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Structural and functional properties of spatially embedded scale-free networks
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Scale-free networks have been studied mostly as non-spatially embedded systems. However, in many realistic
cases, they are spatially embedded and these constraints should be considered. Here, we study the structural
and functional properties of a model of scale-free (SF) spatially embedded networks. In our model, both the
degree and the length of links follow power law distributions as found in many real networks. We show that
not all SF networks can be embedded in space and that the largest degree of a node in the network is usually
smaller than in nonembedded SF networks. Moreover, the spatial constraints (each node has only few neighboring
nodes) introduce degree-degree anticorrelations (disassortativity) since two high degree nodes cannot stay close
in space. We also find significant effects of space embedding on the hopping distances (chemical distance) and
the vulnerability of the networks.
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I. INTRODUCTION

Many complex systems can be well represented as net-
works, which helps to understand their structural and func-
tional properties. These complex systems can be man-made
structures such as the World Wide Web, transportation sys-
tems, and power grid networks or natural systems such as
proteins or the network of neurons in the brain [1–3].

When studying the properties of such networks it is
usually assumed that spatial constraints can be neglected.
However, in many cases where the Euclidean distance matters,
this assumption may not be justified. Typical examples
of those systems include the Internet, airline networks,
wireless communication networks, and social networks that
all are embedded on the surface of Earth, i.e., in two-
dimensional space. Other examples include proteins and the
neuronal web in the brain which both are embedded in three
dimensions.

Two basic models of networks have been extensively
studied: Erdös-Rènyi (ER) graphs [4–6] and Barabasi-Albert
scale-free (SF) networks [7–9]. While in ER networks the
distribution of the number k of links per node (degree
distribution) is Poissonian, in SF networks the distribution
follows a power law P (k) ∼ k−α , where α is typically between
2 and 3.

In previous studies [10–13], we focused on ER-type
networks embedded in one- and two-dimensional lattices of
length L (for earlier studies in the same direction but with less
conclusive results, see [14–16]). We assumed that the nodes
are connected to each other with a probability p(r) ∼ r−δ ,
where r is the Euclidean distance between the nodes. This
choice of p(r) is supported by findings in the Internet, airline
networks, human travel networks, and other social networks
[17–19]. Our results suggested that the exponent δ controlls
the dimension d of the embedded network, which continuously
varies between d = ∞ for δ < de and d = de for δ above
2de, where de is the embedding dimension of the underlying
lattice [13,20]. The mean topological distance (mean shortest
path between all pairs of nodes in the network) scales with
the network size N as 〈#〉 ∼ (ln N )γ for δ below 2de, with
γ monotonously increasing, γ = 1 for δ < de to γ → ∞

at δ = 2de. For δ above 2de, 〈#〉 increases by a power law.
The percolation properties are not drastically changed by
the spatial constraints: The percolation threshold increases
with δ [11].

Here we focus on SF-type networks embedded in two-
dimensional lattices (de = 2) with the same link-length distri-
bution p(r) ∼ r−δ . Our model of embedding links of length r
in a two-dimensional lattice can be regarded as a generalization
of the two known models, the Watts-Strogatz model [21,22]
and the Kleinberg model [23]. In both models, long-range links
are added in a lattice system. In the Watts-Strogatz model all
link lengths are chosen with the same probability, while in
the Kleinberg model the link lengths are chosen from a power
law distribution p(r) ∼ r−δ as in the case considered here.
Other methods for embedding networks in Euclidean space
have been proposed in [24–29].

We are interested in studying how in SF-type networks
characterized by the degree exponent α the spatial constraints
quantified by the distance exponent δ modify the structural and
functional properties of the networks. Examples of embedded
SF networks are the Internet, airline networks, and social
networks like friendship and author networks. Due to the hubs
in the SF networks, their embedding in space is more elaborate
than the embedding of ER networks and requires a dilution of
the underlying lattice.

