If the initial fraction of failed 
nodes is larger than the fraction determining the unstable state, the dynamics will reach the state with a high 
density of failed nodes. If, however, the fraction of failed nodes is smaller than the one of the unstable state, the 
final state will be the one with a low density of failed nodes. As a consequence, inside the metastable domain, a 
random initial condition in a large system with negligible fluctuations will lead to a convergence towards the low 
density or high density failure phase. For a small system one will observe switching. For the Euclidean (square) 
lattice we observe phase-switching as shown in Fig. 2 (left). The fraction of active nodes z(t) undergoes rapid 
transitions between a phase of high and low activity. Hysteresis only occurs for large node-to-node spreading 
rates r and a very narrow range of spontaneous failures rates p. Inside this metastable domain rapid and unpre-
dictable phase-switching occurs. In addition, crossing this region results in abrupt and dramatic transitions and 
it might not be possible to go back to the previous state following the same path. As an example, one can consider 
a nearly healthy population with a varying spontaneous infection rate which can cause the population to undergo 
a catastrophic transition to a highly infected state by crossing into the hysteresis region. Going back to the healthy 
state might not be as easy as just retracing the path followed before. The smaller the hysteresis region the less likely 
it is for the system to end up in this scenario. Dynamics in the hysteresis region are manifested in two ways: (1) In 
finite systems, random phase switching between two unstable states is observed where the mean of the random 
switching times increases exponentially with system size21. (2) In the thermodynamic limit no switching is 
observed but the initial configuration and small random events in the initial temporal evolution of the system 
determine to which of the two stationary states the system converges. The latter behavior is characteristic for 
non-self-averaging spin glasses53–55. As an inset in Fig. 3 (right), we show the relation to cusp catastrophe surfaces 
accompanying the model’s dynamics. Cusp catastrophes are a prominent example in catastrophe theory describ-
ing hysteresis and possible sudden transitions as a consequence of slightly varying control parameters with appli-
cations in population dynamics, mechanical and biological systems46–48. The bifurcation lines enclose the 
hysteresis region and merge at the cusp point. The cusp point is a degenerate critical point where not just the first 
derivative, but also higher derivatives of the potential function vanish. The degeneracy of this critical point can be 
unfolded by expanding the potential function as a Taylor series in small perturbations of the parameters r, p, and 
a with a characteristic fourth-order polynomial47. For a detailed analytical treatment, see Appendices A and B. We 
define the hysteresis areas enclosed by the bifurcation lines in the parameter range of Fig. 3 (right) as AH

MFT 
(mean-field for k =​ 1, m =​ 1) and AH

SL (square lattice). The ratio ≈A A: 200: 1H
MFT

H
SL  shows that it is significantly 

less likely for the Euclidean lattice to exhibit the aforementioned hysteresis dynamics in the presence of failure and 
recovery compared to the mean-field scenario. We will see that this effect can be also observed by comparing a 
square lattice with a regular random network. We will therefore study the transition from a square lattice to a 
regular random network by varying the characteristic link length in Sec. Phase diagrams and transitions for 
embedded systems. To obtain the phase diagram we studied the hysteresis behavior and fluctuations for different 
fixed values of r by varying p. More details about the Euclidean lattice and its critical behavior for different values 
of m are described in Appendix C. The model’s dynamics is very rich and we show in the section Oscillatory 
behavior that we encounter closed orbits for certain values in the parameter space. We further describe the 
dynamics and connections to other models, in particular, Schlögl’s first (contact process) and second models and 
the relation to cusp catastrophes, in Appendix B.

Spreading dynamics.  The dynamics can be driven by the field-like spontaneous failure term or the spread 
of failure can be triggered by the neighboring failed nodes. We first discuss the dynamics in the hysteresis region 
of a square lattice with N =​ 50 ×​ 50 nodes, cf. Fig. 2. The two mechanisms are illustrated in video 1 (transition 
down) and video 2 (transition up). The spontaneous infection term, analogous to an external field, enables the 
dynamics to form multiple seeds from where the transitions might start. The regions invaded by different seeds 
expand and move on the lattice. Some of them merge and form larger clusters of active or failed nodes. After some 
time a stable phase develops.

