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Abstract
Studies of resilience of interdependent networks have focused on structural dependencies between
pairs of nodes across networks but have not included the effects of dynamic processes taking place on
the networks. Here we study the effect of dynamic process-based dependencies on a systemof
interdependent resistor networks.We describe a new class of dependency inwhich a node’s
functionality is determined bywhether or not it is actually carrying current and not just by its
structural connectivity to a spanning component. This criterion determines its functionality within its
ownnetwork aswell as its ability to provide support-but not electrical current-to nodes in another
network.We present the effects of this new type of dependency on the critical properties of σ and ∞B ,
the overall conductivity of the system and the fraction of nodes which carry current, respectively.
Because the conductance of current has direct physical effects (e.g. heat,magnetic induction), the
development of a theory of process-based dependency can lead to innovative technology. As an
example, we describe how the theory presented here could be used to develop a new kind of highly
sensitive thermal or gas sensor.

1. Introduction

Resistor networks have been a central topic of percolation research for decades. The seminal work of Kirkpatrick
[1–3] and others demonstrated that significant information about general transport phenomena in disordered
media could be deduced from d-dimensional lattices of resistors fromwhich a fraction − p1 of the sites or
bonds are removed at random [4–6].One of the important results which emerged from the study of resistor
networks is the distinction between current carrying nodes, (the ‘backbone’) and nodeswhich are connected to
the current carrying nodes but do not carry any current (the ‘dead ends’), see figure 1. As shown infigure 1(c), in
two-dimensions near criticality, themass of dead ends completely overwhelms the backbonemass in the
thermodynamic limit [7–9]. Though the value of the percolation threshold pc is the same for the conductivity
and the largest connected component, their behavior at criticality is different, seefigure 4(a) and reference [10].
Aswewill showbelow, this difference leads to differences in pc for conductivity and the spanning cluster in a
systemof coupled resistor networks, see figure 4(b).

When utilizing percolation theory of networks to describe system robustness, connection to a giant
connected component (GCC)which is of orderN is treated as a proxy for functionality [5, 6, 11, 12]. As long as a
path exists between a node and a finite fraction of other nodes, the node is considered functional. This is
reasonable inmany systems, like the internet [11, 12], butmay not be the case in the spread of information or
disease on social networks,movement of people on road networks or, as we discuss here, in the case of general
transport as exemplified by electricflow in resistor networks. In these cases, ‘functionality’ ismore readily
identifiedwith ‘activity’ as determined by a specific process and not just with ‘connectivity’.

In interdependent networks [13–16], node functionality depends on two factors: connection to theGCC in
its network and support from a specific node in another network. The supporting node also requires
connectivity and support to function.When the same two networks support and depend on each other, they are
interdependent and failures are amplified as they are transferred back and forth between the two networks,
creating cascading failures.

OPEN ACCESS

RECEIVED

16December 2014

REVISED

4March 2015

ACCEPTED FOR PUBLICATION

18March 2015

PUBLISHED

22April 2015

Content from this work
may be used under the
terms of theCreative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2015 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft



Here, we breakwith previous work on interdependent networks and consider functionality to be determined
by a dynamic process and not just the potential for such a process to occur, as determined by the existence of
links connecting the node to theGCC.We call this dependency functional or process-based to distinguish it from
previous research on structural or topological dependency. In this work, we focus on current flow as the process
which determines the process-based dependency. A node can function only if it has current flowing through it (it
is part of the backbone) and there is currentflowing through the node that it depends on in another network.
Note however, that there is no electrical connection or current flowbetween the networks, only dependency
links.

We present here theoretical predictions and extensive simulations of this system.We find that process-based
dependency leads to significantly increased vulnerability and first and second-order transitions in the bulk
conductivity at higher values of pc than structural dependency. Thefirst-order phase transitions occur over a
wider range of parameters compared to structural dependency.Wefind that the second-order transition has
critical scaling in coupled networkswhich is indistinguishable from single networks, evenwhen pc changes
dramatically. After presenting our theoretical findings, we discuss possible laboratory realizations of this system.