The article is organized as follows. In Sec. II, we briefly
discuss the characteristic distances in the spatially constrained
networks. Then, in Sec. III we describe in detail how
the spatially embedded SF networks can be generated. In
the following Results section (Sec. IV) we discuss how the
degree exponent α and the spatial exponent δ (i) determine the
properties of the maximum degree kmax in the network and its
scaling with the network size N and (ii) lead to degree-degree
anticorrelations that increase with increasing δ and decreasing
α. We also show (iii) how the scaling of the mean topological
distance 〈#〉 is modified by the spatial constraints and study
(iv) how the vulnerability of the network depends on both α
and δ. In addition, we discuss the dimension of the embedded
SF networks and show that it is infinity for all δ below 2de and
α between 2 and 3.
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II. CHARACTERISTIC DISTANCES

First we estimate how the characteristic distances in the
network (embedded in a square lattice) depend on its linear
size L and on the spatial exponent δ. The normalized distance
distribution p(r) is

p(r) =
{

(de − δ)L−(de−δ) r−δ, δ < de,

(δ − 2de r−δ, δ > de.
(1)

From p(r) we obtain the moments rn =
∫ L

1 dr rde−1 rn p(r)
and the related length scales r̄n ≡ (rn)1/n. The maximum
distance rmax is determined by Lde

∫ L

rmax
dr rde−1p(r) ( 1. The

results for rn and rmax are

rn =






de−δ
de+n−δ

Ln, δ < de,

Ln/ln(L), δ = de,

δ−de

de+n−δ
Lde+n−δ, de < δ < de + n,

n ln(L), δ = de + n,

de−δ
de+n−δ

, δ > de + n,

(2)

and

rmax (
{

L, δ < 2de,

Lde/(δ−de), δ ! 2de.
(3)

Accordingly, for δ < de all length scales (r̄n and rmax) are
proportional to L, the spatial constraints are irrelevant and the
system can be regarded as an infinite-dimensional system. On
the other hand, for δ > 2de, r̄n/L and rmax/L tend to zero in
the asymptotic limit. In this case, we expect that the physical
properties of the network are close to those of regular lattices
of dimension de. However, large finite size effects are expected
for δ close to 2de, where rmax/L decays only very slowly to
zero. In the intermediate δ regime de " δ < 2de, rmax scales
as L, while r̄n/L tends to zero in the asymptotic limit. Here
we study how in this intermediate regime the topological and
functional properties of the SF networks depend on the spatial
constraints quantified by the spatial exponent δ. We focus on
networks embedded in a square lattice where de = 2.

III. ALGORITHM FOR GENERATING EMBEDDED
SCALE-FREE NETWORKS

Our aim is to generate embedded SF networks in two-
dimensional space. The method is quite general and can be
easily modified to generate any kind of degree distribution in
any dimension. For simplicity, we consider networks that are
embedded in a square lattice of size L × L. The nodes of the
network are the lattice sites and the links between them will be
determined by the algorithm. To each node i, we assign ki links
from the distribution P (k) ∼ k−α∗

, with the minimum degree
kmin = 3. The lengths of the links are taken from the power
law distribution (1). The algorithm consists of the following
steps.

(1) We choose randomly a node i with a probability that is
proportional to its available (unoccupied) links. To realize this,
we choose randomly one of the available links in the network.
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α*

2

2.5

3

3.5

4

α

1.00
1.201.411.70

FIG. 1. (Color online) The degree exponent α as function of the
input exponent α∗ of SF networks for the spatial exponents δ = 0 (#),
1.0 (◦), 2.0 ($), 2.5 (♦), 3.0 (,), 3.5 (&), and 4.0 (-). The straight
lines are best fits to the data with the slopes indicated in the figure.
For each parameter set we averaged over 50 configurations.

(2) We choose randomly a distance r from p(r), Eq. (1),
and consider all nodes that are at a distance between r and
r − % from node i.

(3) We specify the available (unoccupied) links between
node i and the other nodes in this annulus.

(4a) If there are available links, we choose one of them
randomly and identify the node j this link belongs to. If nodes
i and j are unconnected, we connect them by an edge and go
back to step (1).

