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We consider Erdös-Rényi–type networks embedded in one-dimensional (de = 1) and two-dimensional (de = 2)
Euclidean space with the link-length distribution p(r) ∼ r−δ . The dimension d of these networks, as a function
of δ, has been studied earlier and has been shown to depend on δ. Here we consider diffusion, annihilation, and
chemical reaction processes on these spatially constrained networks and show that their dynamics is controlled
by the dimension d of the system. We study, as a function of the exponent δ and the embedding dimension de,
the average distance 〈r〉 ∼ t1/dw a random walker has traveled after t time steps as well as the probability of the
random walker’s return to the origin P0(t). From these quantities we determine the network dimension d and
the dimension dw of the random walk as a function of δ. We find that the fraction d/dw governs the number of
survivors as a function of time t in the annihilation process (A + A → 0) and in the chemical reaction process
(A + B → 0), showing that the relations derived for ordered and disordered lattices with short-range links remain
valid also in the case of complex embedded networks with long-range links.
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I. INTRODUCTION

A large number of complex networks are embedded in
Euclidean space and, thus, are subject to spatial constraints.
Examples range from transportation networks like the global
airline network via the Internet to social networks like cellular
phones and author networks [1–13]. In recent papers [14–17],
these kinds of networks were modeled by Erdös-Rényi
(ER) [18–20] or Barabási-Albert networks [1,2] that are
embedded in Euclidean space with a link length distribution
that follows a power law, p(r) ∼ r−δ . The results indicated
that the dimension of these networks [16,17] as well as their
topological properties [14] change continuously with δ. For
δ below the embedding dimension de, the dimension of the
network can be regarded as infinite, and the topological prop-
erties such as the dependence of the mean topological length
on the system size are the same as those for δ = 0. For δ above
2de the spatial constraints are strong and the network behaves
like a regular lattice with dimension de. In the intermediate
δ range between de and 2de, the dimension of the embedded
network changes continuously from d = ∞ to d = de [16,17].

The knowledge of the dimension of a system is crucial
for characterizing its physical properties, such as diffusion
and phase transitions on the structure. In this paper we test if
and how the dimension of the embedded network determines
dynamical processes on networks such as the diffusion-driven
annihilation of identical particles and the diffusion-driven
chemical reactions of two kinds of particles. It is known
that, in regular lattices, in both kinds of processes the ratio
between the lattice dimension d and the dimension dw of the
random walk on that lattice (usually dw = 2) plays a crucial
role [21–25]. For the annihilation process in regular lattices, the
concentration of surviving particles decays as c(t) ∼ t−d/dw as
long as d/dw < 1 and as c(t) ∼ 1/t for d/dw ! 1 [24,26]. For
the chemical reaction between two species of particles which
initially are randomly distributed over the lattice with the same
concentration, the concentration of surviving particles decays
as c(t) ∼ t−d/2dw as long as d/dw < 2 and as c(t) ∼ 1/t for
d/dw ! 2 [24,26]. For chemical reactions on Barabási-Albert

networks not embedded in Euclidean space, a faster decay is
also possible [27,28].

In this paper, we focus on Erdös-Rényi–type networks
embedded in de dimensional space with a power-law dis-
tribution of the link lengths and study (a) diffusion (Sec.
III), (b) diffusion-driven annihilation (Sec. IV), and (c)
diffusion-driven chemical reactions (Sec. V). We study the
ratio d/dw as a function of δ and de and show that the relations
derived for regular lattices [Eq. (6)] remain valid when the
dimension d of the embedded networks and the random-walk
exponent 1/dw are inserted in the relation derived for regular
lattices.

We like to note that, conceptually, our model is related
to the small-world network introduced by Kleinberg [29],
where an underlying lattice structure is assumed and a certain
fraction of long-range connections (with length taken from
a power-law distribution) is added. In our model, no such
underlying structure exists, and the ratio between “short” and
“long” connections is solely controlled by the spatial exponent
δ and the system size.

II. GENERATION OF THE NETWORKS

The nodes of the network are located at the sites of a de-
dimensional regular lattice, either a linear chain of length L
(de = 1) or a square lattice of size L × L (de = 2). We assign
to each node a fixed number k of links (in most cases, k = 4).
Actually, this network is a random regular network since all
links have the same degree. It is expected (and we have also
verified it numerically) that random regular networks and ER
networks with the same spatial constraints are in the same
universality class.

