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Abstract

Studies of resilience of interdependent networks have focused on structural dependencies between
pairs of nodes across networks but have not included the effects of dynamic processes taking place on
the networks. Here we study the effect of dynamic process-based dependencies on a system of
interdependent resistor networks. We describe a new class of dependency in which anode’s
functionality is determined by whether or not it is actually carrying current and not just by its
structural connectivity to a spanning component. This criterion determines its functionality within its
own network as well as its ability to provide support-but not electrical current-to nodes in another
network. We present the effects of this new type of dependency on the critical properties of 6 and B,
the overall conductivity of the system and the fraction of nodes which carry current, respectively.
Because the conductance of current has direct physical effects (e.g. heat, magnetic induction), the
development of a theory of process-based dependency can lead to innovative technology. As an
example, we describe how the theory presented here could be used to develop a new kind of highly
sensitive thermal or gas sensor.

1. Introduction

Resistor networks have been a central topic of percolation research for decades. The seminal work of Kirkpatrick
[1-3] and others demonstrated that significant information about general transport phenomena in disordered
media could be deduced from d-dimensional lattices of resistors from which a fraction 1 — p of the sites or
bonds are removed at random [4—6]. One of the important results which emerged from the study of resistor
networks is the distinction between current carrying nodes, (the ‘backbone’) and nodes which are connected to
the current carrying nodes but do not carry any current (the ‘dead ends’), see figure 1. As shown in figure 1(c), in
two-dimensions near criticality, the mass of dead ends completely overwhelms the backbone mass in the
thermodynamic limit [7-9]. Though the value of the percolation threshold p, is the same for the conductivity
and the largest connected component, their behavior at criticality is different, see figure 4(a) and reference [10].
As we will show below, this difference leads to differences in p, for conductivity and the spanning cluster in a
system of coupled resistor networks, see figure 4(b).

When utilizing percolation theory of networks to describe system robustness, connection to a giant
connected component (GCC) which is of order N is treated as a proxy for functionality [5, 6, 11, 12]. Aslongasa
path exists between a node and a finite fraction of other nodes, the node is considered functional. This is
reasonable in many systems, like the internet [ 11, 12], but may not be the case in the spread of information or
disease on social networks, movement of people on road networks or, as we discuss here, in the case of general
transport as exemplified by electric flow in resistor networks. In these cases, ‘functionality’ is more readily
identified with ‘activity’ as determined by a specific process and not just with ‘connectivity’.

In interdependent networks [13—16], node functionality depends on two factors: connection to the GCC in
its network and support from a specific node in another network. The supporting node also requires
connectivity and support to function. When the same two networks support and depend on each other, they are
interdependent and failures are amplified as they are transferred back and forth between the two networks,
creating cascading failures.

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. (a) Illustration of a pair of interdependent resistor networks with process-based dependency. The two networks are each
connected to a voltage source and ground. The red nodes have current flowing through them while the green nodes do not. Between
the two networks are dependency links (red if active, black dashed if inactive) which do not carry current. Rather they represent the
fact that a node in one network can carry current only if the node that it depends on in the other network carries current. The green
nodes in the upper right and lower left would be part of the backbone in their network, were it not for the dependency links. However,
in this case they are disabled due to their dependency on dead end nodes (which do not carry current) in the other network. See
discussion, below, for physical interpretations of this dependency. A single resistor network with fraction 1 — p nodes removed. (b)
p=0.66and (c) p=0.595. The top of the lattice is held at fixed voltage while the bottom is grounded. Nodes (squares) are connected to
their nearest neighbors with unit resistance. Nodes cease to function in three ways: (i) direct attack (black), (ii) structural separation
from the spanning component (blue) or (iii) dynamic loss of electrical current (green). In our model, only the nodes in the current-
carrying backbone remain functional (white). As the system approaches criticality, the green nodes (dead ends) far outnumber the
white nodes (backbone) [5, 6].

Here, we break with previous work on interdependent networks and consider functionality to be determined
by a dynamic process and not just the potential for such a process to occur, as determined by the existence of
links connecting the node to the GCC. We call this dependency functional or process-based to distinguish it from
previous research on structural or topological dependency. In this work, we focus on current flow as the process
which determines the process-based dependency. A node can function only if it has current flowing through it (it
is part of the backbone) and there is current flowing through the node that it depends on in another network.
Note however, that there is no electrical connection or current flow between the networks, only dependency
links.

