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Many real networks are embedded in space, and often the distribution of the link lengths r follows a power
law, p(r) ∼ r−δ . Indications that such systems can be characterized by the concept of dimension were found
recently. Here, we present further support for this claim, based on extensive numerical simulations of model
networks with a narrow degree distribution, embedded in lattices of dimensions de = 1 and de = 2. For networks
with δ < de, d is infinity, while for δ > 2de, d has the value of the embedding dimension de. In the intermediate
regime of interest de ! δ < 2de, our numerical results suggest that d decreases continuously from d = ∞ to
de, with d − de ∝ (2 − δ′)/[δ′(δ′ − 1)] and δ′ = δ/de. We also analyze how the mass M and the Euclidean
distance r increase with the topological distance " (minimum number of links between two sites in the network).
Our results suggest that in the intermediate regime de ! δ < 2de, M(") and r(") increase with " as a stretched
exponential, M(") ∼ exp[Ad"δ′(2−δ′)] and r(") ∼ exp[A"δ′(2−δ′)], such that M(") ∼ r(")d . For δ < de, M increases
exponentially with " (as known for δ = 0), while r is constant and independent of ". For δ " 2de, we find the
expected power-law scaling, M(") ∼ "d" and r(") ∼ "1/dmin , with d"dmin = d . In de = 1, we find the expected
result, d" = dmin = 1, while in de = 2 we find surprisingly that although d = 2, d" > 2 and dmin < 1, in contrast
to regular lattices.
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I. INTRODUCTION

It has been realized in the last decades that a large number
of complex systems are structured in the form of networks. The
structures can be manmade such as the World Wide Web and
transportation or power grid networks or natural such as protein
and neural networks [1–19]. When studying the properties of
these networks it is usually assumed that spatial constraints
can be neglected. This assumption is certainly correct for
networks such as the World Wide Web (WWW) or the citation
network where the real (Euclidean) distance does not play
any role, but it may not be justified in networks where the
Euclidean distance matters [20]. Typical examples of such
networks include the Internet [2,8], airline networks [21,22],
wireless communication networks [23], and social networks
(like friendship and author networks) [24,25], which are all
embedded in two-dimensional space (surface of the earth), as
well as protein and neural networks [26], which are embedded
in three dimensions.

To model these networks, two network classes are of partic-
ular interest: Erdös-Rényi (ER) graphs [27,28] and Barabasi-
Albert (BA) scale free networks [29]. In ER networks, the
distribution of the number k of links per node (degree
distribution) is Poissonian with a pronounced maximum at
a certain k value, such that nearly each node is linked to
the same number of nodes. In BA networks, the distribution
follows a power law P (k) ∼ k−α , with α typically between 2
and 3. Here we do not study BA networks but focus solely
on ER-type networks embedded in one- and two-dimensional
space. We actually use a degree distribution that is close to a
delta function (as the case in simple lattices). We found that
the results are the same for both kinds of distributions. We
follow Refs. [30–32] and assume that nodes are connected

to each other with a probability p(r) ∼ r−δ , where r is the
Euclidean distance between the nodes. The choice of a power
law for the distance distribution is supported from findings
in the Internet, airline networks, human travel networks, and
other social networks [22,25,33]. Our model of embedding
links of length r , chosen from Eq. (1), in a de- dimensional
lattice, can be regarded as a generalization of the known
Watts-Strogatz model [3,4] and the Kleinberg model [34]. In
both models, long-range links are added in a lattice system.
In the Watts-Strogatz model these links are chosen with the
same probability, while in the Kleinberg model the link lengths
are chosen from a power-law distribution p(r) ∼ r−δ as in the
case considered here. Other methods for embedding networks
in Euclidean space have been proposed in [35–38].