(4b) Otherwise, we keep the distance r chosen in (2), but
choose randomly, as described in step (1), another node i as
center of the annulus and continue with step (3). We repeat
this process, with fixed r , up to 5 times, and then go back to
step (1).

(5) We stop the process when the number of occupied
edges exceeds L × L. This way, we generate diluted SF
networks. If we add more links to the network, both relevant
power laws describing link-length and degree distributions
cannot be simultaneously fulfilled. In the diluted networks,
the number of nodes N is proportional to L2, N = cL2,
with c ∼= 0.45, 0.6, 0.7, and 0.77 for α = 2, 2.5, 3, and 3.5,
respectively. Accordingly, the average degree of a node is 2/c
and thus varies between 2.6 (for α = 4) and 4.5 (for α = 2).
These values compare with the values of real-world spatially
embedded SF networks, for example, power grids, where the
average degree ranges between 2.5 and 3 [30].

We consider square lattices up to a length of L = 1600. We
find that due to the spatial constraints, in particular for large
values of δ, large embedded SF networks with small input
parameter α∗ could not be generated.

The scaling exponent α of the generated networks is always
larger than the input exponent α∗ (see Fig. 1). This is since
many outgoing links from high degree nodes cannot find
nearby available nodes. Figure 1 shows how the output α
depends on the input α∗ for different values of δ. The figure
suggests that α increases linearly with α∗. The proportionality
constant is 1 for δ = 0,1,2,2.5 and increases with increasing
δ. Note that even for δ = 0, α is slightly larger than α∗, which
we can attribute to the constraints of the finite lattice we
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FIG. 2. (Color online) Link length distribution and degree distri-
bution in spatially embedded SF networks. (a)–(c) The probability
density p(r)r as function of the Euclidean link length of SF networks
embedded in an 800 × 800 lattice for the spatial exponents δ =
2.5, 3.0, and 3.5 and the degree exponents α = 2.25 (◦), 2.50 ($),
3.00 (♦), 3.50 (,) (from top to bottom). (d)–(f) Degree distribution
P (k) as function of k for SF networks embedded in 800 × 800 and
400 × 400 lattices with degree exponents α = 2.50, 3.00, and 3.50
[from panel (d) to panel (f)]. The spatial exponents are (from top to
bottom) δ = 1.0 (◦), 2.5 ($), 3.0 (♦), 3.5 (,). For the smaller lattice,
the symbols are solid. For transparency, the lower plots in each panel
have been shifted vertically (down) by factors of 10. The straight
lines are guidelines with the expected slopes δ − 1 in (a)–(c) and α in
(d)–(f). For each parameter set we averaged over 50 configurations.

consider here. The figure also shows that for α = 2, due to the
competition between hubs and spatial constraints, networks
with δ above 3 could not be generated. Thus, in the following,
we focus on α ! 2.25.

Figures 2 shows, as a quality test of the generated networks,
the distributions of the link length r [panels (a), (b), (c)] and
the degree k [panels (d), (e), (f)]. In the double logarithmic
plots, the distributions nicely follow straight lines with slopes δ
and α, respectively, confirming numerically that the generated
networks with α ! 2.25 are SF with the anticipated power law
link length distribution.

IV. RESULTS

A. Maximum degree kmax

In nonembedded SF networks, the maximum degree in a
network consisting of N nodes scales as [31] kmax ∼ N1/(α−1).
Here we are interested to test how this relation is affected
by the spatial constraints. To evaluate kmax, we determined
the maximum degrees in 50 networks and averaged them
logarithmically. Figure 3 shows that kmax scales with N by
a power law,

kmax ∼ N1/(αeff−1), (4)

where αeff depends on both the scaling exponent α and the
spatial exponent δ. In random SF networks without spatial
constraints, αeff = α [31]. Figure 4 suggests that there exists a
critical value of δ. For δ below this critical value, we have
αeff = α. For δ above this critical value, αeff/α seems to
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FIG. 3. (Color online) The cutoff kmax as function of the size N