In the limit of a vanishing external field we expect nucleation determining the growth of a certain phase. 
Nucleation is exemplified for a small value of p =​ 0.05 in Fig. 4. The left side of Fig. 4 (left) displays the initially 
occurring spreading seeds due to the spontaneous infection dynamics. Eventually, contact dynamics (external 
failure) leads to a local spread of the failure and larger clusters form as illustrated in Fig. 4 (right). A video of the 
latter example can be found here: video 3 (vanishing spontaneous infection).

Phase diagrams and transitions for embedded systems.  Critical failure-recovery dynamics neces-
sarily occurs close to the hysteresis region. We study the critical transitions for fixed r and varying p for a reg-
ular random graph with degree k =​ 4 and for a square lattice. One observes that for r =​ 0.7 the square lattice 
shows a continuous transition whereas the random graph exhibits a discontinuous transition (Fig. 5 (left)). Since 
in real systems control parameters often can be only determined approximately, this demonstrates that critical 
failure-recovery dynamics on the lattice can be better controlled compared on a random graph. When both paths 
cross the hysteresis region, e.g., for r/q′​ =​ 10, both dynamics show a discontinuous transition (Fig. 5 (right)). This 
however requires parameter tuning, that is, large values of the external spreading rate r/q′​.

In order to better understand the dramatic differences between random networks and embedded lattices, we 
analyze here the transition from a square lattice to a regular random graph. To this end, we follow the transition 
model of Danziger et al.56 and study the phase space of an embedded system with degree k =​ 4 where randomly 
chosen nearest-neighbor links are replaced by longer-range links. The lengths l of the links are distributed accord-
ing to an exponentially decaying distribution P(l) ~ exp(−​1/ζ), with a link length l and characteristic link length ζ.  
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In the thermodynamic limit, a square lattice in the limit of ζ →​ 0 is recovered, whereas in the limit of ζ →​ ∞​ we 
obtain a regular random graph (as all link lengths are equally likely). The phase diagrams of an embedded system 
with k =​ 4 and exponential link length distribution, in the presence of processes (i–iii), are shown in Fig. 6. We 
clearly observe the transition from a configuration close to a square lattice for ζ =​ 0.1 to that close to a regular 
random graph for ζ =​ 10. This again illustrates the strong dependence of the extent of the metastable region on the 
topology. In other words, a variation in the characteristic link length ζ causes a very narrow metastable domain 
(ζ =​ 0.1) to expand into a substantially larger region (ζ =​ 10). Non-local connections induce a faster damage 
spread in random networks compared to the square lattice where failure cascades are only sustained for a large 
damage spreading rate r within a narrow region of the ratio p/q. Therefore, the results presented in this section 
have implications for the understanding of dynamical networks.

Oscillatory behavior.  We will briefly describe the possibility of encountering limit cycles in our dynamics. 
We investigate this behavior by studying the Lyapunov function48 as very recently reported in ref. 57. In our case, 
the Lyapunov function V(a, uint) is derived from the following equations (α, β >​ 0):

α= −
∂
∂

da t
dt

V a u
a

( ) ( , ) , (3)
int

β= −
∂
∂

du t
dt

V a u
u

( ) ( , ) ,
(4)

int int

int

Figure 4.  Nucleation for vanishing spontaneous infection. Simulation of the spontaneous recovery model 
with p =​ 0.05, q =​ 1.0, r =​ 10.0, q′​ =​ 0.1 and m =​ 1 on a square lattice with N =​ 128 ×​ 128 nodes. (left) Initially, 
multiple spreading seeds of failed lattice sites (red) form due to spontaneous failure. (right) Contact dynamics 
(external failure) dominate and active sites (green) are displaced by failed ones (red). For further details we refer 
to the video version of the dynamics: video 3 (vanishing spontaneous infection).

Figure 5.  Illustration of hysteresis effects. Simulation of the failure-recovery model (〈​z〉​ average of the 
fraction of active nodes) with q =​ 1.0, q′​ =​ 0.1, m =​ 1 for a square lattice and a regular random graph both 
with k =​ 4 and N =​ 512 ×​ 512 nodes. (left) The transition is discontinuous for r =​ 0.7 for the random graph but 
continuous for the square lattice. (right) Only for large r/q′​ (shown for r =​ 1.0) the transition is discontinuous 
for both the random graph and the square lattice. The black arrows indicate the direction of the simulation loop.
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which are equivalent to

