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Abstract – Many multiplex networks are embedded in space, with links more likely to exist be-
tween nearby nodes than distant nodes. For example, interdependent infrastructure networks can
be represented as multiplex networks, where each layer has links among nearby nodes. Here, we
model the effect of spatiality on the robustness of a multiplex network embedded in 2-dimensional
space, where links in each layer are of variable but constrained length. Based on empirical measure-
ments of real-world networks, we adopt exponentially distributed link lengths with characteristic
length ζ. By changing ζ, we modulate the strength of the spatial embedding. When ζ → ∞,
all link lengths are equally likely, and the spatiality does not affect the topology. However, when
ζ → 0 only short links are allowed, and the topology is overwhelmingly determined by the spatial
embedding. We find that, though longer links strengthen a single-layer network, they make a
multi-layer network more vulnerable. We further find that when ζ is longer than a certain critical
value, ζc, abrupt, discontinuous transitions take place, while for ζ < ζc the transition is contin-
uous, indicating that the risk of abrupt collapse can be eliminated if the typical link length is
shorter than ζc.

editor’s  choice Copyright c⃝ EPLA, 2016

Introduction. – Interdependent and multiplex net-
works have been studied mainly on random topologies
where analytic calculations are possible [1–13]. How-
ever, since many real-world complex systems —such as
power grids and transportation systems— are embedded
in space, it is important to understand how the underly-
ing space and the strength of the embedding impact the
interdependent networks [14–18]. This is particularly im-
portant when dealing with critical infrastructure which is
heavily influenced by spatial constraints [19–21].

For single networks, several models have been proposed
to describe spatial effects [16,22–30]. In lattice-based mod-
els, links are only formed to nearest or next nearest neigh-
bors, which are regularly spaced. In random geometric
models, links are formed to all neighbors within some dis-
tance [31,32]. In models of power grid topology, links are
formed with the m nearest neighbors, statically [33] or
as a generative model [34]. Some models utilize a cost
function [14,35–38] or a characteristic distance distribu-
tion [39–42] to determine link lengths.

Dependency and spatial embedding are basic physi-
cal properties which appear together in a wide range
of systems such as social networks [43–46], financial
networks [47–49], brain networks [50] and many other

systems [16]. Previous research on the robustness of spa-
tially embedded interdependent networks considered cou-
pled lattices with dependency links of geographic length
up to r, a system parameter [51]. The model was also stud-
ied under partial dependency [52–54], for general networks
formed of interdependent lattices [55] for interdependent
resistor networks with process-based dependency [56] and
in the presence of healing [57]. However, with this model
it was not possible to modulate spatial effects and study
the influence of the strength of the embedding directly.
In addition to providing a way to measure the effects of
spatiality on multiplex networks, our model presents an al-
ternative and more realistic way to study interdependent
networks.

Our chief focus is on the the effect of the strength of
the embedding (as reflected in ζ) on the robustness of the
multiplex. We find that, though increasing ζ decreases pc

(the percolation threshold) in single networks —making
them more robust— it has the opposite effect on mul-
tiplex networks. Increasing ζ increases pc for multiplex
networks until a critical length ζc where pc is maximal.
At ζc, the percolation transition changes from a continu-
ous transition to an abrupt transition and the multiplex
network becomes susceptible to cascading failures which
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Fig. 1: (Color online) Examples of real-world networks with
links of characteristic length. We examine the distribution of
the geographic lengths of the edges in both the European power
grid [58] (1851 edges) and the inter-station local railway lines in
Japan [59] (20745 edges). These networks have links of char-
acteristic length. Longer links are exponentially unlikely, as
indicated by the linear drop on the semi-logarithmic plot. For
visibility, we measure the lengths in units of effective mini-
mum length, which we take as the peak of the distribution
(mode length). The normalization value (l = 1) corresponds
to 3.7 km (power) and 1.0 km (rail). The characteristic length
is 4.8 km (power) and 1.2 km (rail) if measured as the mean
or 3.3 km (power) and 2.0 km (rail) if measured as the inverse
slope of the fit. The Japan local railway data is formed from
the complete railway network from [59] with bullet train lines
and internal station tracks removed.

spread via a nucleation process. Applied to interdepen-
dent infrastructure, this surprisingly implies that longer
links make the system more vulnerable even though for
single-layer networks they improve robustness.