of the generated SF networks with degree exponents α = 2.25, 2.50,
3.00 and 3.25 [from panel (a) to panel (d)] and the spatial exponents
(from up to down) δ = 0 (◦), 1.0 ($), 2.0 (♦), 2.5 (,), 3.0 (&), 3.5
(-), and 4.0 (#). The straight lines are best fits to the data with
slope σ . For transparency some curves have been shifted (up) on the
y axis by the following factors f : panel (b) for δ = 0, 1.0, 2.0 by
f = 1.5; panel (c) for δ = 0, 1.0, 2.0 by f = 1.52 and δ = 2.5, 3.0
by f = 1.5; panel (d) for δ = 0, 1.0, 2.0 by f = 1.53 and δ = 2.5,
3.0 by f = 1.52, and δ = 3.5 by f = 1.5.

increase linearly with δ. This effect can be understood as
follows. With increasing δ, the mean link length decreases
and thus only smaller hubs can be accommodated. For larger
α values, one needs to accommodate on the lattice only
comparatively small hubs. In this case, the spatial constraint is
weaker and thus the critical δ value increases.

B. Anticorrelations

Next we evaluate the degree-degree correlations in the
spatially embedded networks and how they depend on δ
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α ef
f / 
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FIG. 4. (Color online) The ratio αeff/α as a function of the
spatial exponent δ for SF networks when the degree exponents are
α = 2.25 (◦), 2.50 ($), 2.75 (♦), 3.00 (,), 3.25 (&). The black
lines are guidelines. For each parameter set we averaged over 50
configurations.
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FIG. 5. (Color online) The degree-degree correlation ρ as a
function of the spatial exponent δ for SF networks of size 6.4 × 105

and degree exponents α = 2.25 (◦), 2.50 ($), 2.75 (♦), 3.00 (,), For
each parameter set we averaged over 50 configurations. The error
bars refer to the standard deviation.

and α. By definition truly random networks without spatial
constraints [32] have no degree-degree correlations. For
spatially embedded networks we expect anticorrelations (dis-
assortativity) to appear since high degree nodes cannot be close
to each other due to the spatial constraints. This is particularly
true for small α and large δ values.

A quantitative measure for the degree-degree correlations
is the degree-degree covariance [33,34],

c =
∑

kl

kl [p(k,l) − p(k)p(l)], (5)

where p(k,l) is the joint probability that two neighboring nodes
have degree k and l and p(l) =

∑
k p(k,l) is the probability

that any node is linked to a node with l links. For uncorrelated
networks, p(k,l) = p(k)p(l). It is easy to see that p(k) is
related to the degree distribution P (k) by

p(k) = kP (k)∑
l lP (l)

. (6)

For the maximum correlation we have p(k,l) = p(k)δk,l and,
hence, cmax =

∑
k k2p(k) − [

∑
k kp(k)]2. It is convenient to

normalize c by dividing by cmax, ρ = c/cmax. Figure 5 shows
ρ for α in the most relevant regime between 2.25 and 3, for δ
between 0 and 4. The figure shows that, as expected, negative
correlations appear which become stronger when α decreases
and δ increases. For each α value, the anticorrelations are
roughly constant for δ < 3 and increase rapidly for larger
δ. These anticorrelations are consistent with the changes in
α∗ and αeff , which both become significantly larger than α.
Note that anticorrelations appear also for δ < 2, where spatial
constraints are not relevant. These kinds of anticorrelations
are due to the fact that the algorithm used for generating SF
networks is not fully random (see [33]).