(a)Model.We study a system composed of two interdependent two-dimensional square lattices with nearest
neighbor links of unit resistance.We take open boundary conditions for the sides and connect the top and
bottomof each lattice to uniform voltage and ground, respectively (figure 1(a)). There is no electrical
connection between the two networks and therefore the only interaction between the systems is via the
dependency links. Each node in networkA depends on exactly one node in networkB and the dependency is
mutual, in line with the ‘no feedback condition’ commonly assumed in interdependent networks [17]. This one-
to-one correspondencemeans that the number of functional nodes in each network is identical.We note,
though, that even if only a fraction of the nodes were interdependent (as in [18, 19]), the size of the backbone and
giant componentwould be essentially the same in both systems, due to symmetry. The dependency links are
assigned uniformly at randomwith the restriction that they connect nodes with horizontal distance not longer

Figure 1. (a) Illustration of a pair of interdependent resistor networkswith process-based dependency. The two networks are each
connected to a voltage source and ground. The red nodes have currentflowing through themwhile the green nodes do not. Between
the two networks are dependency links (red if active, black dashed if inactive) which do not carry current. Rather they represent the
fact that a node in one network can carry current only if the node that it depends on in the other network carries current. The green
nodes in the upper right and lower left would be part of the backbone in their network, were it not for the dependency links. However,
in this case they are disabled due to their dependency on dead end nodes (which do not carry current) in the other network. See
discussion, below, for physical interpretations of this dependency. A single resistor networkwith fraction − p1 nodes removed. (b)
p=0.66 and (c) p=0.595 . The top of the lattice is held atfixed voltage while the bottom is grounded.Nodes (squares) are connected to
their nearest neighbors with unit resistance. Nodes cease to function in three ways: (i) direct attack (black), (ii) structural separation
from the spanning component (blue) or (iii) dynamic loss of electrical current (green). In ourmodel, only the nodes in the current-
carrying backbone remain functional (white). As the system approaches criticality, the green nodes (dead ends) far outnumber the
white nodes (backbone) [5, 6].
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than r in each direction, in linewith themodels used in [19–21],figure 1(a). Thismeans that a node at location
(i, j) in latticeA can depend on the continued functioning of a node in latticeB located at ′ ′i j( , )only if
∣ − ′∣ ⩽i i r and ∣ − ′∣ ⩽j j r . Of the +r(2 1)2 nodes that fulfill this condition for any given node, one is chosen
uniformly at random. If = ≡ ∞r L , we recover the case of purely randomdependency links as described in
[18, 20]. The unconstrained case is an important limiting case forwhichwe can developmore completemodels
and theoretical predictions due to the uniformdistribution of damage fromone network to the other.

In contrast to previous work on interdependent networks, we consider a node to be functional only if there is
currentflowing through it and also through the node that it depends on, see figure 1(a). However, asmentioned
above, no current flows between the layers. As such, only part of the current-carrying backbone in each network
can be functional at anymoment. The entire backbonewill generally not be functional because some nodeswill
depend on non-current carrying nodes in the other network (cf the green nodes in the upper right and lower left
offigure 1(a)). In each network, we determine the backbone via direct electrification [3, 22].We then disable any
nodeswhich are not in the backbone (the blue or green squares infigure 1) or are dependent on nodeswhich are
not in the backbone of the other network. The removal of nodes due to dependencies causes a dramatic decrease
in the backbone size from iteration to iteration (see figure 6) and the process is continued until it reaches a steady
state, (cf the red nodes infigure 1(a)). At this point the bulk conductivity σ and backbone fraction ∞B are
measured.

2. Results

Wefind that, for every system, there exists a critical fraction pc of nodes abovewhich a spanning cluster exists and
currentflows through both networks and belowwhich it does not. The phase transition is second-order for

<r rc, and pc increasesmonotonically with r. For ⩾ ≈r r 4c , the transition isfirst order and pcdecreases
asymptotically towards its value for = ∞r , see figures 2(a) and 3(a). In contrast, fully interdependent lattices
with structural dependency undergo afirst-order phase transition onlywhen > ≈r r 8c [19, 20]. In all cases, the
pc of process-based dependency is substantially higher (more vulnerable) than structural dependency, due to the
fact that the current-carrying backbone is always smaller than theGCC, see figure 3(a). This also leads to a larger
discontinuity in the order parameter compared to structural dependency, as shown infigure 3(b).

As in the case of structural dependency of interdependent spatially embedded networks [19–22], wefind
three regimes of critical behavior which are determined by the value of r. In the first regime, for <r rc, the phase
transition is driven by the spontaneous emergence ofmany small holes, each triggering localized cascading
failures in their vicinity. Because the size of the small holes increases continuously as → +p pc [5], ∞B and σ
decrease gradually and there is a continuous second-order transition. In the second regime, for ⩽ < ∞r rc , the
dynamics at criticality are very different. Random fluctuations generated by the original node removal lead to the
emergence of a hole of a critical size. The same hole will appear in approximately the same place in both
networks due to the restriction of dependency links to length r. This hole causes extensive damage to nodes up to
a distance r from its edge. At criticality, this damage leads to the separation of small clusters around the edge of
the hole and its gradual propagation. This continues until the networks no longer have a spanning cluster and
theflowof current is entirely cut off. In this regime there is no critical exponent above pc, the number of nodes
which fail per iteration grows linearly until the hole reaches the system’s boundary, and the number of iterations
at criticality grows linearly with system size.