Model. – In our model, the link lengths are exponen-
tially distributed (see figs. 1 and 2(a)), similar to the
Waxman model for a single network [39,60] or the spa-
tial multiplex of Halu et al. [18]. With link lengths l
distributed with probability P (l) ∼ exp(−l/ζ), we modu-
late the strength of the spatial effects in the multiplex by
changing the characteristic link length (ζ). We determine
the “strength” of the spatial embedding in terms of the de-
viation in network topology from a random network [61].
When ζ → ∞, all link lengths are equally likely and the
spatiality does not affect the topology. However, when
ζ is smaller, the overall topology exhibits strong devia-
tions from randomness [61]. Thus high values of ζ reflect
weak spatiality and low values reflect strong spatiality.
For intermediate values, we have intermediate spatial em-
bedding, as observed in real-world networks [15,16,39], see
fig. 1.

In this manuscript, we focus on the case in which the
multiplex consists of two layers, each with the same num-
ber of nodes, characteristic link length ζ and average
degree ⟨k⟩ (see fig. 2(a)) and construct the network as
follows. We begin by assigning N = L2 nodes inte-
ger (x, y) coordinates with x, y ∈ [0, 1, . . . , L). To con-
struct the links in each layer, we select a source node
at random with coordinates (x0, y0) and draw a length

Fig. 2: (Color online) Spatially embedded multiplex networks.
(a) The nodes occupy regular locations in two-dimensional
space while the links in each layer (blue and green) have lengths
that are exponentially distributed with characteristic length
ζ = 3 and are connected at random. (b) Cascading failures in
multiplex networks. In the first stage, all of the nodes are in
the giant component of both layers (blue links and green links)
and the mutual giant connected component (MGCC) consists
of the entire network. An initial attack on Node 3 causes it
and its links to fail. This detaches Node 5 from the giant com-
ponent of the green links, and in the next step it and its links
fail. After the failure of Node 5, Node 6 is no longer in the gi-
ant component of the blue links. After Node 6’s failure we find
that the remaining nodes are in the giant component of both
layers. We note that the MGCC is not simply the intersection
of the giant components in the separate layers. If that were so,
Node 6 would remain in the MGCC after the failure of Node 3,
which is not the case.

l with probability P (l) ∼ e−l/ζ . We choose the per-
mitted link length (∆x,∆y) which is closest to fulfilling
l =

√
∆x2 + ∆y2, select one of the eight length-preserving

permutations (∆x ↔ −∆x,∆y ↔ −∆y,∆x ↔ ∆y) uni-
formly at random and make a link to node (x1, y1) with
x1 = x0+∆x, y1 = y0+∆y (using periodic boundary con-
ditions). Due to the periodic boundary conditions, link
lengths longer than L/2 are not physical and are re-drawn
if produced by the distribution. This process is executed
independently in each layer and is continued until the de-
sired number of links (N⟨k⟩/2) is obtained. However, be-
cause they are constructed independently, the links in each
layer are different (as demonstrated in fig. 2(a)) and this
disorder enables the critical behavior which we describe
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below. We focus on values of 1 < ζ < L/2 because when
ζ is very small or large the integer coordinates and finite
system size make the exponential length distribution un-
satisfiable.

We perform site percolation by randomly removing a
fraction 1 − p of the nodes from the system and finding
the mutual giant connected component (MGCC) [1]. The
MGCC is determined as the largest set of nodes for which
every node has a path to every other node in each layer
and each layer’s path can use links from its layer only. For
example, we can interpret each node as a geographic en-
tity which is linked via two types of links to other nodes.
Each node requires both of its constituents to function
and each constituent requires connectivity within its layer.
The nodes could represent neighborhoods or cities which
require electricity and communications links, or local busi-
nesses which require links to customers and suppliers.

When a node is removed, its links in both layers are
removed with it, causing further damage in every layer.
However, since the links are not the same in each layer,
after a node is removed, there will be some nodes that are
connected to the giant component in one layer but are dis-
connected in the other layer. Since the node functionality
(membership in the MGCC) requires connectivity in both
layers, such nodes will fail, causing further damage in the
system. This leads to the cascading failures as demon-
strated in figs. 2(b) and fig. 6.