It has recently been shown that spatial constraints are im-
portant and may alter the dimension of the network (obtained
from the scaling relation between mass M and Euclidean
distance r , M ∼ rd ) and its other topological properties (such
as the dependence of the mean topological distance on the
system size) as well as their robustness [30,31]. Here we are
interested in studying how in these model networks the spatial
constraints quantified by the distance exponent δ modify the
scaling relations between mass (number of nodes), Euclidean
distance r , and topological distance ". Our earlier study on ER
networks embedded in a square lattice (with dimension de = 2)
indicates that by varying the exponent δ one can actually
change continuously the dimension d of the network, from
d = ∞ for δ < 2 to d = 2 for δ > 4 [32]. In the present paper
we present further extensive numerical simulations for de = 2
that support this claim as well as simulations in linear chains
(de = 1) that suggest analogous conclusions. In de = 1 we find
that for δ < 1 the system behaves like an infinite-dimensional
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network (as the original ER network). When continuously
increasing δ the dimension becomes finite for δ > 1 and
approaches d = 1 for δ > 2. Since the dimension of a system
plays a critical role in many physical phenomena such as
diffusion, percolation, and phase transition phenomena, our
results are important for understanding and characterizing the
properties of real world networks.

Our paper is organized as follows. In Sec. II, we discuss the
characteristic distances in the spatially constrained networks.
In Sec. III we describe the method to generate the spatial
network models. In Sec. IV we present our numerical results
for the dimension d, for networks embedded in linear chains
and in square lattices, that we obtain from the scaling relation
of the mass M and the distance r . In Sec. V we present our
numerical results for the dimension d, that we obtain from the
scaling relation of the probability of return to the origin P0 of a
diffusing particle and its distance r . In Sec. VI, we discuss the
scaling of the mass M and the Euclidean distance r with the
topological distance ". The conclusions in Sec. VII summarize
our main results.

II. CHARACTERISTIC DISTANCES

First we estimate how the characteristic distances, in a
network of Lde nodes, depend on its linear size L, on δ, and
on the embedding dimension de. We normalize the distance
distribution p(r) such that

∫ L

1 dr rde−1p(r) = 1, which yields

p(r) =
{

(de − δ)L−(de−δ) r−δ , δ < de,
(δ − de) r−δ , δ > de.

(1)

From p(r) we obtain rn =
∫ L

1 dr rde−1 rn p(r) and the
related length scales r̄n ≡ (rn)1/n. The maximum distance rmax

is determined by Lde
∫ L

rmax
dr rde−1p(r) ' 1. The results for rn

and rmax are

rn =






de−δ
de+n−δ

Ln , δ < de,

Ln/ln(L) , δ = de,
δ−de

de+n−δ
Lde+n−δ , de < δ < de + n,

n ln(L) , δ = de + n,
de−δ

de+n−δ
, δ > de + n,

(2)

and

rmax '
{

L , δ < 2de,
Lde/(δ−de) , δ " 2de.

(3)

Accordingly, for δ < de all length scales (r̄n and rmax) are
proportional to L, the spatial constraints are irrelevant, and the
system can be regarded as an infinite-dimensional system. On
the other hand, for δ > 2de, r̄n/L and rmax/L tend to zero in
the asymptotic limit. In this case, we expect that the physical
properties of the network are close to those of regular lattices
of dimension de. However, large finite-size effects are expected
for δ close to 2de where rmax/L decays only very slowly to
zero. In the intermediate δ regime de ! δ < 2de, rmax scales
as L, while r̄n/L tends to zero in the asymptotic limit. In this
regime our simulation results (Sec. IV) suggest intermediate
behavior represented by a dimension between de and infinity
that changes with δ.

III. GENERATION OF THE NETWORKS

The nodes of the network are located at the sites of a de-
dimensional regular lattice, in our case a linear chain of length
L (de = 1) or a square lattice of size L × L (de = 2). We assign
to each node a fixed number k of links (in most cases, k = 4).
Actually this network is a random regular network since all
nodes have the same degree. It is expected (and we have also
verified it numerically) that ER networks and random regular
networks (with the same spatial constraints) are in the same
universality class.

To generate the spatially embedded networks, we use the
following iterative algorithm: (i) We pick a node i randomly
and choose, for one of its available ki links, a distance r (1 !
r ! L) from the given probability distribution p(r), Eq. (1). It
is easy to see that the distance r can be obtained from random
numbers 0 < u ! 1 chosen from the uniform distribution, by

r =
{

[1 − u(1 − Lde−δ)]1/(de−δ) , δ )= de,

Lu , δ = de.
(4)