We present here theoretical predictions and extensive simulations of this system. We find that process-based
dependency leads to significantly increased vulnerability and first and second-order transitions in the bulk
conductivity at higher values of p, than structural dependency. The first-order phase transitions occur over a
wider range of parameters compared to structural dependency. We find that the second-order transition has
critical scaling in coupled networkswhich is indistinguishable from single networks, even when p. changes
dramatically. After presenting our theoretical findings, we discuss possible laboratory realizations of this system.

(a) Model. We study a system composed of two interdependent two-dimensional square lattices with nearest
neighbor links of unit resistance. We take open boundary conditions for the sides and connect the top and
bottom of each lattice to uniform voltage and ground, respectively (figure 1(a)). There is no electrical
connection between the two networks and therefore the only interaction between the systems is via the
dependency links. Each node in network A depends on exactly one node in network B and the dependency is
mutual, in line with the ‘no feedback condition’ commonly assumed in interdependent networks [17]. This one-
to-one correspondence means that the number of functional nodes in each network is identical. We note,
though, that even if only a fraction of the nodes were interdependent (asin [18, 19]), the size of the backbone and
giant component would be essentially the same in both systems, due to symmetry. The dependency links are
assigned uniformly at random with the restriction that they connect nodes with horizontal distance not longer
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than rin each direction, in line with the models used in [19-21], figure 1(a). This means that a node at location
(1,7) in lattice A can depend on the continued functioning of a node in lattice Blocated at (', j') only if

li —i'| < rand|j — j'| < r.Ofthe (2r + 1)? nodes that fulfill this condition for any given node, one is chosen
uniformly atrandom. If r = L = o0, we recover the case of purely random dependency links as described in
[18,20]. The unconstrained case is an important limiting case for which we can develop more complete models
and theoretical predictions due to the uniform distribution of damage from one network to the other.

In contrast to previous work on interdependent networks, we consider a node to be functional only if there is
current flowing through it and also through the node that it depends on, see figure 1(a). However, as mentioned
above, no current flows between the layers. As such, only part of the current-carrying backbone in each network
can be functional at any moment. The entire backbone will generally not be functional because some nodes will
depend on non-current carrying nodes in the other network (cf the green nodes in the upper right and lower left
of figure 1(a)). In each network, we determine the backbone via direct electrification [3, 22]. We then disable any
nodes which are not in the backbone (the blue or green squares in figure 1) or are dependent on nodes which are
not in the backbone of the other network. The removal of nodes due to dependencies causes a dramatic decrease
in the backbone size from iteration to iteration (see figure 6) and the process is continued until it reaches a steady
state, (cfthe red nodes in figure 1(a)). At this point the bulk conductivity o and backbone fraction B, are
measured.

2.Results

We find that, for every system, there exists a critical fraction p. of nodes above which a spanning cluster exists and
current flows through both networks and below which it does not. The phase transition is second-order for

r < 1,,and p.increases monotonically with r. For r > 7, & 4, the transition is first order and p, decreases
asymptotically towards its value for r = oo, see figures 2(a) and 3(a). In contrast, fully interdependent lattices
with structural dependency undergo a first-order phase transition only when r > . ~ 8 [19, 20]. In all cases, the
p.of process-based dependency is substantially higher (more vulnerable) than structural dependency, due to the
fact that the current-carrying backbone is always smaller than the GCC, see figure 3(a). This also leads to a larger
discontinuity in the order parameter compared to structural dependency, as shown in figure 3(b).

Asin the case of structural dependency of interdependent spatially embedded networks [ 19-22], we find
three regimes of critical behavior which are determined by the value of r. In the first regime, for r < 1, the phase
transition is driven by the spontaneous emergence of many small holes, each triggering localized cascading
failures in their vicinity. Because the size of the small holes increases continuously as p — p:' [5], B and ¢
decrease gradually and there is a continuous second-order transition. In the second regime, for . < r < o0, the
dynamics at criticality are very different. Random fluctuations generated by the original node removal lead to the
emergence of a hole of a critical size. The same hole will appear in approximately the same place in both
networks due to the restriction of dependency links to length r. This hole causes extensive damage to nodes up to
adistance r from its edge. At criticality, this damage leads to the separation of small clusters around the edge of
the hole and its gradual propagation. This continues until the networks no longer have a spanning cluster and
the flow of current is entirely cut off. In this regime there is no critical exponent above p,, the number of nodes
which fail per iteration grows linearly until the hole reaches the system’s boundary, and the number of iterations
at criticality grows linearly with system size.