Results. – Since we are not aware of a discussion of
the percolation properties of this topology for single net-
works, we briefly describe those properties here. In the
limit of ζ → 0, the only permitted links will be to nearest
neighbors (because links of length < 1 are not accessible)
and a square lattice is recovered. As such, in the case
of ⟨k⟩ = 4, we recover the standard 2-dimensional perco-
lation behavior with pc ≈ 0.5927 [62,63] (fig. 3(a)). As ζ
increases, the robustness increases and in the limit ζ → ∞,
all lengths are equally likely to be drawn and we approx-
imately recover Erdős-Rényi topology with pc = 1/⟨k⟩ =
0.25 (see figs. 3(a) and 4(b)). Thus, we have a single pa-
rameter ζ which allows us to smoothly transition from
lattice to random topology.

In our model the average link length remains finite for
all finite values of ζ. In contrast to small-world net-
works [25], where even low rewiring probability brings the
system close to the infinite-dimensional limit [64–67], in
our model the effective dimensionality of the system re-
mains (for finite ζ and in the limit of L → ∞) equal to 2,
as expected from universality principles. We also note that
for all values of ζ, a single network undergoes a second-
order transition (fig. 3(a) and figs. 5(c) and (d)).

In multiplex networks, where connectivity to the giant
component in both layers is required, cascading failures
emerge [1,3,4,11,68]. For ζ ≪ 1, large cascading failures do
not emerge. This is because the multi-layer structure is the
same in both networks: any node that is connected in one
layer is likely to be connected in the other because the links

Fig. 3: (Color online) Percolation of (a) single and (b) multi-
plex networks with links of characteristic geographic length ζ.
The fraction of nodes in the largest connected component (P∞)
as a function of p, the fraction of nodes remaining after a ran-
dom removal. (a) In single networks, the transition is always
continuous. The value of pc decreases quickly and monotoni-
cally with increasing ζ (cf. fig. 4). (b) In multiplex networks,
the transition is comparable to single networks for ζ = 0.2
(pc ≈ 0.5927) but pc increases as ζ increases. The maxi-
mal value is reached at ζc and the transition becomes discon-
tinuous. The case of ζ = 1000 is essentially random, with
pc ≈ 2.4554/⟨k⟩ = 0.61385 [1]. Lines represent individual real-
izations with ⟨k⟩ = 4 and L = 4000.

(a) ⟨k⟩ = 3 (b) ⟨k⟩ = 4

Fig. 4: (Color online) Dependence of pc on ζ for single net-
works. The percolation threshold pc drops quickly as a func-
tion of ζ and by ζ ≈ 10 it is already very close to pc = 1/⟨k⟩,
the value from Erdős-Rényi networks.

are mostly the same. Conversely, any node that would be
disconnected in one network is highly likely to be discon-
nected in the other network anyway, regardless of the re-
quirement of connectivity in both layers. The absence of
cascading failures in cases of high intersimilarity/overlap
has been documented extensively elsewhere [5,18,69–72].
As ζ increases, correlation between the links in each layer
decreases and cascading failures become possible. How-
ever, as long as ζ is short, the cascades remain confined to
the vicinity of the random node removals and do not trig-
ger global collective failures. Because the cascade dam-
age is limited to the vicinity of the removal, the size of
the MGCC decreases steadily as the removal fraction in-
creases, and the system undergoes a second-order per-
colation transition. Once ζ reaches a critical length ζc,
a damage front emerges which propagates through the
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(a) ⟨k⟩ = 3 (b) ⟨k⟩ = 4 (c) ⟨k⟩ = 3 (d) ⟨k⟩ = 4

Fig. 5: (Color online) The effect of the characteristic link length ζ on the percolation threshold and size of the giant component
at criticality. (a), (b): the percolation threshold in multiplex networks increases until it reaches a peak at ζc and then decreases
slightly to its asymptotic value of 2.4554/⟨k⟩. (c), (d): the size of the order parameter P∞ at pc. The low values of P∞ at
pc for single-layer networks, indicate that the transition is continuous. For continuous transitions, percolation is determined
when a cluster spans from top to bottom of the underlying lattice. Multiplex networks have a second-order transition for low
values of ζ but at ζc this jumps to a large fraction of the system size, indicating a discontinuity in P∞ and an abrupt transition.
L = 4000 with at least 10 realizations of each system. The averages and raw data are plotted.