To generate the spatially embedded networks, we use the
following iterative algorithm: (i) We pick a node i randomly
and choose, for one of its available ki links, a distance r(1 "
r " L) from the given probability distribution p(r) ∼ r−δ .
It is easy to see that the distance r can be obtained from
random numbers 0 < u " 1 chosen from the unit distribution
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δ  = 1.5 de δ  = 2.5 de

FIG. 1. (Color online) Illustration of ER networks embedded in
linear chains (top) and embedded in square lattices (bottom) for δ =
1.5de and 2.5de.

by

r =
{

[1 − u(1 − Lde−δ)]
1

de−δ , δ (= de

Lu, δ = de

. (1)

(ii) We consider all Nr nodes between distance r − "r and r
from node i that are not yet connected to node i. Without loss
of generality, we choose "r = 1 for the linear chain and "r =
0.4 for the square lattice. (iii) We pick randomly one of these
nodes j . If node j has at least one available link, we connect it
with node i. If not, we do not connect it. Then we return to (i)
and proceed with another randomly chosen node. At each step
of the process, either two or no links are added. For generating
the network, we have typically performed 103 × Lde trials.
Due to the generation process, the nodes of the final network
do not all have exactly the same degree, but the degree follows
a narrow distribution with a mean k̄ slightly below k = 4 [17].
Figure 1 illustrates the ER networks embedded in de = 1 and
de = 2 for δ = 1.5de and 2.5de.

III. DIFFUSION

We assume that the diffusing particles (random walkers)
are located at the nodes of the networks and can jump between
linked nodes. In one time step one jump occurs, irrespective
of the jump length. Using Monte Carlo simulations we have
determined the mean distance 〈r(t)〉 (defined as 〈|r(t)|〉) of a
diffusing particle from its starting point as a function of the
number of time steps t , as well as the probability P0(t) that the
random walker, after t time steps, has returned to its starting
point. The random walks are on ER networks embedded in
a linear chain (de = 1) and in a square lattice (de = 2). The
number of nodes N = Lde is 107 for de = 1 and 9 × 106 in
de = 2, but for estimating finite-size effects we also considered
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FIG. 2. (Color online) The average distance r ≡ 〈r(t)〉 of a
diffusing particle from its starting site as function of time t for ER
networks with k = 4 embedded (a) in linear chains (de = 1) of length
L = 105(green triangle), 106(blue square), and 107(red circle) and
(b) in square lattices (de = 2) of length L = 3 × 102(green triangle),
103(blue square), and 3 × 103(red circle). The spatial exponents are
δ = 1.25de, 1.5de, 1.75de, 2de, and 2.25de. For each parameter set
we averaged over 50 configurations. The straight lines are best fits
to the data with slope 1/dw . For transparency, the four lower plots in
each panel have been shifted vertically by 10−2 to 10−8.

smaller systems. To minimize the finite-size effects, we place
the starting points of the particles inside a circle of radius L/10
around the center of the considered lattice. To obtain 〈r(t)〉
and P0(t), we have typically considered 104 random walks on
each network and averaged over 50 networks for each set of
parameters. For determining P0(t), we have enumerated the
fraction of random walkers that, after t time steps, are back
at their starting node. Figure 2 shows 〈r(t)〉 for ER networks
embedded in de = 1 (a) and de = 2 (b), respectively, for δ
values in the intermediate regime de < δ < 2de, as well as for
δ = 2de and 2.25de, for three system sizes. For convenience,
we show 〈r(t)〉 in units of the mean jump distance r̄ , which
is identical to the first moment of the link length distribution
p(r). The figures show that, in all cases considered here, 〈r(t)〉
scales with t as a power law,

〈r(t)〉 ∼ t1/dw , (2)

where 1/dw is the diffusion exponent (dw is sometimes called
the “fractal dimension of the random walk”) [30]. For δ < de,
we do not expect power-law behavior. By definition, 〈r(t)〉 is
bounded between 〈r(1)〉 = r̄ and 〈r(∞)〉 ∼ L. For δ < de, the
mean distance r̄ is proportional to L and, hence, 〈r(t)〉 ∼ L.
Thus, an increase of 〈r(t)〉 by a power law is not possible
in this regime and we expect only logarithmic dependencies.
In the regime de < δ < de + 1, the mean distance r̄ scales as
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FIG. 3. The ratio of the network dimension d and the fractal
dimension of the random walk dw as a function of the spatial exponent
δ for (a) de = 1 and (b) de = 2. The continuous lines are the fit from
Eq. (4). For the exponents δ1 and δ2, d/dw obtains the values 2 and
1, respectively.

r̄ ∼ Lde+1−δ [14], implying that 〈r(∞)〉/〈r(1)〉 ∼ Lδ−de is
large only for very large L values. Accordingly, we expect
strong finite-size effects in this regime, in particular for δ
close to de. Figure 2 shows that this is indeed the case.
With increasing δ, the finite-size effects become weaker. The
diffusion exponent 1/dw (the slope in the double logarithmic
plots) shows a slight maximum around δ = 1.5de, but we
cannot exclude the possibility that this is a finite-size effect.
For δ = 2de, the diffusion exponent is 1/dw = 0.82 in de = 1
and already close to 0.5, 1/dw = 0.55, in de = 2. For δ > 2de,
we find 1/dw

∼= 1/2 asymptotically, as expected for regular
lattices [31], but there is a strong finite-size effect in de = 1.