(ii) We consider all Nr nodes between distance r − $r and
r from node i, that are not yet connected to node i. Without
loss of generality, we choose $r = 1 for the linear chain and
$r = 0.4 for the square lattice. These choices of $r ensure
that the desired distribution function p(r) ∝ r−δ is fulfilled in
the whole range of r except at r values close to the system
size (see Fig. 2). (iii) We pick randomly one of these nodes
j . If node j has at least one available link, we connect it with
node i. If not, we do not connect it. Then we return to (i) and
proceed with another randomly chosen node. At each step of
the process, either 2 or zero links are added. For generating
the network, we have typically performed 10Lde trials. We
found that the results remained stable when the number of
trials was further enhanced (up to 103Lde trials). Due to the
generation process, the nodes of the final network do not all
have exactly the same degree, but the degree follows a narrow
distribution with a mean k̄ slightly below k = 4. Figure 1

δ  = 0.5 de δ  = 1.5 de
δ  = 2.5 de

FIG. 1. (Color online) Illustration of ER networks embedded
in linear chains (top) and square lattices (bottom), for various
distance exponents δ. For transparency, the linear chains are shown
as semicircles.
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FIG. 2. (Color online) The distance distribution p(r) rde−1 for
ER networks embedded (a) in linear chains where de = 1 and (b) in
square lattices where de = 2, when δ = 0.5de (black circle), 1.5de

(red diamond), 2de (green triangle up), 2.5de (blue triangle left),
and k = 4. The numbers denote the slopes of P (r)rde−1, which are
identical to the anticipated ones. For the same set of parameters as
in (a) and (b), panels (c) and (d) show the degree distribution p(k),
which is ∼= 1 for k = 4 and ∼= 0 otherwise.

illustrates the ER networks embedded in de = 1 and de = 2 for
δ = 0.5de, 1.5de, and 2.5de. Figure 2 shows the actual narrow
degree distribution as well as p(r) obtained in the simulations.

IV. THE DIMENSION OF THE NETWORKS

For determining the dimensions of the spatially embedded
networks, we follow the method developed by Li et al. [32]. A
similar technique has been used before in disordered systems
to calculate the fractal dimension, e.g., [39]. We use the fact
that the mass M (number of nodes) of an object within a
hypersphere of radius r scales with r as

M ∼ rd, (5)

where the exponent d represents the dimension of the network.
When using this relation without taking into account the way
the nodes are linked, one trivially and erroneously finds that
the dimension of the network is identical to the dimension de

of the embedding space.
To properly take into account the connectivity, when

considering the dimension of the network, we proceed as
follows (see Fig. 3): We choose a node as origin and determine
its nearest neighbors (referred to as shell " = 1) and their
number S(1), the number of second nearest neighbors S(2) in
shell " = 2, and so on. Next we measure the mean Euclidean
distance r(") of the nodes in shell " from the origin and
determine the number of nodes M(") =

∑"
i=1 S(i) within shell

". To improve the statistics, we repeat the calculations for
many origin nodes and then average r(") and M("). To reduce
boundary effects, we do not choose the origin nodes randomly
in the underlying lattice, but from a region with radius L/10
around the central node. From the scaling relation between

0 0.5 1 1.5 2 2.5 3 3.5 4
l

0

10

20

30

40

50

M

FIG. 3. (Color online) Illustration of the shells S(0) (black
square), S(1) (black circle), S(2) (red triangle up), S(3) (blue
diamond), S(4) (green triangle left), S(5) (brown triangle down), and
S(6) (yellow triangle right) for ER networks embedded in a square
lattice with k = 4 (left panel), and the mass M as function of l within
these shells (right panel).

the average M and the average r , Eq. (5), we determine the
dimension d of the network.