In the third regime, for = ∞r , there is no critical holewhich propagates. Instead, the systemundergoes a
mixedfirst and second order transition, similar towhat is found in interdependent randomnetworks
[14, 26, 27]. This transition is characterized by a brief initial cascade inwhich a large fraction of the nodes fail
followed by a long plateau duringwhich the number of failing nodes stays approximately constant from step to
step. After the slowly accumulating damage during this phase reaches a sufficient amount, the damage rate
increases exponentially and the entire system collapses. Thus themajority of the nodes collapse at the beginning
or end of the cascadewhile themajority of the time is spent in the plateau phase. Thismechanism is analyzed in
detail for the case of interdependent randomnetworks in [27] and results are comparedwith spatially embedded
networkswith structural dependency in [19].

When the dependency links are of unconstrained length ( = ∞r ), we can accurately predict the backbone
fraction ∞B and conductivity σ for any value of p. This is because damage fromone network causes damage in
the other network that is distributed evenly. Since the requirement that the nodes bemembers of the current
carrying backbone ∞B is analogous to the requirement that they both be in theGCC ( ∞P ), we can predict the
evolution of ∞B in the samemanner that ∞P is calculated in [20] based on [13]. Since the size of the backbone is
the same in both networks, it is sufficient to calculate it for either network. The fundamental observation
underpinning this theory is that-when damage is randomly distributed-each iteration can be treated as a
percolation problemwith the initial p determined by the network size of the other network in the previous
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iteration.We let pi represent the fraction of nodes expected to survive at iteration i before including the effect of
percolation and ∞B p( )i be the expected size of the backbone at iteration i. Throughout we use ∞B to describe the
actual backbone fraction and ∞B x( ) to describe the functional relationship between the fraction of nodes
removed ( − x1 ) and the backbone fraction ∞B in single networks, as plotted infigures 2(b) and 4(a). The size of
the current carrying backbone is thus:

=p p, (1)0

=
−

∞ −( )p
p

p
B p . (2)i

i
i

1
1

Weobtain the steady state solution to equation (2) by imposing = −p pi i 1 and defining the pi that satisfies this as
x:

= ∞x pB x( ) . (3)

Figure 2. (a) The conductivity σ p( ) and (b) the backbone fraction ∞B p( ). The quantities σ p( ) and ∞B p( ) are shown for several values
of r and also comparedwith a single network (equivalent to r=0). The value of ∞B p( ) is the same in both networks due to symmetry.
Each curve is the result of an average of over 60 realizations of systemswith L=1000.Note how the transition changes from second to
first order for ⩾r 4. For the dependence of pc and the discontinuity size at pc on r, seefigures 3(a) and (b), respectively.

Figure 3. (a) Comparison of pc as a function of r for structural and process-based dependency.When r=0, the dependency links have
no effect and the two systems have the same pc as in single 2d lattices ( ≈p 0.5927c [24]). However, for all other values of r, the kind of
dependency has a strong impact on the overall robustness. The peak in pc occurs at = ≈r r 4c for the process-based dependency
compared to around = ≈r r 8c for the structural dependency [20]. This peak divides the second-order transitions (on the left) from
the first-order transitions (on the right). (b) The order parameter ∞P , ∞B at pc as a function of r. The order parameter is ∞P for
structural-dependency and ∞B for process-based dependency. Though the transition is second-order for <r rc , there is still afinite
jump in the order parameter because of thefinite system size. The reason that the two curves do not coincide for r=0 is that, for every
finite system at pc, < ⩽∞ ∞B P0 . For both panels L=1000, Δ ⩽ × −p 5 10 6 and −50 100 realizationswere averaged for each data
point. The error bars denote standard deviation.
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Thus for any p, if x is a solution to equation (3), ∞B x( ) is the fraction of nodes in the backbone, in each network.
If the initial removal of nodes is performed on both networks, the same equation holds with p replaced by p2 in
equation (3).

To determine σ, we utilize the fact that, on a single network or on a pair of networks with = ∞r , the
conductivity has a one-to-one relationship with the size of the backbone σ ∞B( ), see inset offigure 4(a). It is then
straightforward to predict the conductivity σ, see figure 4(b).We can also predict pc byfinding thefirst non-
trivial solution to equation (3) and the expected values of ∞B or σ at each iteration, see appendix.