C. Topological distance

Next we consider the mean topological distance 〈#〉 in the
spatially embedded SF networks. The topological distance
between two nodes is the shortest path between them in the
network. Without spatial constraints, the networks form an
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FIG. 6. (Color online) The mean topological distance 〈#〉 as
function of (ln N )γ on SF networks for the spatial exponents δ = 2.5,
3.0, 3.5, and 4.0 (from top to bottom), and for the degree exponents
α = 2.5 [panels (a)–(d)], α = 2.75 [panels (e)–(h)], and α = 3
[panels (i)–(l)]. The straight lines are best fits to the data with the
slope γ .

ultrasmall world for α < 3 where 〈#〉 scales with the network
size N as 〈#〉 ∼ ln ln N [35], while for α > 3, the networks
only form a small world where 〈#〉 scales logarithmically
with N , 〈#〉 ∼ ln N , as in ER networks [4–6]. At α = 3,
〈#〉 ∼ ln N/ ln ln N [35]. The question is how might these laws
be changed by the spatial constraints? We seek expressions of
the form

〈#〉 ∼ (ln N )γ . (7)

We assume this form since it can bridge continuously between
ultrasmall world behavior (γ . 1), small world behavior (γ =
1), and large world behavior (γ → ∞), resulting in power laws
with N . For δ above 4 we expect a power law dependence
on N . Note that for small exponents γ , (ln N )γ cannot be
distinguished from double logarithmic behavior characterizing
the ultrasmall world, while for γ > 1 we have an intermediate
behavior between small world and large world, which has been
observed in ER networks with spatial constraints [10].

Figure 6 shows, for α = 2.5, 2.75, and 3, the mean
topological distance of the spatially embedded networks for
δ between 2.5 and 4, as a function of (ln N )γ . The value
of the exponent γ has been chosen such that 〈#〉 increases
linearly with (ln N )γ . The figure shows that for α = 2.5, the
best fit is γ close to 0.05. Such a small value cannot be
distinguished from a ln ln N dependence. This indicates that
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the mean topological distance increases with N significantly
slower than logarithmically; i.e., the networks form ultrasmall
worlds. The same holds for α = 2.75, but now the exponents
γ are considerably larger, ranging from γ = 0.15 for δ = 2.5
to γ = 0.43 for δ = 4. These results suggest that for α below
3, the spatially embedded networks belong to the universality
class of ultrasmall worlds in the intermediate regime between
δ = 2 and 4.

For α = 3, 〈#〉 still can be described by a power law of
ln N , but now the exponent γ is greater than or equal to
1 and increases with δ. At δ = 1 and 2, we expect 〈#〉 ∼
ln N/ ln ln N , but for distinguishing this behavior from the
simple logarithmic behavior, considerably larger networks are
needed. At δ = 4, γ = 2.1. We obtained a similar behavior
for α = 3.5, with exponents γ greater than 1 as long as δ < 4,
while at δ = 4, 〈#〉 increases by a power law, 〈#〉 ∼ N1/d# ,
where d# ( 4. This value is close to the value d# ( 3.67 found
for ER networks with δ = 4 [10,13]. Accordingly, regarding
the scaling of the mean topological distance 〈#〉 with the
system size, the SF networks with α = 3.5 behave as spatially
embedded ER networks [10].

D. Dimension of the embedded networks

For studying the dimension of the spatially embedded SF
networks we follow the method described in [20]. A similar
technique has been used before in disordered systems to
calculate the fractal dimension; see, e.g., [36]. We use the
fact that the mass M (number of nodes) of an object within an
hypersphere of radius r scales with r as

M ∼ rd, (8)

where the exponent d represents the dimension of the network.
When using this relation without taking into account the way
the nodes are linked, one trivially and erroneously finds that
the dimension of the network is identical to the dimension
de of the embedding space. To properly take into account the
connectivity when considering the dimension of the network,
we proceed as follows: We choose a node as origin and
determine its nearest neighbors (referred to as shell # = 1) and
their number S(1), the number of second nearest neighbors
S(2) in shell # = 2, and so on. Next we measure the mean
Euclidean distance r(#) of the nodes in shell # from the origin
and determine the number of nodes M(#) =

∑#
i=1 S(i) within

shell #. To improve the statistics, we repeat the calculations for
many origin nodes and then average r(#) and M(#). To reduce
finite size effects, we do not choose the origin nodes randomly
in the underlying lattice, but from a region with radius L/10
around the central node. From the scaling relation between
the average M and the average r , Eq. (8), we determine the
dimension d of the network.