Figure 4 shows the results for networks embedded in linear
chains, for distance exponents δ between 0.5 de and 2.5de.
In (a), we consider networks with k = 4 fixed and different
system sizes (N = 105, 106, and 107), while in (b) we consider
networks with a fixed size N = 107 and various k values (k =
3,4,6). In both panels, we have plotted M as a function of r/r̄ ,
where r̄ ≡ r̄1 is the mean length of the links in the network;
see Eq. (2).
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FIG. 4. (Color online) (a) The mass M as function of the
relative distance r/r̄ for ER networks embedded in linear chains
with k = 4, for the system sizes N = 105, 106, and 107 with δ =
0.5,1.25, 1.5, 1.75, 2, 2.25, 2.5 (from left to right). The straight
lines are best fits to the data that yield the dimension d of
the network. (b) The same as panel (a), but for N = 107 and
k = 3,4, and 6. The straight lines in both panels are identical.
The slopes yield the dimensions of the embedded networks δ =
∞, 4.64, 2.12, 1.48, 1.07, 1.04, and 1.00 (from left to right).
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FIG. 5. (Color online) The same as Fig. 4, but for ER net-
works embedded in a square lattice, the system sizes are N =
9 × 104, 106, and 9 × 106 with δ = 1, 2.5, 3, 3.5, 4, 4.5, 5 (from left
to right). The straight lines in both panels are identical. The
slopes yield the dimensions of the embedded networks δ =
∞, 5.82, 2.91, 2.21, 2.05, 2.02, and 2.00 (from left to right).

Figure 4(a) shows that for δ in the interesting regime
between de and 2de, the curves for different N collapse
nicely [for transparency, the curves (except δ = 0.5) have
been shifted along the x axis by a factor of 10, 102, 103, 104,
and 105]. From the slopes of the straight lines, we obtain the
dimensions d = ∞ (δ = 0.5), d ∼= 4.64 (δ = 1.25), d ∼= 2.12
(δ = 1.5), and d ∼= 1.48 (δ = 1.75). For δ " 2, the data start
to overshoot above some crossover value that increases with
the system size and thus can be regarded as a finite-size effect.
To understand the reason for this crossover note that a node
close to the boundary has a considerably higher probability
to be linked with nodes closer to the center of the underlying
lattice. As a consequence, for large shell numbers ", the mean
Euclidean distance of the nodes from the origin node will
be underestimated and thus the mass within large Euclidean
distances overestimated. This effect is most pronounced in
the linear chain, for intermediate δ values, and gives rise to
the overshooting of M(r) for δ between 2 and 2.5, where
d ' de. For δ = 2.5 and N = 107, the total number of nodes
in the spatially constrained network is well below N , since the
network is separated into smaller clusters. For larger k values,
this effect is less likely to appear. Figure 4(b) shows that the
dimension of the networks does not depend on their average
degree. The M(r) curves collapse for different k, and thus give
rise to the same dimensions. This indicates the universality
feature of the dimension.

Figure 5 shows the corresponding results for networks
embedded in square lattices (de = 2), again for 7 exponents
δ between 0.5de and 2.5de, three network sizes (N = 9 ×
104,106, and 9 × 106), and three k values (k = 3,4,6). From
the slopes of the straight lines we obtain d = ∞ (δ = 1), d ∼=
5.82 (δ = 2.5), d ∼= 2.91 (δ = 3), and d ∼= 2.21 (δ = 3.5). For
δ above 4, d is close to de, as expected. The figure confirms
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δ / de
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3
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5

6

d 
- d

e

de=1
de=2

FIG. 6. (Color online) The difference between network dimen-
sion d and embedding dimension de as a function of δ/de for de = 1
(black circles) and de = 2 (red triangles). For δ/de < 1, d − de = ∞.

that the finite-size effects in de = 2 are considerably less
pronounced than in de = 1, contrary to the intuition, since the
linear size of the underlying embedding lattice is considerably
higher in de = 1 than in de = 2. As in de = 1, the dimensions
are independent of the mean degree of the networks.

Figure 6 summarizes our results for the dimensions of the
spatially embedded networks in the intermediate δ regime
between de and 2de, where the dimension is supposed to bridge
the gap between d = ∞ for the unconstrained case δ below
de and d = de for the highly constrained case δ above 2de.
The figure shows d − de as a function of the relative distance
exponent δ′ = δ/de for both considered lattices. The figure
shows that in both cases, the curves approximately collapse to
a single line which can be represented by

d − de = c
2 − δ′

δ′(δ′ − 1)
, 1 < δ′ < 2, (6)

where c ∼= 1.60. According to Eq. (6), d − de diverges for
δ′ approaching the critical relative distance exponent δ′ = 1.
The simplicity of Eq. (6) suggests that it might be derived
analytically. However, we were unable to find an analytical
solution. We would like to mention that it is generally difficult
to obtain analytical results for (fractal) dimensions of irregular
systems. An exception is the fractal dimension d of the
percolation cluster in de = 2 and de " 6, but for 2 < de < 6
no useful analytical description is known.