When < < ∞r0 , we are unable tomake direct predictions based on the percolation profile of a single
network. This is due to the fact that damage is not distributed uniformly and the phase transition itself is
characterized by the emergence of a critically sized holewhich grows from iteration to iteration and eventually
destroys thewhole system [19, 20]. Another consequence of the non-uniform distribution of damage in systems
withfinite r is that the relationship between ∞B and σ is no longer one-to-one. Therefore even if we had away to
predict the size of ∞B , wewould not be able to precisely deduce the value of σ from it.

Scaling properties of the backbone and conductivity above pc on a single lattice have been studied extensively
[10]. For a single lattice, the conductivity above pc scales as

σ ∼ −( )p p (4)c

t

inwhich ≈t 1.31 [28, 29] and the size of the backbone scales as

∼ − ψν
∞ ( )B p p (5)c

inwhich ν = 4 3 is the correlation length critical exponent for two-dimensions [5, 30, 31], ψ ≈ 0.3568 and
ψν ≈ 0.4758 [10, 29, 32].

Infigure 5, we show the scaling above pc for the backbone and sigma respectively for interdependent resistor
networkswith low values of r, where the transition is still second-order.Wefind that, despite the dramatic
change in pc as a function of r (figure 3(a)) and the difference in σ and ∞B outside the critical region (figure 2(a)),
there is no appreciable difference in the scaling exponents. However, we do see that as r increases, the extent of
the scaling region decreases, and already for r=3 the behavior has broken down (see figure 5).We believe that
this is due to the fact that as r approaches rc, the dynamics of the transition becomes a hybrid of the single-lattice
second-order transition and the hole spreading first-order transition. Instead of a single hole propagating
regularly,multiple holes propagate irregularly. Thismixture of critical behaviors leads to a blurring of the critical
region. Nevertheless, we expect that for larger systemswhere p can reach closer to pc, the scaling regionwill
increase.

Figure 4.Comparison of GCC, backbone fraction and conductivity in single and interdependent networks with unconstrained
dependency links. (a) In the absence of dependencies, the value of pc is the samewhether functionality is determined bymembership
in theGCCor the current carrying backbone, as represented by fractions ∞P and ∞B , respectively. The conductivity (σ) is non-zero
only when a current carrying backbone exists and therefore pc is the same. The inset shows the relationship between ∞B and σwhich
holds for both single networks and interdependent networks with unconstrained dependency links. (b) In the presence of
dependencies, the difference between determining functionality by structure alone or based on the current flowprocess has a strong
impact on the value of pc. Heuristically, we can consider the single network case as degenerate in pcwith regard to backbone or
spanning component and that this degeneracy is removedwhen the dependency interaction is introduced. ∞P and ∞B represent the
fraction of nodes which are in the spanning component or backbone of their own network, respectively. Due to symmetry, ∞P and ∞B
are the same in each network. The lines are calculated based on the theory described in the text, in equation (3). The symbols on the
predicted lines are the result of over 130 simulations on systems of size L=1000.
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3.Discussion

In this study, we have analyzed thefirstmodel of interdependent networks inwhich nodes can only function and
provide support when they are in a dynamically active state. To realize this scenario, we have revisited the
canonical study of percolation on resistor networks as a classic example of general transport phenomena.We
find that process-based dependency leads to substantially increased vulnerability (figure 3(a)) including higher
pc values and afirst-order transition emerging for lower values of r, but that the scaling exponents at pc of ∞B and
of σ are indistinguishable from the exponents of single networks (figure 5). This isconsistent with the hypothesis
that coupled lattices with <r rc and single lattices are in the same universality class and is particularly striking in
light of the pronounced difference in the σ p( ) curves outside the critical region (figure 2(a)).Wefind that in the
absence of any interaction between the networks, there is a kind of degeneracy: the percolation threshold pc is the
samewhether functionality is determined by connectivity or current flow.However, once an interaction is
introduced, this ‘degeneracy’ is removed and the two types of functionality have different percolation
thresholds. This is shown theoretically for random links (figure 4) and numerically for links of limited length
(figure 3(a)).

Resistor networks are significant because they present a fundamentalmodel for general transport
phenomena.We believe that process-based dependencymay be amore realistic and useful approach for dealing
withmany systems inwhich it is important to differentiate between nodeswhich are connected and nodeswhich
are dynamically active. For instance, people in a social network or organisms in an ecological networkmay be
linked according to somemeasure but those linksmay not reflect their actual functionality [33, 34].

Furthermore, because the example of process-based dependency on interdependent resistor networks is
based on a real physical process, we propose a physically realizable systemof interdependent networks based on
metal insulator transitions.