In the third regime, for r = oo, there is no critical hole which propagates. Instead, the system undergoes a
mixed first and second order transition, similar to what is found in interdependent random networks
[14, 26, 27]. This transition is characterized by a brief initial cascade in which a large fraction of the nodes fail
followed by along plateau during which the number of failing nodes stays approximately constant from step to
step. After the slowly accumulating damage during this phase reaches a sufficient amount, the damage rate
increases exponentially and the entire system collapses. Thus the majority of the nodes collapse at the beginning
or end of the cascade while the majority of the time is spent in the plateau phase. This mechanism is analyzed in
detail for the case of interdependent random networks in [27] and results are compared with spatially embedded
networks with structural dependencyin [19].

When the dependency links are of unconstrained length (r = o0), we can accurately predict the backbone
fraction B,, and conductivity o for any value of p. This is because damage from one network causes damage in
the other network that is distributed evenly. Since the requirement that the nodes be members of the current
carrying backbone B, is analogous to the requirement that they both be in the GCC (P,,), we can predict the
evolution of B, in the same manner that P, is calculated in [20] based on [13]. Since the size of the backbone is
the same in both networks, it is sufficient to calculate it for either network. The fundamental observation
underpinning this theory is that-when damage is randomly distributed-each iteration can be treated as a
percolation problem with the initial p determined by the network size of the other network in the previous
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Figure 2. (a) The conductivity o (p) and (b) the backbone fraction B, (p). The quantities ¢ (p) and By, (p) are shown for several values
of rand also compared with a single network (equivalent to r = 0). The value of B, (p) is the same in both networks due to symmetry.
Each curve is the result of an average of over 60 realizations of systems with L = 1000. Note how the transition changes from second to
first order for r > 4. For the dependence of p. and the discontinuity size at p. on r, see figures 3(a) and (b), respectively.
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Figure 3. (a) Comparison of p, as a function of r for structural and process-based dependency. When r = 0, the dependency links have
no effect and the two systems have the same p. as in single 2d lattices (p. & 0.5927 [24]). However, for all other values of r, the kind of
dependency has a strong impact on the overall robustness. The peak in p. occurs at r = 1. ~ 4 for the process-based dependency
compared to around r = ., & 8 for the structural dependency [20]. This peak divides the second-order transitions (on the left) from
the first-order transitions (on the right). (b) The order parameter B, By, at p.as a function of . The order parameter is P, for
structural-dependency and B, for process-based dependency. Though the transition is second-order for r < r, there s still a finite
jump in the order parameter because of the finite system size. The reason that the two curves do not coincide for = 0 is that, for every
finite system at p,, 0 < By < By.Forboth panels L=1000, 4p < 5 x 10~°and 50 — 100 realizations were averaged for each data
point. The error bars denote standard deviation.

iteration. We let p; represent the fraction of nodes expected to survive at iteration i before including the effect of
percolation and B, (p;) be the expected size of the backbone at iteration 7. Throughout we use B, to describe the
actual backbone fraction and B, (x) to describe the functional relationship between the fraction of nodes
removed (1 — x) and the backbone fraction B, in single networks, as plotted in figures 2(b) and 4 (a). The size of
the current carrying backbone is thus:
Py =0 (1
p
b = —BOO(Pi—l)' (2)
i-1
We obtain the steady state solution to equation (2) by imposing p; = p;_, and defining the p; that satisfies this as
x:

x = [pB,(x). (3)
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Figure 4. Comparison of GCC, backbone fraction and conductivity in single and interdependent networks with unconstrained
dependency links. (a) In the absence of dependencies, the value of p, is the same whether functionality is determined by membership
in the GCC or the current carrying backbone, as represented by fractions Py, and B, respectively. The conductivity () is non-zero
only when a current carrying backbone exists and therefore p. is the same. The inset shows the relationship between B, and 6 which
holds for both single networks and interdependent networks with unconstrained dependency links. (b) In the presence of
dependencies, the difference between determining functionality by structure alone or based on the current flow process has a strong
impact on the value of p,. Heuristically, we can consider the single network case as degenerate in p. with regard to backbone or
spanning component and that this degeneracy is removed when the dependency interaction is introduced. P, and By, represent the
fraction of nodes which are in the spanning component or backbone of their own network, respectively. Due to symmetry, P, and By,
are the same in each network. The lines are calculated based on the theory described in the text, in equation (3). The symbols on the
predicted lines are the result of over 130 simulations on systems of size L = 1000.