whole system, leading to abrupt (first-order) transitions as
shown in figs. 5 and 6. This cascading failure is different
from the cascading failures observed in random networks
because the global transition is driven by a propagating
damage front (fig. 6) beginning in a single location, and
not the hybrid transition caused by a global branching pro-
cess of failures in interdependent random networks [4,68].
Hence we see no scaling in P∞ near criticality and we
would characterize the transition as first-order, similar to
well-known nucleation transitions like the freezing of wa-
ter. As ζ becomes even longer, pc decreases and slowly
approaches its asymptotic value of 2.4554/⟨k⟩ as known
from interdependent Erdős-Rényi networks [1], (Figs. 5(a)
and (b)). The abrupt transition in this limit is the hybrid
transition of random interdependent networks [68]. Sur-
prisingly, we find that even though the dimensionality of
each network layer does does not change as ζ is varied,
the strength of the spatial embedding as captured in the
characteristic link lengths has a profound impact on the
robustness of the multiplex.

Cascading failures which spread through the system
have been observed in interdependent lattices with depen-
dency links of large finite length [51,53,54,73]. In inter-
dependent lattices, a dependency link from one network
to another induces damage in the other network, by def-
inition. As the length of dependency links in the system
increases, that damage will be carried farther and a criti-
cal mass of damage can emerge via a nucleation process,
and then spread, causing abrupt system collapse. Connec-
tivity links, on the other hand, do not induce damage, but
rather provide functionality to the nodes.

We find that, despite the fact that the connectivity links
supply support, they can also induce failure propagation.
Connectivity link lengths which are above a critical length,
ζc, but much smaller than the total system size are suffi-
cient to cause cascading which spread through the system.
The first order transition that is observed in this case lacks

Fig. 6: Dynamic evolution of cascading failures. Here we show
the nodes of the multiplex network, colored black if functional
and white if not. At criticality, a large whole emerges due to
fluctuations. The nodes near the edge of the hole lose many
links, increasing their likelihood of being disconnected in the
next step. This causes the propagation of this spinodal inter-
face until the system disintegrates. Nucleation-driven phase
transitions, a hallmark of first-order transitions like freezing
water, have been observed in interdependent lattices with de-
pendency lengths of finite length [51,54]. (L = 4000, ζ = 15,
⟨k⟩ = 4.)

scaling behavior just above pc (fig. 3(b)) and is character-
ized by a slow spreading process (fig. 6).

Surprisingly, intermediate spatial embedding (ζ ≈ ζc)
makes the system more susceptible to cascading failures.
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This is due to the fact that, because the damage from
an emergent hole is relayed by the cascade dynamics to
the neighborhood of its interface, the nodes near the edge
of the hole are far more likely to become disconnected.
Similar results have been found in social networks, where it
was shown that high modularity makes viral cascades more
likely to occur due to the increased likelihood of multiple
exposure to the information [74–76].

In single-layer networks, pc decreases monotonically as
ζ increases from ζ ≈ 0.5 to the limit of ζ = ∞ (fig. 4). In
contrast, in multiplex networks, pc increases until ζc and
then decreases monotonically thereafter (fig. 5). The peak
in pc(ζ) at ζc is due to the fact that the transition requires
an initial hole which emerges from random fluctuations.
The size of that hole is described by the percolation corre-
lation length above criticality, ξ(p). The hole size required
to trigger the transition increases with ζ [51,73] while the
size of emergent holes above the percolation threshold,
ξ(p), decreases with p [62]. This would indicate that the
smaller ζ is, the smaller the critical hole needs to be and
that pc would increase monotonically as ζ decreases. How-
ever, when ζ < ζc there is not enough space between the
emergent hole and the extent of the damage propagation
(ζ) for the network to disintegrate and the small emergent
holes remain in place [51,53,54,73].

Measuring overlap. – When ζ → 0, the fixed spac-
ing of the nodes forces all of the links to be to nearest
neighbors only. In this case, both networks are identical
and the MGCC is the same as the single network giant
component. The fraction of common connectivity links
between two interdependent networks or between two lay-
ers in a multiplex network is called intersimilarity [69,70]
or overlap [5,18,71,72]. The cascading failures and abrupt
transitions which characterize interdependent networks in-
crease as overlap decreases.