∑= − + − − − ′ −
da t
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k k int int
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Without loss of generality, we set β =​ 1 and compute V(a, uint) to:
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where we used the binomial theorem and set α =​ (q −​ q′​)/p. We find that
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if q >​ q′​ since β =​ 1.
For q >​ q′​ we therefore expect no oscillatory behavior, i.e. no closed orbits. However, for q′​ >​ q, we show 

in Fig. 7 the existence of closed orbits. As in the phase diagram for q >​ q′​ illustrated in Fig. 3, we also find a 
hysteresis region (blue) in Fig. 7 (right) for q′​ >​ q, where two, in the thermodynamic limit, stable steady states 
coexist and a region (grey) where only one stable steady state exists. As in Fig. 3, steady states in the grey domain 
are characterized by a fraction of failed nodes that reaches a low density, a high density or a value in between. 
However, for q′​ >​ q, there also exists a regime (purple) where we identified a periodic orbit by analyzing the 
Fourier transform of the time evolution of the fraction of active nodes. We also show the oscillatory dynamics of 
a non-embedded regular network in video 4 (oscillations). As discussed in Appendix B, for q =​ q′​, the differential 
equations Eqs (1) and (2) can be decoupled and one obtains a single first-order differential equation which has 
no periodic solutions48.

This demonstrates that the phase diagram is substantially more complex than previously believed. Specifically, 
limit cycles occur for q′​/q <​ 1 in a narrow region in the phase diagram. This deterministic behavior is markedly 
different from the stochastic switching dynamics in the hysteresis region but likewise challenges control. It might 
be difficult to distinguish stochastic switching from limit cycles in some situations where the fraction of active 
nodes exhibits rapid decay and growth dynamics. However, in contrast to stochastic switching, periodic oscilla-
tions even occur for large system sizes what allows the distinction. In addition, for small systems, one could also 
study the Fourier transform of z(t) to analyze if the signal is periodic or not.

Figure 6.  Phase diagrams of spatially embedded networks with k = 4 in comparison to a random graph. We 
set q =​ 1.0, q′​ =​ 0.1, m =​ 1 and perform the simulation for networks with degree k =​ 4 and N =​ 250,000 nodes. 
The phase space of a regular random graph with k =​ 4 (black squares) is compared to an embedded network 
with the same degree k =​ 4 for different values of the characteristic link length ζ​ (blue dots, green inverted 
triangles, red diamonds). For large ζ​ we obtain the phase space of the regular random graph and for small ζ​ the 
square lattice behavior is recovered.
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Discussion
We have derived a unifying framework for the interplay between failure, damage spread and recovery in spatially 
embedded and random networks. The theoretical description links diverse phenomena such as complex conta-
gion and phase-switching due to metastability and the occurrence of cusp catastrophes. The number of failed 
neighbors necessary to allow external failure to act on a node is a crucial parameter of the system. Our analysis 
revealed that the phase space is substantially more complex than previously known owing to the coexistence of 
limit cycles and random phase switching within hysteresis.

We analytically demonstrated that the mean-field description of the stochastic model systems is equivalent 
to cusp catastrophes with two bifurcation lines enclosing a metastable domain where two stable stationary states 
coexist. Inside this metastable region, large fractions of nodes suddenly fail and recover. Our results show that 
the transition from a random regular network to an embedded network with a short characteristic link length is 
characterized by a dramatic shrinking of the metastable domain. This suggests that embedded systems with short 
characteristic link lengths whose dynamics is captured by processes (i–iii) are substantially more robust against 
abrupt spontaneous and cascading failures compared to non-embedded systems.

Moreover, we have also shown that our theoretical framework is able to describe essential features of the mod-
el’s time evolution and that it captures spontaneous failure as an external field in analogy to magnetic systems. 
However, based on the connection to contact process dynamics we find that the model does not belong to the 
Ising universality class as conjectured earlier21. The arguments in Appendices A and B show the similarities to the 
(non-equilibrium) contact process belonging to the directed percolation universality class58. In fact, as mentioned 
by Grassberger59, relating this dynamics to the Ising universality class would mean an extension of the universal-
ity hypothesis from models with detailed balance to models without it. Metastability observed in the hysteresis 
region results from two effects. For finite systems, unpredictable random phase switching between two unstable 
states is observed. In the thermodynamic limit, however, small fluctuations in the initial phase of the systems 
dynamics determine the stationary (stable) state of the system.

Our framework helps to better understand controllability in spatially embedded and random systems where 
spontaneous recovery, spontaneous failure and cascading failure lead to a remarkably complex dynamic interplay.
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