Manymaterials, especially transition-metal oxides, undergo ametal insulator transition at a critical
temperatureTc from a low-temperature semiconductor phase to a high-temperaturemetallic phase [35, 36]. In
a planar system composed of grains of a transition-metal oxide connected bymetallic links, dependency can
emerge in the formof heat transmission. If the system is cooled from an initial temperature aboveTc, even
though the ambient temperature is too low to sustain conductivity, nodes can still conduct electricity if they
receive heat fromnearby conducting nodes-even fromnodeswithwhich they are not electrically connected. In
such a system awarmbackbonewill emerge in each networkwhichwill shrink (as infigure 1) as nodes are
disabled or as the background temperature decreases [37]. In a single network, bulk conductivity will continue
for temperatures substantially belowTc.With process-based dependency, however, since the red bonds in each
networkwill generally not be co-located, this will cut off the conductivity sharply at a new ′ >T Tc c . Similarly, if
the nodes change conductive properties in the presence of certain gasmolecules, the first-order transition can be
triggered by the presence (or absence) of gasmolecules.Whether driven by temperature or gasmolecules, the
sharpfirst-order transition described here can be used to construct a new kind of highly sensitive sensor.

Figure 5. Scaling of conductivity (σ) and backbone fraction ( ∞B ) near pc. Despite the pronounced differences in the curves shown in
figure 2(a), the scaling behavior shows little variation as r is varied.This is consistent with the hypothesis that interdependent lattices
below rc are in the same universality class as single lattices. The case of r=3 shows substantial deviation from the other cases. This is
because it is not a pure second-order transition like =r 0, 1, 2 but rather combines first and second-order properties as discussed in
the text and is visible in figure 3(b). Still, we see that in a small critical region, it has the same critical behavior. For =r 0, 1, 2, 3, we
find t values of 1.309 ± 0.001, 1.309 ± 0.003, 1.311 ± 0.008 and 1.31 ± 0.046, respectively. Likewise, we find β values of
0.476 ± 0.001, 0.476 ± 0.002, 0.476 ± 0.004 and 0.480 ± 0.015, respectively. These results were obtained fromover 100 realizations of
systemswith L=1500 and fitted using orthogonal distance regression on all data points in the critical region to accuratelymeasure
errors [25]. Log binned points are shown for visibility only and are not used in thefitting process.
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Anumber of technical challenges remain before such a physical experiment can be conducted.The nodes
need to be prepared in such away that the absence of heat from the resistive dissipation in onenode triggers a
complete loss of conductivity in another node,whichmayprove challenging.Alternatively, themodel can be
extended to describe a relationship inwhich a lack of current in a node causes a continuous decrease in the
conductivity of the node it depended on.A greater challenge is to physically implement the dependency link. This
is not trivial in the currentmodel becausewe require ⩾r rc for thefirst-order transition to take place. If the
physical dependency is based onheat transmission,making dependency links of length ⩾r rc would require heat
screening between layerswhichwould distribute the heat in a disordered but localized fashion.Webelieve that the
best way to overcome these technical problems is to extend themodel of resistor networks to other topologies for
whichdependency link creation ismore straightforward.Webelieve that such extensions are feasible andwould
be an important topic for future researchboth for the purpose of the physical experiment described here aswell as
for providing deeper understanding of the differences between process-based and structural dependency.
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Appendix. Cascade dynamics

Asdiscussed in themain text, when = ∞r , we can determine the expected value of the backbone fraction ∞B and
the conductivityσ at each iteration t of the cascade by using equation (2) and the empirical connection between

∞B and σ as shown infigure 4(a), inset. These results are shown infigure 6(d) for ∞B and infigure 6(b) forσ.

Figure 6.Comparison of overall system conductivity and backbone fraction at each iteration step forfinite versus infinite length
dependency links. (a) and (c) The decay here is essentially parabolic, consistent with the linear growth of the hole radius as a function
of time [19, 20]. (b) and (d)Herewe encounter the ‘plateau’ that is discussed in [19] and [27]. The symbols denote the values expected
from equation (2). The theoretical values are calculated near but below pc. The cascade ends before the theoretical limit due tofinite-
size effects.

7

New J. Phys. 17 (2015) 043046 MMDanziger et al



For comparison, we also present the results for r=5wherewe do not have a theoretical prediction for ∞B or
σ at each iteration. Since > r5 c we are in the spreading regime. The reason for the parabolic decrease in ∞B
(figure 6(c)) is that the critical hole spreads at a constant rate. Thus at each iteration the radius of the hole
increases as t and its area (which is of order − ∞B1 ) as t2.We see similar results for the conductivity of the system
(figure 6(a)).
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