In multiplex networks with links of characteristic length,
the extent of the overlap can be estimating by considering
the probability that, given the same source node, two links
lead to the same target node. In the continuum limit
this is proportionate to the probability that the links have
the same length and the same direction. The system is
isotropic by construction so the directional condition is
simply 1/2πr, the size of a ring of radius r. We obtain

P (overlap) ∼
∫ ∞

1

P 2(r)
2πr

dr ∼ 1
ζ2

∫ ∞

1

e−2r/ζ

2πr
dr ∼ 1

ζ2
.

(1)
The exponent of −2 agrees with the analysis by Halu
et al. [18]. Empirically, we find that the scaling in our sys-
tem is scale-free, with an exponent of −2 with a logarith-
mic correction (fig. 7). The logarithmic correction from
the continuum calculation (eq. (1)) is due to the fact that
with the discretization of space that we introduce, links
that would otherwise have been distinct are unified and
the critical exponent is reduced from pure scaling of −2.
This can be verified by calculating eq. (1) as a Riemann

Fig. 7: (Color online) The fraction of overlapping nodes. The
fraction of overlapping nodes is determined as the number of
common links across both layers divided by the total number
of links in each layer. When ζ ≪ 1, the overlap is maximal and
the networks are identical (for ⟨k⟩ = 4, as in this figure). As ζ
increases, the fraction decreases with an exponent of −2, with
a logarithmic correction.

sum with r values spaced according to the lattice, which
gives the same logarithmic correction.

Unlike studies of random multilayer networks with over-
lap [69–72,77] or other inter-network correlations [78–80],
decreased overlap alone is not enough to enable the crit-
ical behavior observed here. It is only the combination
of the disorder (as indicated by decreased overlap) with
the spatially embedded links that enables the distinctive
abrupt spreading transition which we observe here.

Conclusion. – The model that we present here allows
for continuous variation of the “strength” of the spatial
embedding (by changing the characteristic length) in sin-
gle and multiplex networks, while not affecting the dimen-
sion of the topology in each layer, which remains equal to
the embedded space. We find that multiplex networks
with intermediate spatiality (ζc < ζ ≪ ∞) are more vul-
nerable than both extreme spatial embedding (ζ ≪ 1) and
no spatial embedding (ζ → ∞). Regarding interdependent
infrastructure and other real-world systems, we conclude
that shorter links (with ζ < ζc) can make the system more
robust and eliminate the risk of abrupt transitions. This is
in marked contrast to the conclusions based on consider-
ing a single layer only, where longer links always improve
robustness.

Outlook. – This research also provides an important
new direction for the study of interdependent spatial net-
works. Previous research on spatially embedded interde-
pendent networks [51–55,73] have used two-dimensional
lattices with dependency links connecting nodes from
one network to the other. The dependency links were
also affected by the spatial embedding via the restriction
that they have length of up to r, a system parameter.
This model led to many important results, but left sev-
eral important issues unaddressed. First, the topology
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of real-world spatially embedded networks is not lattice-
like or even strictly planar and it was not clear that re-
sults derived on lattices would accurately describe real-
world topologies. Second, the assumption that depen-
dency links are longer than connectivity links does not
correspond with what we would expect from many real
systems, including critical infrastructure: It is not rea-
sonable to expect a communications station to get power
from a distant power plant and not the one nearest to
it. Here we address these problems by modeling spatially
embedded interdependent networks as multiplex networks
where the dependency relationship is to the nearest node
in the other layer and the connectivity links are of finite
characteristic length but not uniform or regular.

In this paper, we have studied our model in the spe-
cial case of two networks embedded in two-dimensional
space. We expect more general realizations of the model
to be studied in the future. For example, multiplex bond
percolation [81] and networks of spatial networks would
be important future directions [55]. In the study of n
interdependent lattices, it was shown that the discontinu-
ous transition appears for lower values of r when there are
more networks [55] and we would expect a similar decrease
of ζc for n-layered systems. Similarly, because the distinc-
tive nucleation at criticality (fig. 6) is the cause of the
abrupt transition, we expect that similar features will ap-
pear when networks are embedded in higher-dimensional
space (up to the critical dimension d = 6) [62].
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and Arenas A., Phys. Rev. X, 3 (2013) 041022.

[8] Radicchi F. and Arenas A., Nat. Phys., 9 (2013) 717.
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Lett., 109 (2012) 208701.

[37] Emmerich T., Bunde A. and Havlin S., Phys. Rev. E,
89 (2014) 062806.

[38] Ren Y., Ercsey-Ravasz M., Wang P., González
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