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We study a realistic spatial network model constructed by randomly linking lattice sites with link-
lengths following an exponential distribution with a characteristic scale ζ. We find that this sim-
ple spatial network topology does not fulfill any single universality class, but exhibits a new multi-
universality with two sets of critical exponents. This bi-universality is characterized by random–like
scaling laws for measurements on a scale smaller than ζ but spatial scaling for measurements on
a larger scale. We further explore this topology by studying the resilience of a two-layer multi-
plex under localized attack. We find that for a broad range of the control parameters, our system is
metastable. In this metastable region, a localized attack larger than a critical size — that does not
depends on the size of the system — induces a propagating cascade of failures leading to the system
collapse.
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1. Introduction
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Fig. 1. Examples of real-world networks with links of characteristic length. The link-length distribution
of EU Power Grid and the Japan Local Rail, normalized for visibility. The normalized value of the data is 3.7
km (power) and 1.0 km (rail), and the characteristic length is 4.8 km (power) and 1.2 km (rail) if measured as
the mean or 3.3 km (power) and 2.0 km (rail) if measured as the inverse slope of the fit. After [1].
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When a complex network is embedded in space, it obtains a new property: geometric link length.
If the spatial effects are weak, all link-lengths are a priori equally likely. However, when the spatial
effects are strong, shorter links will be much more likely and it makes sense to model the link-length
distribution with a short-tail distribution like the exponential. This assumption is borne out by real-
world networks, as shown in Fig. 1. This idea was first suggested by Waxman [2] and later studied
for the Ising model embedded in space in annealed complex networks [3, 4].

Complex networks are typically studied as either random or spatial [5–7] with little attention
given to the unique universality features of topologies sharing elements of both. Though the well-
known small-world model [8, 9] allows simple transitioning from lattice to random, its universality
properties become random-like for even very-small rewiring probabilities [10, 11].

Fig. 2. Demonstration of a network with exponential distribution, Eq. (1). It can be seen that there are
many short range edges and only few long range. The network size is 50 × 50 for 〈k〉 = 2 and ζ = 2.

One of the most powerful findings of statistical physics is the discovery of universality classes
which can be used to categorize and predict the behavior of seemingly different systems. Various
models on lattices have been studied so far in the context of percolation theory and their collective
properties have been fully characterized by studying the scaling of various parameters, such as the size
of the giant component, the correlation length or the average size of finite clusters. Near criticality, all
these quantities scale as power laws of the control parameter of the system. The exponents in these
power laws have been shown to be related to each other by means of a set of scaling relations [12].

In addition, in recent years, world-wide human technological, social and economic systems have
become more and more integrated and interdependent [13–18]. Therefore, there is a need of modeling
these systems as interdependent for understanding their structure, function and robustness [19–26].
Studies on spatially embedded interdependent networks found that in many cases they are signifi-
cantly more vulnerable then non-embedded systems [27]. Further studies deal with similar models
but restrict the dependency links to be of limited length [28–31].

In many cases, a complex network may be subject to damage or attack that is spatially localized
such as natural disaster or terrorist attacks. Recent studies show that localized attacks on some systems
are significantly more damaging compared to random attacks [32, 33]. A study of localized attacks
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on two interdependent lattices with dependency links of limited length, found a metastable region in
which a localized attack larger than a critical finite size, induces a cascade of failures which propagate
through the whole system leading to its collapse [34].

The combination of spatially constrained connectivity links and multiplex dependency—both
ubiquitous features of real complex systems—makes these systems vulnerable to potentially catas-
trophic localized attacks. These attacks are important and realistic because they can represent local
damage on two spatial networks that depend on one another to function in a natural way — the nodes
are either the same, or every node in one network layer depends on the closest node in the other.
In addition, because of the interdependency between the networks the phase transition is abrupt, the
collapse after an attack is sudden and not containable once it starts.

Here we study a recently developed spatial embedded network model, whose aim is to give a
better description of real–world space embedded networks and of critical phenomena which takes
place in them [1]. We focus on two main aspects of this topology: (i) the unique percolation critical
behavior in the single-layer case, and (ii) the vulnerability to localized attacks in the multiplex case.
In both we find unique and surprising properties: multi-universality in the first case and metastability
in the second. We will begin by describing the model and then the results for each case.

In this spatial topology, the nodes are distributed as on a square lattice and the links are assigned
at random with an exponential link-length distribution:

P(r) ∼ exp (−r/ζ) , (1)

as illustrated in Fig. 2. Each link-length has a probability according to Eq. (1) and links which follow
this distribution are generated and added at random until the desired 〈k〉 is obtained. Here ζ is a
parameter determining the characteristic link length and thereby the strength of the embedding —
the smaller ζ is, the stronger the embedding is. Real network realizations supporting this model are
shown in Fig.1 [1]. For the multiplex case, we generate two (or more) sets of links with the same set
of nodes. In general there can be a different values of 〈k〉 and ζ for each layer though for this work,
we focus on the two-layer case where they are the same in both.