When applying this method to embedded ER-type networks
we found [13] that the dimension d of the network changes
with δ. For δ below the embedding dimension de, d is infinity,
while for δ between de and 2de the dimension decreases
continuously from infinity to de. Figure 7 shows, in a double
logarithmic presentation, for α = 2.75 and 3.5 the mass M
(within a radius r) of SF embedded networks as a function of
r for four δ values. For α = 2.75 [Fig. 7(a)] the curves bend
up continuously, suggesting an infinite dimension. In contrast,
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4.043.012.66

FIG. 7. (Color online) The mass M as function of the Euclidean
distance r for SF networks embedded in an 1600 × 1600 lattice, for
the spatial exponents δ = 2.5, 3.0, 3.5, 4.0 (from right to left) and
the degree exponents α = 2.75 (a) and α = 3.50 (b). The straight
lines in panel (b) are guidelines that yield the dimensions of the
embedded networks d = 2.66, 3.01, 4.04, 6.76 (from left to right).
For transparency the right plots in each panel have been shifted
horizontally by factors of 2.

for α = 3.5 [Fig. 7(b)] there seems to be a large regime where
M increases by a power law (constant slope d) suggesting
finite dimensions: For δ = 2.5, 3, 3.5, and 4, the dimensions
are d = 6.76, 4.04, 3.01, and 2.66, respectively.

These findings are consistent with our results for the mean
topological distance shown in Fig. 6. For α below 3, 〈#〉
increases with the system size N slower than logarithmically
(ultrasmall world), and thus we expect an infinite dimension.
In contrast, for α above 3, 〈#〉 increases with N faster than
logarithmically, and thus we anticipate a finite dimension.
Following this argument, we expect a finite dimension also
for α = 3 when δ is 3.5 or 4. However, a direct measurement
of d using M versus r is difficult due to large finite size effects
and much larger systems are needed to test our hypothesis.
Note that in our earlier study [20] we suggested (in contrast
to the present result) that also for α below 3 and δ = 3 the
embedded SF network had a finite dimension. The reason for
this discrepancy is that in [20] the algorithm for generating the
embedded network was suitable for ER networks but not for
SF networks.

E. Robustness of the networks

The dependence of the mean topological distance on
the system size should have important implications on the
percolation properties of the spatially embedded networks.
For SF networks without spatial constraints we know [31] that
for α between 2 and 3, the percolation threshold pc approaches
zero with increasing system size N ,

pc ∼ N−λ. (9)

In uncorrelated networks, it is known that pc ∼ k−(3−α)
max ∼

N−(3−α)/(α−1) and thus λ = (3 − α)/(α − 1). In this case, pc

tends to zero in the thermodynamic limit, and the networks are
extremely robust. For α above 3, like in ER networks, pc is
finite; i.e., removing randomly a finite fraction of the network
nodes is sufficient to destroy the network. The question is
how the spatial constraints affect the vulnerability of the SF
networks.
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FIG. 8. (Color online) Panels (a)–(d): The critical concentration
pc as function of 1/N for SF networks (log-log scale). The degree
exponents are α = 2.25 (a), 2.50 (b), 2.75 (c), and 3.0 (d), and the
length exponents are δ = 1.0 (◦), 2.0 ($), 2.5 (♦), 3.0 (,), 3.5 (&),
and 4.0 (-). The black lines are best fits to the data with the slope λ.
Panels (e)–(h): The same as the panels (a)–(d) when δ = 3.5 and 4,
but on a semilog scale (to check the logarithmic dependencies). The
black lines are guidelines.