V. THE PROBABILITY OF RETURN TO THE ORIGIN

The network dimension plays an important role also in
physical processes such as diffusion [40–42]. The probability
P0(t) that a diffusing particle, after having traveled t steps,
has returned to the origin is related to the root-mean-square
displacement r(t) of the particle by [32,42,43]

P0(t) ∼ r(t)−d . (7)

To derive Eq. (7) one assumes that the probability of the
particle to be in any site in the volume V (t) = [r(t)]d is
the same. As a consequence, P0(t) ∼ 1/V (t), which leads to
Eq. (7). Figure 7 shows P0 as a function of r/r̄ in de = 1 and
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FIG. 7. (Color online) (a) The probability P0 that a diffusing
particle is at its starting site, after traveling an average distance
r , as a function of the relative distance r/r̄ for ER networks
embedded in linear chains with k = 4, for the system size N = 107

with δ = 0.5,1.25, 1.5, 1.75, 2, 2.25, 2.5 (from left to right). The
straight lines are best fits to the data that yield the dimension d

of the network. (b) The same as panel (a), but for ER networks
embedded in a square lattice, the system size is N = 9 × 106 with
δ = 1,2.5, 3, 3.5, 4, 4.5, 5 (from left to right). Note that the values
of d obtained here are almost the same as those obtained by direct
measurements in Figs. 4 and 5.

2, for the same δ values as in Figs. 4 and 5. For convenience,
we show only the results for the largest system size, N = 107

for de = 1 and N = 9 × 106 for de = 2. To obtain P0(t), we
averaged, for each value of δ, over 104 diffusing particles
and 50 network realizations. From the straight lines in the
double-logarithmic presentations of Fig. 7 we obtain the
dimension of the networks, which are listed in the figure.
The dimensions obtained in Fig. 7 agree very well with those
obtained by the direct measurements in Figs. 4 and 5.

VI. THE TOPOLOGICAL DIMENSION AND THE
DIMENSION OF THE SHORTEST PATH

In order to find how M scales with the Euclidean distance
r , we determined in Sec. IV how M and r scale with the
topological length ", and obtained the dimension d from
M(") ∼ r(")d . In this section, we discuss explicitly how M
and r depend on ".

It is well known that for regular lattices as well as for fractal
structures, M and r scale with " as power laws,

M(") ∼ "d" , (8a)

r(") ∼ "1/dmin , (8b)

where d" is the topological (“chemical”) dimension and dmin
is the dimension of the shortest path; see, e.g., [39,44]. For
regular lattices of dimension de, d" = de and dmin = 1. Thus
we expect that for δ " 2de, the power-law relations (VI) hold.

For δ = 0 the network has no spatial constraints and it is
known that the mean topological distance 〈"〉 between 2 nodes
on the network scales with the network size N as 〈"〉 ∼ log10 N
[10]. This represents the small world nature of random graphs.
Since N plays the role of the mass M of the network, it follows
that M increases exponentially with "; i.e., M(") ∼ exp(A").
We expect that this relation holds for δ < de where rmax and
r/r̄ are both proportional to the linear scale L of the network;
see Eqs. (2) and (3). Since for δ > 2de we expect power-law
relations (8), we conjecture that in the intermediate regime
de ! δ < 2de, M(") will increase slower than exponential and
faster than a power law, via a stretched exponential,

M(") ∼ exp(A"α), de ! δ < 2de. (9)

This function can bridge between the exponential behavior for
δ < de and the power law for δ > 2de. For δ approaching de

from above, α should approach 1, while for δ approaching
2de from below, α should approach 0, consistent with a power
law. The conjecture Eq. (9) is supported by earlier numerical
simulations [30] where it was found that in the intermediate
regime, " scales as (log10 N )β , leading to α = 1/β. On
the basis of numerical simulations it was estimated [30]
that α ' δ(2 − δ) in de = 1 and α ' δ(4 − δ)/4 in de = 2,
which actually can be combined into a single equation,
α = δ′(2 − δ′), when the relative distance exponent δ′ = δ/de

is introduced. Thus our conjecture (9) becomes

M(") ∼
{

eA" , δ′ < 1,

eA"δ′ (2−δ′)
, 1 ! δ′ < 2,

(10)