Note that, due to the the long-range links, the diffusion is
fast with dw < 2 in Eq. (2) for δ " 2de. This is in contrast to
the slow diffusion, due to obstacles, in fractals where dw > 2
[24,25,30,31]. The fast diffusion is typical to Levy flights and
walks which do not consider moving on a network structure,
see Refs. [32–34].

Next we consider the probability of returning to the origin,
P0(t). We have shown recently that P0(t) scales as 〈r(t)〉−d ,
where d is the dimension of the embedded network [16,17]. For
the networks considered in Fig. 2, we have shown earlier [17]
that in de = 1 the dimensions are d = 4.64, 2.12, 1.48, 1.07,
and 1.04 for δ = 1.25, 1.5, 1.75, 2 and 2.25, respectively. In
de = 2, the dimensions are d = 5.82, 2.91, 2.21, 2.05, and
2.02, for δ = 2.5, 3, 3.5, 4, and 4.5, respectively [17]. We
expect, therefore, that P0(t) decays as

P0(t) ∼ t−d/dw , (3)

with dw taken from Figs. 2(a) and 2(b). Figure 3 summarizes
our results for d/dw in de = 1 [Fig. 3(a)] and de = 2 [Fig. 3(b)].
One can see that in the intermediate δ regime, the dependence
of d/dw on δ/de is nearly the same in both de = 1 and 2, except
for δ close to 2de. The continuous curves in Figs. 3(a) and 3(b)
can be well approximated (close to de) by

d/dw = de

δ − de

. (4)

Figure 4 shows P0(t) as a function of t for the same δ values
as in Fig. 2. In the double-logarithmic presentation, the slopes
of the straight lines are identical to d/dw from Fig. 3. Figure 4
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FIG. 4. (Color online) The probability of return to the origin P0

as function of time t for the same networks as in Fig. 2. The left panel
shows the results for de = 1 and the right panel for de = 2. For each
parameter set we averaged over 50 configurations. The slopes of the
straight lines have been taken from Fig. 3. For transparency, the four
lower plots in each panel have been shifted vertically by 10−2 to 10−8.

shows that the straight lines perfectly describe the asymptotic
behavior of P0(t), i.e., P0(t) indeed scales in the anticipated
way. Next we consider diffusion-driven annihilation on the
spatially constrained networks.

IV. ANNIHILATION

We study the one-species-annihilation process (see, e.g.,
Ref. [24]) where particles of the same species A diffuse on the
network and annihilate on encounter, according to the reaction
scheme

A + A → 0. (5)

We assume that, initially, at time t = 0, the network is fully
occupied by A particles, i.e., their concentration c(t = 0) is
equal to 1. We are interested in the decay of c(t) with time.
The long-time behavior of c(t) may be inferred from the
following scaling argument (for regular lattices, see Ref. [24]
and literature therein): Suppose that the process takes place
in a container of dimensionality d. If d " dw, diffusion is
recurrent and a particle with 〈r(t)〉 ∼ t1/dw sweeps compactly
the volume S(t) ∼ 〈r(t)〉d . Consequently, after t time steps
almost all particles within that volume have been annihilated,
leaving behind few particles (of the order of 1). Accordingly,
the concentration has decayed as

c(t) ∼ 〈r(t)〉−d ∼ t−d/dw , (6)

and the rate of decay depends on both dw and the dimension
d of the network. For d > dw, on the other hand, the volume
swept by a diffusing particle is no longer compact and
the above argument does not hold. Instead, S(t) ∼ t and a
particle is constantly exploring mostly new territory. Thus,
in close analogy to the situation in regular lattices [24], one

046103-3



THORSTEN EMMERICH, ARMIN BUNDE, AND SHLOMO HAVLIN PHYSICAL REVIEW E 86, 046103 (2012)

can show that, in this case, c(t) ∼ S(t)−1 does not depend on
the dimension and decays as c(t) ∼ 1/t . Thus, it follows that
the concentration c(t) of the A particles should decay with
time t as

c(t) ∼
{

t−d/dw , d/dw < 1

t−1, d/dw > 1
. (7)

Accordingly, we can read from Fig. 3 how c(t) decays with
time t . For ER networks embedded in de = 2, we have
d ! de = 2 and dw " 2. Thus, d/dw ! 1, and we expect
c(t) ∼ t−1 for all δ values. We have confirmed numerically that
this is the case. For ER networks embedded in de = 1, Fig. 3
shows that d/dw = 1 for δ = δ2 ∼= 1.85. So we expect that
c(t) changes from c(t) ∼ t−1 for δ < δ2 to c(t) ∼ t−d/dw for
δ > δ2. Figure 5 shows, in a double logarithmic presentation,
c(t) for δ = 1.85,1.90,1.95,2,2.25, and 2.5. The straight lines
are linear fits to the data with slope d/dw taken from Fig. 3.
The figure shows that the numerical results are in excellent
agreement with the prediction, Eq. (7) and Fig. 3. Next we
consider chemical reactions on the spatially constrained
networks.