Figure 8 shows the critical concentration pc, obtained from
the position of the maximum of the second largest cluster in the
networks [36], as a function of 1/N for SF networks with α =
2.25 (a), 2.50 (b), 2.75 (c), and 3.0 (d), for δ between 1 and 4.
The figure shows that even for δ = 1, where spatial constraints
are not relevant, the exponent λ is slightly below the expected
value. The reason is that the networks we consider here exhibit
anticorrelations induced by the process of generation. With
increasing δ, the exponent λ decreases significantly; i.e., for a
fixed network size, the critical concentration increases strongly
with δ. At δ = 3.5 and 4, λ is quite small, such that the power
law decay is hard to distinguish from a logarithmic decay.
Panels (e)–(h) show a semilogarithmic plot of pc versus 1/N
for the same α values considered before, but only for δ =
3.5 and 4. The figure suggests that in particular for δ = 4, a
logarithmic decay is likely. For α = 3, we also cannot exclude
the possibility that pc approaches a finite nonzero value when
the network size N approaches infinity, for all values of δ. This
is indicated in Fig. 9, where we have plotted, for α = 3 and 3.5,
and δ between 1 and 4, pc as function of 1/N , on a linear scale.
The possibility that, for α = 3 and δ above 2, pc will approach
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FIG. 9. (Color online) The critical concentration pc as function
of 1/N on SF networks for the degree exponents α = 3.0 (left panel)
and 3.5 (right panel). The spatial exponents are δ = 1.0 (◦), 2.0 ($),
2.5 (♦), 3.0 (,), 3.5 (&), and 4.0 (-). The black lines are best fits to
the data.

a finite value when N approaches infinity is supported by our
findings for the mean topological distance, Fig. 6, where we
had shown that for these sets of parameters, the networks are
intermediate between small and large world since the mean
topological distance increases faster than ln N . It is known
that for unembedded random SF networks with α = 3, pc ∼
1/ ln N approaches zero logarithmically [31]. In either case,
we expect that for α = 3, pc decays either logarithmically to
zero or approaches a constant with increasing system size,
such that we have to assign the value of λ = 0 to this case,
for all values of δ. Figure 10 finally summarizes our findings
for the exponent λ that governs the power law decay of pc

with N .

V. CONCLUSION

We developed a method to generate spatially embedded
SF networks with a power law distribution of link lengths
characterized by the spatial exponent δ. The degree of each
node was chosen from a power law distribution characterized
by the degree exponent α. In the algorithm, we consider the

0 1 2 3 4
δ

0

0.1

0.2

0.3

0.4

λ

FIG. 10. (Color online) The exponent λ [Eq. (9)] as function of
the spatial exponent δ on SF networks for the degree exponents α =
2.25, 2.50, 2.75, 3, and 3.50 (from top to bottom). The black lines
are guides for the eye. For λ = 0, the critical concentration pc either
converges, with increasing system size, logarithmically to zero or
approaches a finite value.
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nodes in a square lattice of size L × L, and we link pairs
of nodes at distance r taken from Eq. (1). For fulfilling the
constraints coming from both power laws, we had to dilute
the network such that only a finite fraction of the L2 nodes
belongs to the network.

When using this method, we find that for δ > 2 SF networks
with degree exponents α close to and below 2 could not
be spatially embedded in two dimensions. For α between
2.25 and 3, SF networks with δ > 2 have strong deviations
from random nonembedded SF networks. The deviations
appear in the dependence of the maximum degree kmax on the
system size N , in pronounced degree-degree anticorrelations
(disassortativity), in significantly larger topological distances,
and in a larger vulnerability characterized by larger percolation
thresholds.

For example, the topological distance does no longer scale
with log N or log log N as in nonembedded networks, but
usually has the form (log N )γ [see Eq. (7)], where γ depends
on both α and δ. For α below 3, γ is below 1 (indicating
that the constrained networks have a smaller diameter than

small worlds). For α greater than or equal to 3, γ is above 1
(indicating that the constrained networks are characterized by
a larger diameter than in small worlds). This result suggests
that for α below 3, the dimension d of the network is infinite,
as for the case of unconstrained networks. For α above 3, the
dimension becomes finite and depends on δ: For δ above 4, d
is equal to the dimension of the embedding lattice, while for
δ below 4, d increases with decreasing δ and reaches infinity
when δ approaches 2. For δ below 2, the spatial constraints are
irrelevant, and the properties are similar to those of random
unembedded networks. We believe that these main features
should hold qualitatively also for real networks having similar
power law distributions.
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