where the prefactor A may depend on δ′ and de. To test
this hypothesis, we have plotted, in Figs. 8(a)–8(c) (de =
1) and Figs. 9(a)–9(c) (de = 2), M(") versus "δ′(2−δ′), in a
semilogarithmic fashion. The relative distance exponents δ′

are 0.5, 1.25, and 1.75 in both cases. The lattice sizes are
the same as in Figs. 4 and 5. For δ′ = 0.5 where the spatial
constraints are irrelevant, we find log10 M ∼ ", in agreement
with (10). In the intermediate δ regime 1 ! δ′ < 2 we find that
log10 M ∼ "α , with α = 0.93 (δ′ = 1.25) and 0.43 (δ′ = 1.75),
also in agreement with (10). Accordingly, in the intermediate
δ regime, M(") scales with the topological distance " as a
stretched exponential which serves as a “bridge” between the
exponential behavior for δ < de and the anticipated power-law
behavior for δ well above 2de.

Now the question arises how the power law in Eq. (5) that
describes the scaling of M with r and the stretched exponential
in Eq. (10) that describes the scaling of M with " can be
simultaneously satisfied. The only way to fulfill both equations
is that also r(") is a stretched exponential with the same α in
the intermediate regime, i.e.,

r(") ∼ eB"δ′ (2−δ′ )
, 1 ! δ′ < 2, (11)

and the ratio between the prefactors A and B should yield the
dimension of the network. This is since M(") ∼ eA"δ′ (2−δ′ ) =
(eB"δ′ (2−δ′ )

)A/B ∼ rd . Figures 8(e), 8(f), 9(e), and 9(f) support
the assumption (11). The prefactor B is obtained from the
slopes of the straight lines in the figures and indeed the values
of A/B are found to be identical to the values of the dimensions
we obtained in the previous section. For δ below de [see
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FIG. 8. (Color online) The mass M (left column) and the relative
distance r/r̄ (right column) as function of "α [" is the topological
distance and α = δ′(2 − δ′)] for ER networks embedded in linear
chains with k = 4, for the system sizes N = 105, 106, and 107 with
δ = 0.5, 1.25, and 1.75. The straight lines are best fits to the data with
slopes A and B, respectively.

Figs. 8(d) and 9(d)], r is independent of " and M ∼ eA" [see
Figs. 8(a) and 9(a)].

For δ " 2de, we expect that M(") and r(") follow power
laws, such that we can determine, from a double logarithmic
plot, the chemical dimension d" and the dimension of the
shortest path, dmin. Figures 10 and 11 show that this is
the case. But surprisingly, for δ " 2de (but close to 2de), the
values of dmin and d" do not agree with the values for the
corresponding regular lattices. For δ = 2de, we obtain d" '
3.02 in de = 1 and d" ' 3.67 in de = 2, significantly higher
than the corresponding values d" = 1 and d" = 2 in regular
lattices. Furthermore, the dimension of the shortest path dmin
is considerably smaller than in regular lattices (dmin = 1),
dmin = 1/2.65 = 0.38 in de = 1 and dmin = 1/1.80 = 0.56
in de = 2. Since M ∼ "d" ∼ rdmind" , the dimension d of the
network for δ " 2de is simply d = dmind", which yields
d ' 1.14 in de = 1 and d ' 2.04 in de = 2, in agreement
with our results of Figs. 4–7. For δ above 2de we expect that
d" and dmin accept the values of the corresponding regular
lattices. Figure 10 shows that this is indeed the case in de = 1,
with a pronounced crossover behavior for δ = 2.25 and 2.5.
The crossover point decreases with increasing δ. In de = 2,
in contrast, for δ = 2.25de and 2.5de the dimensions do not
seem to reach their anticipated values de = 2 and dmin = 1,
even though d ∼= 2 was obtained for both δ values. Figure 11
does not suggest that this is a finite-size effect since a bending
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FIG. 9. (Color online) The same as Fig. 8, but for ER net-
works embedded in a square lattice, the system sizes are N =
9 × 104, 106, and 9 × 106 with δ = 1.0, 2.5, and 3.5.

down for larger system sizes cannot be seen similar to that
in de = 1. However, we cannot exclude the possibility that at
very large system sizes that right now cannot be analyzed with
the current state-of-the-art computers, there will be a crossover
towards the anticipated values of d" = 2 and dmin = 1.