Thus for any p, if x is a solution to equation (3), By, (x) is the fraction of nodes in the backbone, in each network.
If the initial removal of nodes is performed on both networks, the same equation holds with p replaced by p*in
equation (3).

To determine o, we utilize the fact that, on a single network or on a pair of networks with r = oo, the
conductivity has a one-to-one relationship with the size of the backbone o (B, ), see inset of figure 4(a). Itis then
straightforward to predict the conductivity o, see figure 4(b). We can also predict p, by finding the first non-
trivial solution to equation (3) and the expected values of B, or o at each iteration, see appendix.

When 0 < r < o0, we are unable to make direct predictions based on the percolation profile of a single
network. This is due to the fact that damage is not distributed uniformly and the phase transition itself is
characterized by the emergence of a critically sized hole which grows from iteration to iteration and eventually
destroys the whole system [ 19, 20]. Another consequence of the non-uniform distribution of damage in systems
with finite ris that the relationship between B,, and ¢'is no longer one-to-one. Therefore even if we had a way to
predict the size of B,,, we would not be able to precisely deduce the value of 6 from it.

Scaling properties of the backbone and conductivity above p. on a single lattice have been studied extensively

[10]. For a single lattice, the conductivity above p, scales as

o~(p-n) @)
inwhich ¢t ~ 1.31[28, 29] and the size of the backbone scales as
Bo~(p-p)" (5)

inwhich v = 4/3 is the correlation length critical exponent for two-dimensions [5, 30, 31], y &~ 0.3568 and
yv ~ 0.4758 [10, 29, 32].

In figure 5, we show the scaling above p, for the backbone and sigma respectively for interdependent resistor
networks with low values of , where the transition is still second-order. We find that, despite the dramatic
change in p_as a function of r (figure 3(a)) and the difference in 0 and B,, outside the critical region (figure 2(a)),
there is no appreciable difference in the scaling exponents. However, we do see that as r increases, the extent of
the scaling region decreases, and already for r = 3 the behavior has broken down (see figure 5). We believe that
this is due to the fact that as rapproaches r., the dynamics of the transition becomes a hybrid of the single-lattice
second-order transition and the hole spreading first-order transition. Instead of a single hole propagating
regularly, multiple holes propagate irregularly. This mixture of critical behaviors leads to a blurring of the critical
region. Nevertheless, we expect that for larger systems where p can reach closer to p,, the scaling region will

increase.
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Figure 5. Scaling of conductivity (¢) and backbone fraction (By,) near p,. Despite the pronounced differences in the curves shown in
figure 2(a), the scaling behavior shows little variation as ris varied. This is consistent with the hypothesis that interdependent lattices
below r.are in the same universality class as single lattices. The case of r = 3 shows substantial deviation from the other cases. This is
because it is not a pure second-order transition like 7 = 0, 1, 2 but rather combines first and second-order properties as discussed in
the text and is visible in figure 3(b). Still, we see that in a small critical region, it has the same critical behavior. For r = 0, 1, 2, 3, we
find t values of 1.309 + 0.001, 1.309 + 0.003, 1.311 * 0.008 and 1.31 + 0.046, respectively. Likewise, we find /3 values of

0.476 +0.001,0.476 + 0.002,0.476 + 0.004 and 0.480 + 0.015, respectively. These results were obtained from over 100 realizations of
systems with L = 1500 and fitted using orthogonal distance regression on all data points in the critical region to accurately measure
errors [25]. Log binned points are shown for visibility only and are not used in the fitting process.

