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One highlight of the reported results is the 
ability to tune this critical rotation rate.

"e experiment by Wright et al. 
represents an advance in the emergent #eld 
of atomtronics. Modern electronics rely on 
the transport and interaction of electrical 
charges, primarily in semiconductors, 
whereas atomtronic devices rely on neutral 
atoms, whose characteristics include an 
internal structure, tunable interactions and 
long coherence times6. In the future it may 
be possible to fabricate atomtronic devices 
analogous to batteries, diodes and transistors, 
as well as fundamental logic gates7.

Atom SQUIDs have the potential to 
improve the sensitivity of rotation-measuring 
devices up to ten orders of magnitude 
compared with today’s photon-based 
precision inertial navigation technology8. 
"e work of Wright et al. represents a step 
towards the realization of a new generation 
of inertial sensing devices that have an 
ultracold atomic gas at their heart.  ❐

Mark Edwards is in the Department of Physics, 
Georgia Southern University, Statesboro,  
Georgia 30460-8031, USA.  
e-mail: edwards@georgiasouthern.edu

References
1. Pitaevskii, L. & Stringari, S. Bose-Einstein Condensation  

(Oxford Univ. Press, 2003).
2. Ramanathan, A. et. al. Phys. Rev. Lett.  

106, 130401 (2011).
3. Clarke, J. & Braginski, A. I. "e SQUID Handbook Vol. 1 & 2 

(Wiley-VCH, 2004).
4. Wright, K. C., Blakestad, R. B., Lobb, C. J.,  

Phillips, W. D. & Campbell, G. K. Phys. Rev. Lett.  
110, 025302 (2013).

5. Henderson, K., Ryu, C., MacCormick, C. & Boshier, M. G. 
New J. Phys. 11, 043030 (2009).

6. Pepino, R. A., Cooper, J., Anderson, D. Z. & Holland, M. J. 
Phys. Rev. Lett. 103, 140405 (2009).

7. Seaman, B. T., Krämer, M., Anderson, D. Z. & Holland, M. J. 
Phys. Rev. A 75, 023615 (2007).

8. Gustavson, T. L., Bouyer, P. & Kasevich, M. A. Phys. Rev. Lett. 
78, 2046 (1997).

In the winter of 1961, meteorologist 
Edward Lorenz was hard at work putting 
his computer through the paces of a 

weather-prediction simulation. Pressed for 
time, Lorenz decided to rerun his resource-
hungry program from an intermediate 
time point, dispensing with the need to 
start from scratch. He dutifully copied the 
initial conditions from his printout into his 
simulation, and was astonished to #nd that 
the new weather pattern quickly diverged 
from its predecessor — meaning that two 
phase-space trajectories with seemingly 
identical initial conditions had deviated 
from one another exponentially1.

We all know the punchline to this 
story, which forms part of a larger 
history of phase space2 and in many ways 
marks the beginning of our modern 
understanding of chaos theory. In this 
endeavour, linearization techniques for 
probing in#nitesimal perturbations have 
proven particularly useful, largely due to 
their inherent simplicity. Now, writing in 
Nature Physics, Peter Menck and colleagues 
urge us to pay closer attention to a more 
general scenario, in which perturbations are 
not necessarily so small3.

"e rate of deviation of two close 
trajectories, quanti#ed by the Lyapunov 
exponent, can be calculated analytically by 
linearizing a set of dynamical equations. 
But in the case where linearization yields a 
negative Lyapunov exponent, trajectories 
stick together, falling towards a stable #xed 
point instead of exponentially diverging. 

"e larger the magnitude of the negative 
Lyapunov exponent, the more linearly stable 
its #xed point is. In such situations, the 
proverbial $apping of a butter$y’s wings in 
Brazil will not have much of an e%ect on 
weather patterns in Texas. More speci#cally, 
a trajectory d initiated at some distance 
from a stable #xed point p will approach it 
only if the initial state p + d is within the 
basin of attraction of the #xed point.

A bifurcation diagram quantifying 
the available stable #xed points — on the 
basis of a set of dynamical equations — is 
an important tool in climate sciences, 
where multistability is common. "ere 
is a multitude of numerical methods 
dedicated to #nding the #xed points in large 
multidimensional systems4 . Complementary 
methods, based on the statistical properties 
of integrated time series, either from models 
or from measurements, are commonly 
used to assess the proximity of a system to 
bifurcation points5,6. But both the numerical 
methods and statistical time-series analysis 
implicitly assume that externally applied 
stochastic perturbations remain small with 
respect to the basin of attraction. However, 
a real external perturbation d may kick a 
system far away from the basin of a stable 
point even if p is the most linearly stable 
#xed point for the speci#c dynamics 
in question.

"is provides ample motivation for 
studying basins of stability — and in 
particular, the volume of these basins. 
Menck et al.3 chose real-world neural 

networks and power grids as key systems 
for which the notion of basin-volume 
assessment is particularly helpful. It turns 
out that engineering considerations may 
have led to a peculiar property shared by 
these two systems: both evolution and 
engineers seem to have unconsciously 
chosen a design with similar speci#c 
pathway lengths and a comparable level of 
acquaintance between common neighbours.

"ese two properties form a 2D metric 
that covers the span of topologies between 
fully organized lattices and completely 
random network models7. Menck et al.3 
found that neural networks of macaques, 
cats and Caenorhabditis elegans, together 
with the power grids of four countries, 
happen to be close to each other in terms 
of this metric. "e surprising similarity 
of these diverse systems in the realm of 
theoretically possible network topologies 
seems to rest with their need for supporting 
synchronized dynamics.

Drawing on previously derived 
conditions for the linear stability of 
synchronized states8, Menck et al.3 
compared linear stability with a new 
global stability concept based on the 
basin’s volume, for a multitude of network 
topologies. To accomplish this task, they 
used a Monte Carlo network generator 
with a control parameter spanning a range 
of topologies, from lattices to completely 
random Erdös–Rényi networks. Each 
node in their network was a 3D nonlinear 
oscillator coupled to other nodes. "e 
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authors randomly chose initial conditions 
p + d from a partial subset of the full 
phase space and counted the trajectories 
that ended up in a synchronized dynamics 
(describing one example of a Monte Carlo 
rejection method9).

"e study demonstrated that, in the 
range of possible topologies, the widest 
synchronization basin of stability for 
the network of oscillators was situated 
far away in phase space from the most 
linearly stable con#guration. "at is, the 
shortest paths in the network were actually 
longer in the optimal con#guration, 
as de#ned by the basin volume, and 
acquaintance between shared neighbours 
of two adjacent nodes was found to be 
more common than expected from linear 
considerations. "e experimental data 
from di%erent networks that rely on 

synchronized dynamics were shown to lie 
close to the optimum chosen by the basin-
stability model (although it should be noted 
that the details of single-node dynamics 
di%er from the model).

"e upshot of the study by 
Menck et al.3 is that we can now revise our 
understanding of systems with multiple 
stable points, for which we already have 
full bifurcation diagrams and Lyapunov 
exponents. Models for neural and cell 
networks, ocean circulation and chemical 
oscillators are just a few examples of those 
that stand to bene#t from this new insight 
into basin stability beyond linearization. 
Using the authors’ Monte Carlo rejection 
method to estimate the volume of the 
stable basin may even shake up some of 
our previous ideas — particularly those 
involving the chance that an almighty 

kick will induce an abrupt transition to an 
alternative stable state10.  ❐
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