V. CHEMICAL REACTIONS

We consider A and B particles randomly distributed on the
network, with the same initial concentration cA(0) = cB(0).
All particles diffuse on the network and react on encounter,
according to the reaction scheme

A + B → C, (8)
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FIG. 5. (Color online) The concentration c(t) of surviving par-
ticles in the case of annihilation, as function of time t for ER
networks embedded in linear chains with k = 4, for the system
sizes L = 105(green triangle), 106(blue square), and 5 × 106(red
circle). The spatial exponents are δ = 1.85, 1.90, 1.95, 2, 2.25, 2.50.
For each parameter space we averaged over 50 configurations. For
d/dw < 1 the slopes of the straight lines have been taken from the
predictions given in Fig. 3.
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FIG. 6. (Color online) The concentration c(t) of the surviving A

or B particles in the chemical reaction A + B → C as function of
time t for ER networks with k = 4 embedded (a) in linear chains
(de = 1) of length L = 105(green triangle), 106(blue square), and
5 × 106(red circle) and (b) in square lattices (de = 2) of length L =
3 × 102(green triangle), 103(blue square), and 2 × 103(red circle).
The spatial exponents are δ = 1.25, 1.5, 1.75,1.85, 2, 2.25 in de = 1
and δ = 3, 3.25, 3.5,3.75, 4, 4.5 in de = 2. For each parameter set
we averaged over 50 configurations. For d/dw < 2 the slopes of the
straight lines have been taken from the predicted values given in
Fig. 3. For transparency, the 5 lower plots in each panel have been
shifted vertically by 10−2 to 10−10.

where C is some inert species irrelevant to the kinetics. For
regular lattices of dimension de it is known that cA(t) = cB(t)
scales as t−de/4 as long as de " 4 [21,22,24,35]. For de > 4, the
concentrations decays as 1/t . It is straightforward to generalize
these results to the case of embedded networks with dimension
de and diffusion exponent 1/dw,

cA(t) = cB(t) ∼
{

t−d/2dw , d " 2dw

t−1, d > 2dw

, (9)

which reduces to the result for regular lattices described above,
where dw = 2 and d = de.

Accordingly, we can read from Fig. 3 how cA(t) = cB(t) ≡
c(t) should decay with t . For δ < δ1 ∼= 1.5 de we expect that
c(t) decays as t−1, while for δ > δ1, c(t) should decay as
t−d/2dw . Figure 6 shows that this is indeed the case, both for
de = 1 (a) and de = 2 (b). The straight lines in the figures
have the predicted slopes obtained from Fig. 3. The crossover
towards a stronger decay at very large time steps depends on
the system size and, thus, is a finite-size effect.

VI. CONCLUSIONS

In summary, we considered Erdös-Rényi–type networks
that are embedded in linear chains (de = 1) and square lattices
(de = 2). We assumed that the link length distribution follows
a power law, p(r) ∼ r−δ . This is a realistic assumption since
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many complex networks in space, like the global airline
network or the Internet, have this link length power-law
distribution [11,13]. It has been found [17] that for δ below
de where the long links dominate, the spatial constraints
are irrelevant; the network belongs to the universality class
of Erdös-Rényi graphs and is characterized by an infinite
dimension. For δ above 2de, where the short links dominate,
the network is in the universality class of regular lattices
and its dimension is equal to the dimension de of the
embedding lattice. In the intermediate regime between de

and 2de, the dimension decreases monotonously, from d = ∞
at δ = de to a value above de at δ = 2de. Since in ordinary
lattice-type systems with short-range links only, including
fractal structures, the dimension is crucial for characterizing
its physical properties like phase-transition phenomena and
diffusion-driven chemical processes, we have tested here if
this is the case for diffusion-driven annihilation and chemical
reaction processes in spatially embedded networks. It is known

that in regular and fractal lattices, the concentration of particles
decays by a power law [24] where the exponent only depends
on the ratio d/dw, where dw is the fractal dimension of the
random walk. We have shown here that the dimension of the
embedded network governs, in exactly the same way as for
regular and fractal lattices, diffusion-driven annihilation and
chemical reactions. Our results are only for Erdös-Rényi–type
networks where the degree distribution is centered sharply
around a maximum. It remains to be tested if the results are
also valid for networks with a broad degree distribution, as for
the scale-free Barabási Albert networks, where it was shown
that for δ = 0, c(t) decays faster as t−1 [27,28].
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