3. Discussion

In this study, we have analyzed the first model of interdependent networks in which nodes can only function and
provide support when they are in a dynamically active state. To realize this scenario, we have revisited the
canonical study of percolation on resistor networks as a classic example of general transport phenomena. We
find that process-based dependency leads to substantially increased vulnerability (figure 3(a)) including higher
pcvalues and a first-order transition emerging for lower values of 7, but that the scaling exponents at p. of B, and
of o are indistinguishable from the exponents of single networks (figure 5). This isconsistent with the hypothesis
that coupled lattices with 7 < 7. and single lattices are in the same universality class and is particularly striking in
light of the pronounced difference in the o (p) curves outside the critical region (figure 2(a)). We find that in the
absence of any interaction between the networks, there is a kind of degeneracy: the percolation threshold p, is the
same whether functionality is determined by connectivity or current flow. However, once an interaction is
introduced, this ‘degeneracy’ is removed and the two types of functionality have different percolation
thresholds. This is shown theoretically for random links (figure 4) and numerically for links of limited length
(figure 3(a)).

Resistor networks are significant because they present a fundamental model for general transport
phenomena. We believe that process-based dependency may be a more realistic and useful approach for dealing
with many systems in which it is important to differentiate between nodes which are connected and nodes which
are dynamically active. For instance, people in a social network or organisms in an ecological network may be
linked according to some measure but those links may not reflect their actual functionality [33, 34].

Furthermore, because the example of process-based dependency on interdependent resistor networks is
based on a real physical process, we propose a physically realizable system of interdependent networks based on
metal insulator transitions.

Many materials, especially transition-metal oxides, undergo a metal insulator transition at a critical
temperature T, from alow-temperature semiconductor phase to a high-temperature metallic phase [35, 36]. In
aplanar system composed of grains of a transition-metal oxide connected by metallic links, dependency can
emerge in the form of heat transmission. If the system is cooled from an initial temperature above T, even
though the ambient temperature is too low to sustain conductivity, nodes can still conduct electricity if they
receive heat from nearby conducting nodes-even from nodes with which they are not electrically connected. In
such a system a warm backbone will emerge in each network which will shrink (as in figure 1) as nodes are
disabled or as the background temperature decreases [37]. In a single network, bulk conductivity will continue
for temperatures substantially below T,. With process-based dependency, however, since the red bonds in each
network will generally not be co-located, this will cut off the conductivity sharply atanew T, > T.. Similarly, if
the nodes change conductive properties in the presence of certain gas molecules, the first-order transition can be
triggered by the presence (or absence) of gas molecules. Whether driven by temperature or gas molecules, the
sharp first-order transition described here can be used to construct a new kind of highly sensitive sensor.
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Figure 6. Comparison of overall system conductivity and backbone fraction at each iteration step for finite versus infinite length
dependency links. (a) and (c) The decay here is essentially parabolic, consistent with the linear growth of the hole radius as a function
oftime [19, 20]. (b) and (d) Here we encounter the ‘plateau’ that is discussed in [19] and [27]. The symbols denote the values expected
from equation (2). The theoretical values are calculated near but below p,.. The cascade ends before the theoretical limit due to finite-
size effects.

A number of technical challenges remain before such a physical experiment can be conducted.The nodes
need to be prepared in such a way that the absence of heat from the resistive dissipation in one node triggers a
complete loss of conductivity in another node, which may prove challenging. Alternatively, the model can be
extended to describe a relationship in which alack of current in a node causes a continuous decrease in the

conductivity of the node it depended on. A greater challenge is to physically implement the dependency link. This
is not trivial in the current model because we require r > 7. for the first-order transition to take place. If the
physical dependency is based on heat transmission, making dependency links of length r > 7. would require heat
screening between layers which would distribute the heat in a disordered but localized fashion. We believe that the
best way to overcome these technical problems is to extend the model of resistor networks to other topologies for
which dependency link creation is more straightforward. We believe that such extensions are feasible and would
be an important topic for future research both for the purpose of the physical experiment described here as well as
for providing deeper understanding of the differences between process-based and structural dependency.
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Appendix. Cascade dynamics

As discussed in the main text, when r = oo, we can determine the expected value of the backbone fraction B,, and
the conductivity o at each iteration t of the cascade by using equation (2) and the empirical connection between
B, and 6 as shown in figure 4(a), inset. These results are shown in figure 6(d) for B,, and in figure 6(b) for o.
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For comparison, we also present the results for r = 5 where we do not have a theoretical prediction for B, or
oateach iteration. Since 5 > 7. we are in the spreading regime. The reason for the parabolic decrease in By,
(figure 6(c)) is that the critical hole spreads at a constant rate. Thus at each iteration the radius of the hole
increases as tand its area (which is of order 1 — B,,) as . We see similar results for the conductivity of the system
(figure 6(a)).
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