2. Results

2.1 Universality Classes in a Spatial Network Model
We begin by analyzing the geometric distance as a function of chemical distance between pairs of

nodes for percolation at criticality [35]. We denote by 〈r〉 the average geometric distance at chemical
distance l which is the minimal number of hops (number of links) between them. For percolation we
denote the parameter p that represents the probability for a single node to be occupied (not removed)
in the network and pc is the critical threshold above which a giant component emerges. The algorithm
to measure 〈r〉 is as follows: (i) randomly select a single node from the giant component at criticality
to be a source node, (ii) measure the geometric distances from this source to all nodes l steps away
(chemical distance l) from the source, (iii) average all the geometric distances obtained in step (ii).
Repeat this process over all the nodes in the giant component, and average over all sources. We find
that our network behaves for scales smaller than ζ differently compared to scales larger than ζ,

〈r〉 =

l1/2 l ≤ l∗

l1/1.13 l > l∗ .
(2)

To understand the origin of the two regions of critical exponents we note that for r < ζ the structure of
the lattice is not relevant since every pair of nodes can be connected with almost the same probability,
as per Eq. (1). This results in a mean-field-like behavior because the space is irrelevant, similar to d ≥
6 [1]. However, for r > ζ the links are much shorter than the measurement scale and the underlying
two-dimensional lattice structure determines the behavior. Thus, these two exponents 1/2 and 1/1.13
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are expected since they have been found for percolation in d ≥ 6 (MF) and for d = 2 respectively
[35]. In d ≥ 6 the spatial restrictions are irrelevant and the path is like a random walk (〈r2〉 ∼ t
(number of steps)). To derive Eq. (2) from a single scaling function, we propose the scaling ansatz,

〈r〉 = ζl1/2 f
(

l
l∗

)
(3)

where,

f (x) =

const x ≤ 1
xα x > 1 .

(4)

Here, l∗ is assumed to scale as ζ1.13. Indeed, from the scaling function Eq. (3), by using Eq. (4) and
identifying α = 1/1.13 − 1/2, we obtain Eq. (2). Our scaling assumption, Eq. (3), is supported by
simulations shown in Fig. 3.
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Fig. 3. The average geometric distance 〈r〉 as a function of the chemical distance l at criticality. Both
y-axis and x-axis scale according Eq. (3). Averages are taken over more then 200 realizations where each
network has 108 nodes. The scaling relation is : r = ζl1/2 f

(
l
l∗

)
where l∗ = ζ1.13. It can be seen that after the

scaling, the graph starts as nearly constant for l
l∗ � 1 and then crosses over at l ∼ l∗ to a slope with exponent

α. Note that for the pure lattice the constant region does not exist and as ζ increases the constant region gets
longer and the region with the exponent of α gets shorter. The bending down of the curves are due to finite size
of the systems. For infinite systems the bending down will disappear.

Next, we ask whether the bi-universality phenomena is unique for percolation at criticality or
whether it is general and can be observed also not at criticality. Hence we calculate directly the
geometric distance as a function of chemical distance and the network dimension when the network
is full i.e., p = 1. The algorithm to measure the geometric distance as a function of chemical distance
when the network is full is the same as described above for criticality. Simulation results are shown
in Fig. 4. It is seen that for small l the distance r behave approximately as r ∼ l1/2 while for large l,
r ∼ l. Indeed, we expect that the behavior of the network will follow:

〈r〉 =

l1/2 l ≤ l∗∗

l l > l∗∗.
(5)
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Fig. 4. The average geometric distance 〈r〉 as a function of the chemical distance l when the network
is full (p = 1). Average over more then 200 realizations are taken and the network has 108 nodes. The scaling
relation shown: r = l1/2 f (x). Here one can see that after scaling the graph behavior starts approximately as
a constant and then crosses over to exponent of 1/2. For lattice the constant region does not exist and as ζ
increases the constant region gets longer. The inset demonstrates the logarithmic scaling of l∗∗ with ζ. The
inset shows the crossover point l∗∗ as a function of ζ for different values of 〈r〉/l1/2 above the constant region.

This is because at short distances we expect a random behavior and at large distances we expect
spatial behavior. The crossover l∗∗ is expected to occur at l∗∗ ∼ log(ζ2) since for mean field (or ER)
the shortest path behaves as l ∼ logN ∼ log(π · r2). Support for this relation is presented in the inset
of Fig. 4. To derive Eq. (5) from a single scaling function, we propose,

〈r〉 = l1/2 f (x) (6)

where,

f (x) =

constant x ≤ l∗∗

l1/2 x > l∗∗.
(7)

Note that Fig. 4 is plotted after scaling using Eq. (6) and Eq. (7). In this figure, the graph start as
constant and then crossover to the exponent 1/2. As can be seen, as ζ increases the crossover emerges
later where for lattice there is no constant behavior, see inset of Fig. 4 for the scaling of the crossover.

