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We present an effective immunization strategy for computer networks and populations with broad
and, in particular, scale-free degree distributions. The proposed strategy, acquaintance immunization,
calls for the immunization of random acquaintances of random nodes (individuals). The strategy
requires no knowledge of the node degrees or any other global knowledge, as do targeted immunization
strategies. We study analytically the critical threshold for complete immunization. We also study the
strategy with respect to the susceptible-infected-removed epidemiological model. We show that the
immunization threshold is dramatically reduced with the suggested strategy, for all studied cases.
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It is well established that random immunization re-
quires immunizing a very large fraction of a computer
network, or population, in order to arrest epidemics that
spread upon contact between infected nodes (or individu-
als) [1–7]. Many diseases require 80%–100% immuniza-
tion (for example, measles requires 95% of the population
to be immunized [1]). The same is correct for the Internet,
where stopping computer viruses requires almost 100%
immunization [5–7]. On the other hand, targeted immu-
nization of the most highly connected individuals [1,5,8–
11], while effective, requires global information about the
network in question, rendering it impractical in many
cases. Here, we develop a mathematical model and pro-
pose an effective strategy, based on the immunization of a
small fraction of random acquaintances of randomly
selected nodes. In this way, the most highly connected
nodes are immunized, and the process prevents epidemics
with a small finite immunization threshold and without
requiring specific knowledge of the network.

Social networks are known to possess a broad distribu-
tion of the number of links (contacts), k, emanating from
a node (an individual) [12–14]. Examples are the web of
sexual contacts [15], movie-actor networks, science cita-
tions, and cooperation networks [16,17], etc. Computer
networks, both physical (such as the Internet [18]) and
logical (such as the World Wide Web [19], and email [20]
and trust networks [21]) are also known to possess wide,
scale-free, distributions. Studies of percolation on broad-
scale networks show that a large fraction fc of the nodes
need to be removed (immunized) before the integrity of
the network is compromised. This is particularly true for
scale-free networks, P�k� � ck�� (k � m), where 2<
�< 3, the case of most known networks [12–14], where
the percolation threshold fc ! 1, and the network re-
mains connected (contagious) even after removal of
most of its nodes [6]. In other words, with a random
immunization strategy almost all of the nodes need to
be immunized before an epidemic is arrested (see Fig. 1).

When the most highly connected nodes are targeted
first, removal of just a small fraction of the nodes results

in the network’s disintegration [5,10,11]. This has led to
the suggestion of targeted immunization of the HUBs
(the most highly connected nodes in the network) [8,22].
However, this approach requires a complete, or at least
fairly good knowledge of the degree of each node in the
network. Such global information often proves hard to
gather, and may not even be well defined (as in social
networks, where the number of social relations depends
on subjective judging). The acquaintance immunization
strategy proposed herein works at low immunization
rates, f, and obviates the need for global information.

In our approach, we choose a random fraction p of the
N nodes and look for a random acquaintance with whom
they are in contact (thus, the strategy is purely local,
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FIG. 1 (color online). Critical probability, fc, as a function of
� in scale-free networks (with m � 1), for the random immu-
nization (top curve and open circles), acquaintance immuniza-
tion (middle curve and top full circles), and double
acquaintance immunization (bottom curve and bottom full
circles) strategies. Curves represent analytical results (an ap-
proximate one for double acquaintance), while data points
represent simulation data, for a population N � 106. (Because
of the population’s finite size, fc < 1 for random immunization
even when � < 3.) Squares are for random (open) and acquain-
tance immunization (full) of assortatively mixed networks
[where links between sites of degree k1 and k2 �> k1� are
rejected with probability 0:7�1� �k1=k2�� ].
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requiring minimal information about randomly selected
nodes and their immediate environs ). The acquaintances,
rather than the originally chosen nodes, are the ones
immunized. The fraction p may be larger than 1 [23],
for a node might be queried more than once, on average,
while the fraction of nodes immunized f is always less
than or equal to 1.

Suppose we apply the acquaintance strategy on a ran-
dom fraction p of the network. The critical fractions, pc

and fc, needed to stop the epidemic can be analytically
calculated. In each event, the probability that a node with
k contacts is selected for immunization is kP�k�=�Nhki�
[6,10], where hki �

P
kkP�k� denotes the average degree

of nodes in the network. This quantifies the known fact
that randomly selected acquaintances possess more links
than randomly selected nodes [24,25]. Suppose we follow
some branch, starting from a random link of the spanning
cluster. In some layer, l, we have nl�k� nodes of degree k.
In the next layer (l� 1) each of those nodes has k� 1 new
neighbors (excluding the one through which we arrived).
Let us denote the event that a node of degree k is suscep-
tible to the disease (not immunized) by sk. To find out the
number of nodes, nl�1�k