VII. SUMMARY

In summary, we studied the effect of spatial constraints on
complex networks where the length r of each link was taken
from a power-law distribution, Eq. (1), characterized by the
exponent δ. Spatial constraints are relevant in all networks
where distance matters, such as the Internet, power grid
networks, and transportation networks, as well as in cellular
phone networks and collaboration networks [2,8,20,23–25].
Our results suggest that for δ below the embedding dimension
de, the dimension of the network is infinite as in the case
of networks that are not embedded in space (represented by
δ = 0). For δ between de and 2de, the dimension decreases
monotonically, from d = ∞ to d = de. Above 2de, d = de.
We also studied how the mass M and the Euclidean distance
r scale with the topological distance ". For δ below de, M
increases exponentially with ", while r does not depend on ".
For δ between de and 2de, both the mass M and the Euclidean
distance r increase with " as a stretched exponential, with the
same exponent α but different prefactors in the exponential.
The ratio between these two prefactors yields the dimension
of the embedded network. Exactly at δ = 2de, the exponent α
becomes zero and M and r scale with " as power laws, defining
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FIG. 10. (Color online) The mass M (left column) and the relative
distance r/r̄ (right column) as a function of the topological distance "

for ER networks embedded in linear chains with k = 4, for the system
sizes N = 105, 106, and 107 with δ = 2.0, 2.25, and 2.5. The straight
lines are best fits to the data that yield the topological dimension
dl and the dimension of the shortest path dmin. Note that the slopes
below the crossover in (b), (c), (e), and (f) of M and r vs " are
the same. This yields d = 1 for all range of r as indeed seen in
Fig. 4.

the exponents d" and dmin, respectively similar to fractal struc-
tures [39,44]. While the dimension d is equal to de, surprisingly
d" and dmin do not have the values d" = de and dmin = 1 that
are expected for regular lattices. This effect seems to hold in
de = 2 also for δ values somewhat greater than 2de.

Our results have been obtained for a nearly δ-functional
degree distribution, but we argue that they are valid for any
narrow degree distribution, such as a Poissonian, Gaussian, or
exponential degree distribution, since all those networks are
expected to be in the same universality class. For power-law
degree distributions (scale-free networks [29]), there may
be differences for small values of δ, since it is known
that nonembedded random graphs and scale-free networks
are in different universality classes [45,46]. In the relevant
intermediate δ regime (de ! δ < 2de), we cannot exclude
the possibility that the dimensions do not depend on the
degree distribution. Indications are from measurements of the
dimension of the airline network and the Internet [32]. Both
are scale-free networks, with δ close to 3 (airline network) and
δ close to 2.6 (Internet). For the airline network, d is close to
3, while for the Internet, d is close to 4.5. These values are
consistent with those obtained here for the ER networks, with
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FIG. 11. (Color online) The same as Fig. 10, but for ER
networks embedded in a square lattice. The system sizes are N =
9 × 104, 106, and 9 × 106 with δ = 4.0, 4.5, and 5.0. The lines in (c)
and (f) demonstrate for comparison slopes 2 and 1, respectively.

the same δ values. We have assumed a power-law distribution,
Eq. (1), for the link length. Other distributions are possible,
for example an exponential distribution which holds for the
power grid and ground transportation networks [20]. This case
is equivalent to δ = ∞, since we have a finite length scale and
thus the dimension d of the network is expected to be the same
as the dimension of the embedding space de.

A power-law distribution of Euclidean distances appears
also in other physical systems where the present results may
be relevant. For example, model systems where the interactions
between particles decay as r−δ have been studied extensively
for many years; for recent reviews on the statistical physics and
dynamical properties of these systems, see [47,48]. Magnetic
models on lattices with long-range bonds whose lengths follow
a power-law distribution have also been studied; see, e.g., [49].
In Levy flights and walks, the jump lengths follow a power-law
distribution. For reviews see [41,50,51]. Finally, it has been
found that a power-law distribution of link lengths with δ = de

or de + 1 (depending on the type of transport) is optimal for
navigation [14,34,52–54].
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