We also evaluated the network dimension directly following the method of Li et al [36]. To
this end we first measured 〈r〉 as a function of l as shown in Fig. 4, and then we calculated the
mass (number of sites), M, as a function of l. Using both measurements we can plot M vs r whose
exponent determines the dimension d of the system [36]. The results are demonstrated in Fig. 5,
where the slope (power-law exponent) shows the network dimension. One can see that at short scale
the slope approach infinite i.e., the dimension is diverging (see the inset of Fig. 5) and at large scale
the slope approaches 2 indicating that the dimension of the network is 2 as expected for the d = 2
spatial network. As ζ increases the crossover emerges at larger l and the slope of the random region
tends to infinity as can be seen in the inset of Fig. 5.
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Fig. 5. The dimension of the system when the network is at p = 1. Average is taken over more then 100
simulations and the network has 108 nodes. Here one can see that at short scales the slope is diverging as can
be shown from the inset and then a crossover emerges with a slope of 2.

In conclusion, we see that our model network exhibits two types of scaling behavior due to the
exponential distribution link-length topology. For short scales (r < ζ) it behaves like an infinite
dimensional system with mean-field exponents, while for longer scales (r > ζ) the two-dimensional
exponents are observed.

2.2 Localized Attacks on Spatial Multiplexes
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Fig. 6. Phase diagram of the critical attack size rc
h. Dependence of the critical attack size rc

h on the average
degree 〈k〉 and the characteristic link length ζ. The color bar on the right represents the size of rc

h in lattice
units. In this figure the network size is 1000 × 1000, with averages over 20 runs are taken for each data point.

Real-world networks rarely appear in isolation. For example the power grid and communication
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h as a function of ζ at the metastable region. This figure represents

horizontal lines in Fig. 6. The critical radius rc
h increases almost linearly as a function of ζ. In this figure the

network size is 1000 × 1000 and averages over 20 runs are taken for each data point.

system depend on one another [18]. Therefore, it is important to understand the spatial network
topology discussed above in the case of interacting networks. Though random failures in multiplex
networks of this topology have been studied [1], localized attacks—which occur frequently in real
world due to natural disasters or terrorist attacks—have not been studied on multiplex embedded
structures.

In this section, we describe our study of the resilience of a multiplex under localized attack.
For simplicity, we focus on the case in which the 2-d lattice layers have the same characteristic link
length ζ and same average degree 〈k〉 as described above. The multiplex network with two layers
is equivalent to two interdependent networks if the dependency links have length zero, while the
connectivity links are random but restricted by the link-length distribution in Eq. (1).

For a node to remain functional in our model it must be connected to the giant component in
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both layers, reflecting, for example, the need for electricity and communication connectivity of a
neighborhood or communications station. Therefore, we perform a localized attack on the two layers
multiplex, as follows: (i) We remove all nodes within a distance rh from a random location in the
system. (ii) From the set of the remaining nodes, we remove all the nodes that are not in the giant
component of the first layer. (iii) We repeat step (ii) in the second layer. (ii) and (iii) are repeated until
there are no nodes to remove, in other words, we have the mutual giant component (MGC) of the two
layers in the multiplex.

At the end of this cascade, the system is categorized as functional or non-functional depending
on whether the MGC, the largest set of nodes that are connected in both layers, is of the order of the
system size or not. This reflects the assumption that nodes must be connected in both layers in order
that the multilayer system will be functional. For example, in a multilayer system of electricity and
its controlled communication network large component of nodes in both layers must be connected in
order that the multilayer system will be functional.

We analyzed the effects of the localized attack on the multiplex for different 〈k〉, ζ and rh. Our
simulations suggest the existence of rc

h, the minimum radius needed to cause the system to collapse.
When we calculate the critical attack radius rc

h for different 〈k〉 and ζ, we discover three regions,
as shown in the phase diagram in Fig.6. The regions are: (i) Stable (in dark red) — in this region
the system remains functional after localized attack of any finite size. (ii) Unstable (in blue) — in
this region the system is non-functional even if no nodes are removed. (iii) Metastable (between the
above-mentioned regions) — in this region only attacks with radius larger than rc

h yield breakdown
where the system becomes fully non-functional. As expected and observed in Fig.7, the system is
more stable for larger 〈k〉, i.e., rc

h sharply increases. Additionally, as seen in Fig.8, at the metastable
region, we find that rc

h increases almost linearly as a function of ζ.

3. Discussion

Here, we have analyzed a simple spatial topology based on modifying the link-length distribu-
tion on an underlying grid spacing of nodes, following [1]. We find that in single layers, this topology
displays fascinating multi-universality: for measurements of length below ζ, the network exhibits
random scaling behavior, while for measurements of longer lengths, it appears as a lattice-like. This
sheds new light on real-world systems which may not appear to fit any single universality class. It is
possible that real systems are in fact in multiple classes, depending on the scale of the measurement.
Empirical measurements of real-world networks suggests that this may be the case (cf. Fig. 1) but
available data sets lack spatial homogeneity on a wide enough scale to verify this directly. We further
probe this topology by considering its response to localized attacks in a multiplex. This combination
of features (characteristic link-length topologies, interdependence between layers and localized fail-
ures/attacks) is ubiquitous yet largely ignored. We find that it exhibits metastability for a wide range
of system parameters, where small and finite size localized damage can spread and destroy the entire
system.
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