0�, of degree k0 that are suscep-
tible, we multiply the number of links going out of the lth
layer by the probability of reaching a node of degree k0 by
following a link from a susceptible node, p�k0jk; sk�.
Then, we multiply by the probability that this node is
also susceptible given both the node and the neighbor’s
degrees, and the fact that the neighbor is also susceptible,
p�sk0 jk

0; k; sk�. Since below and at the critical percolation
threshold loops are irrelevant [6], one can ignore them.
Therefore,

nl�1�k
0� �

X
k

nl�k��k� 1�p�k0jk; sk�p�sk0 jk
0; k; sk�: (1)

By using Bayes’s rule:

p�k0jk; sk� �
p�skjk; k

0�p�k0jk�

p�skjk�
: (2)

Assuming that the network is uncorrelated (no degree-
degree correlations), the probability of reaching a node
with degree k0 via a link, ��k0� � p�k0jk� � k0P�k0�=hki,
is independent of k.

A random site (of degree k) is selected in each step with
probability 1=N. The probability of being redirected to a
specific acquaintance is 1=k. Thus, the probability that the
acquaintance is not selected in one particular attempt, is
�1� 1=Nk�, and in all Np vaccination attempts, it is

�p�k� �

�
1�

1

Nk

�
Np

� e�p=k: (3)

If the neighbor’s degree is not known, the probability is
�p � h�p�k�i, where the average (and all averages hence-
forth) is taken with respect to the probability distribution
��k�. The probability that a node with degree k0 is sus-
ceptible is p�sk0 jk

0� � hexp��p=k�ik
0
, if no other infor-

mation exists on its neighbors. If the degree of one
neighbor is known to be k0: p�skjk; k

0� � e�p=k0 �
he�p=kik�1. Since the fact that a neighbor with known
degree is immunized does not provide any further infor-
mation about a node’s probability of immunization, it
follows that p�skjk; k

0� � p�skjk; k
0; sk0�. Using the above

equations one obtains

p�k0jk; sk� �
��k0�e�p=k0

he�p=ki
: (4)

Substituting these results in (1) yields

nl�1�k
0� � �k0�2

p ��k0�e�p=k0
X
k

nl�k��k� 1�e�p=k: (5)

Since the sum in (5) does not depend on k0, it leads to the
stable distribution of degree in a layer l: nl�k� �
al�

k�2
p ��k�e�p=k, for some al. Substituting this into (5)

yields

nl�1�k
0� � nl�k

0�
X
k

��k��k� 1��k�2
p e�2p=k: (6)

Therefore, if the sum is larger than 1 the branching
process will continue forever (the percolating phase),
while if it is smaller than 1 immunization is subcritical
and the epidemic is arrested. Thus, we obtain a relation
for pc:

X
k

P�k�k�k� 1�

hki
�k�2
pc

e�2pc=k � 1: (7)

The fraction of immunized nodes is easily obtained
from the fraction of nodes which are not susceptible,

fc � 1�
X
k

P�k�p�skjk� � 1�
X
k

P�k��k
pc
; (8)

where P�k� is the regular distribution, and pc is found
numerically using Eq. (7).

A related immunization strategy calls for the immu-
nization of acquaintances referred to by at least n nodes.
(Above, we specialized to n � 1.) The threshold is lower
the larger n is, and may justify, under certain circum-
stances, this somewhat more involved protocol.

The acquaintance immunization strategy is effective
for any broad-scale distributed network. Here we give
examples for scale-free and bimodal distributions, which
are common in many natural networks. We also give an
example of an assortatively mixed network (where high
degree nodes tend to connect to other high degree nodes
[26]). We also discuss the effectiveness of the strategy in
conjunction with the susceptible-infected-removed (SIR)
epidemiological model.

In Fig. 1, we show the immunization threshold fc
needed to stop an epidemic in networks with 2< �<
3:5 (this covers all known cases). Plotted are curves for
the (inefficient) random strategy, and the strategy ad-
vanced here, for the cases of n � 1 and 2. Note that while
fc � 1 for networks with 2< �< 3 (e.g., the Internet)
it decreases dramatically to values fc � 0:25 with the
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suggested strategy. The figure also shows the strategy’s
effectiveness in the case of assortatively mixed networks
[26], i.e., in cases where p�k0jk� does depend on k, and
high degree nodes tend to connect to other high degree
nodes, which is the case for many real networks.

Figure 2 gives similar results for a bimodal distribution
(consisting of two Gaussians, where high degree nodes
are rare compared to low degree ones). This distribution is
also believed to exist for some social networks, in par-
ticular, for some networks of sexual contacts. In Fig. 3
geographical effects, where nodes tend to connect to
geographically adjacent ones [28], are also taken into
account. The improvement gained by the use of the ac-
quaintance immunization strategy is evident in both
cases, as seen in Figs. 2 and 3.

The above considerations hold if full immunization is
required. That is, given a static network structure, one
wishes to stop any epidemic or virus propagation.
However, most real viruses have a finite infection rate,
and, therefore, a finite probability of infecting a neighbor
of an infected node. The SIR model, widely studied by
epidemiologists [29–31], assumes that nodes can be sus-
ceptible, infected, or removed (i.e., recovered and immu-
nized against further infection or otherwise removed
from the network). This epidemiological model can be
mapped to a bond percolation model, where the concen-
tration of bonds, q � 1� e�r�, where r is the transmis-
sibility of the virus (infection rate over a link) and � is the
infection time. To find the effect of the strategy, given this
finite infection probability, the right hand side of Eq. (1)
should be multiplied by q, giving:

X
k

P�k�k�k� 1�

hki
�k�2
pc

e�2pc=k � q�1 (9)

instead of Eq. (7). Results for different infection rates and
scale-free networks with � � 2:5 and � � 3:5 are shown
in Fig. 4. As can be seen in the figure, in the limit �r ! 1
this model leads to the full immunization case of Fig. 1.
For lower values of r, the proposed strategy still gives
similar, or even larger, decrease in the immunization
threshold.

Various immunization strategies have been proposed,
mainly for the case of an already spread disease, and are
based on tracing the chain of infection towards the super-
spreaders of the disease [2]. This approach is different
from our proposed approach, since it is mainly aimed at
stopping an epidemic after the outbreak began. It is also
applicable for cases where no immunization exists and
only treatment for already infected individuals is pos-
sible. Our approach, on the other hand, can be used even
before the epidemic starts spreading, since it does not
require any knowledge of the chain of infection.

In practice, any population immunization strategy
must take into account issues of attempted manipulation.
We would expect the suggested strategy to be less sensi-
tive to manipulations than targeted immunization strate-
gies. This is due to its dependence on acquaintance
reports, rather than on self-estimates of number of con-
tacts. Since a node’s reported contacts pose a direct threat
to the node (and relations), we anticipate that manipula-
tions would be less frequent. Furthermore, we would
suggest adding some randomness to the process: for ex-
ample, reported acquaintances are not immunized, with
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FIG. 2. Critical concentration, fc, for the bimodal distribu-
tion (of two Gaussians) as a function of d, the distance between
the modes. The first Gaussian is centered at k � 3 and the
second one at k � d� 3 with height 5% of the first. Both have
variance 2 (solid lines) or 8 (dashed lines). Top two lines are for
random immunization. The bottom two lines are for acquain-
tance immunization. All curves are analytically derived from
Eqs. (7) and (8). Very similar results have been obtained for
bimodal distributions of two Poissonians. Note that also for the
case d � 0, i.e., a single Gaussian, the value of fc reduces
considerably due to the acquaintance immunization strategy.
Thus the strategy gives improved performance even for rela-
tively narrow distributions [27].
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FIG. 3. The fraction of the population infected in the en-
demic state, Pinf , as a function of f, the immunized fraction of
the population, for a scale-free network embedded in a 2d
geographical space (see [28]). The solid lines are for random
(top) and acquaintance (bottom) immunization for a network
with � � 2:8 and the dashed lines are for the same cases with
� � 4. In all cases N � 106 and m � 4. In both cases (� � 2:8
and 4) the acquaintance immunization strategy provides a
considerable improvement over random immunization. The
high values for fc stem from the fact that the network is very
well connected with m � 4, which was taken in order to
approach a regular square lattice at � ! 1.
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some small probability (smaller than the random epi-
demic threshold), while randomly selected individuals
are immunized directly, with some low probability. This
will have a small impact on the efficiency, while enhanc-
ing privacy and rendering manipulations less practical.

In conclusion, we have proposed a novel efficient strat-
egy for immunization, requiring no knowledge of the
nodes’ degrees or any other global information. This
strategy is efficient for networks of any broad-degree
distribution and allows for a low threshold of immuniza-
tion, even where random immunization requires the en-
tire population to be immunized. We have presented
analytical results for the critical immunization fraction
in both a static model and the kinetic SIR model.

As a final remark, we note that our approach may be
relevant to other networks, such as ecological networks of
predator prey [32,33], metabolic networks [34], networks
of cellular proteins [35], and terrorist networks. For ter-
rorist networks, our findings suggest that an efficient way
to disintegrate the network is to focus more on removing
individuals whose name is obtained from another member
of the network.
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FIG. 4. Critical concentration, fc, vs r, the infection rate, for
the SIR model with � � 1. The solid lines are for random (top)
and acquaintance immunization (bottom) for scale-free net-
works with � � 2:5. The dashed lines are for � � 3:5 [random
(top) and acquaintance (bottom) immunization]. The circles
represent simulation results for acquaintance immunization for
scale-free networks with � � 2:5.

P H Y S I C A L R E V I E W L E T T E R S week ending
12 DECEMBER 2003VOLUME 91, NUMBER 24

247901-4 247901-4


