
PHYSICAL REVIEW E 84, 066116 (2011)
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Robustness of two coupled networks systems has been studied separately only for dependency coupling
[Buldyrev et al., Nature (London) 464, 1025 (2010)] and only for connectivity coupling [Leicht and D’Souza,
e-print arXiv:0907.0894]. Here we study, using a percolation approach, a more realistic coupled networks system
where both interdependent and interconnected links exist. We find rich and unusual phase-transition phenomena
including hybrid transition of mixed first and second order, i.e., discontinuities like in a first-order transition of
the giant component followed by a continuous decrease to zero like in a second-order transition. Moreover, we
find unusual discontinuous changes from second-order to first-order transition as a function of the dependency
coupling between the two networks.
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I. INTRODUCTION

During the last decade complex networks have been studied
intensively, where most of the research was devoted to analyz-
ing the structure and functionality of isolated systems modeled
as single noninteracting networks [1–25]. However, most real
networks are not isolated, as they either complement other net-
works (“interconnected networks”), must consume resources
supplied by other networks (“interdependent networks”), or
both [26–30]. Thus, real networks continuously interact with
each other, composing a large complex system, and, with the
enhanced development of technology, the coupling between
many networks becomes more complex and more significant.

Until now two different types of coupled networks models
have been studied. Buldyrev et al. [31] investigated the robust-
ness of coupled systems with only interdependence links. In
these systems, when a node of one network fails, its dependent
counterpart node in the other network also fails. They found
that this interdependence makes the system significantly more
vulnerable [31,32]. At the same time, Leicht and D’Souza
[33] studied the case where only connectivity links couple
the networks, i.e., interconnected networks, and found that
the interconnected links make the system significantly more
robust. However, real coupled networks often contain both
types of links, interdependent as well as interconnected links.
For example, the airport and the railway networks in Europe
are two coupled networks composing a transportation system.
In order to arrive to an airport, one usually uses the railway,
while people arriving to the country by airport usually use the
railway. In this system, if the airport is disabled by some strike
or accident, the passengers can still use the nearby railway
station and travel to their destination or to another airport
by train, so the two networks complement each other and
are coupled by connectivity links. On the other hand, if the
railway network is disabled, the airport traffic is damaged, and
if the airport is disabled, the railway traffic is damaged, so
both networks are coupled by dependency links as well. The

important characteristic of such systems is that a failure of
nodes in one network carries implications not only for this
network but also on the function of other dependent networks.
In this way it is possible to have cascading failures between the
coupled networks that may lead to a catastrophic collapse of the
whole system. Nevertheless, small clusters disconnected from
the giant component in one network can still function through
interconnected links connecting them to the giant component
of the other network. Thus, we have two competing effects; the
interconnectivity links increase the robustness of the system,
while the interdependency links decrease its robustness. Here
we study the competition of the two types of interlinks on the
system robustness using a percolation approach, and we find
unusual types of percolation phase transitions.

II. GENERAL FRAMEWORK

Let us consider a system of two networks, A and B,
which are coupled by both dependency and connectivity
links (see Fig. 1). The two networks are partially coupled
by dependency links, so that a fraction qA of A nodes depends
on nodes in network B, and a fraction qB of B nodes
depends on the nodes in network A, with the following two
assumptions: that a node from one network depends on no
more than one node from the other network and that, if node
Ai depends on node Bj , then if Bj depends on some Ah

then h = i (Fig. 1). In addition, the connectivity links within
each network and between the networks can be described by
a set of degree distributions {ρA

kA,kAB
,ρB

kB,kBA
}, where ρA

kA,kAB

(ρB
kB,kBA

) denotes the probability of an A node (B node) to
have kA (kB) links to other A nodes (B node) and kAB

(kBA) links toward B nodes (A nodes). In this manner we
get a two-dimensional generating function describing all the
connectivity links [33], GA

0 (xA,xB) =
∑

kA,kAB
ρA

kA,kAB
xkA

A xkAB

B ,
and GB

0 (xA,xB ) =
∑

kB,kBA
ρB

kB,kBA
xkBA

A xkB

B .
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FIG. 1. (Color online) Two types of interlinks where the depen-
dency links (dashed arrows) are not necessarily bidirectional. The
nodes of A and B are randomly connected with connectivity links
(full line). The functionality of some of the A nodes (red open circles)
depends on B nodes (purple solid circles) and vice versa.

The cascading process is initiated by randomly removing a
fraction 1 − p of the A nodes and all their connectivity links.
Because of the interdependence between the networks, the
nodes in network B that depend on the removed A nodes are
also removed along with their connectivity links. As nodes
and links are removed, each network breaks up into connected
components (clusters). We assume that when the network is
fragmented the nodes belonging to the largest component
(called the giant component) represent a finite fraction of
the network which is still functional, while nodes that are
parts of the remaining smaller clusters become dysfunctional,
unless there exists a path of connectivity links connecting these
small clusters to the largest component of the other network.
Since the networks have different topologies, the removal
of nodes and related dependency links is not symmetric in
both networks, so that a cascading process occurs, until the
system either becomes fragmented or stabilizes with a giant
component.

Let gA(ϕ,φ) and gB(ϕ,φ) be the fractions of A nodes
and B nodes in the giant components after the percolation
process initiated by removing a fraction of 1 − ϕ and 1 − φ of
networks A and B, respectively [11]. The functions gA(ϕ,φ)
and gB(ϕ,φ) depend only on GA

0 (xA,xB ) and GB
0 (xA,xB )

(for details see the Appendix), and the dynamics of the
cascading process can be described by the following set of
equations:

ϕ1 = p, φ1 = 1, P A
1 = ϕ1gA(ϕ1,φ1),

φ2 = 1 − qB[1 − pgA(ϕ1,φ1)], P B
2 = φ2gB(ϕ1,φ2),

(1)
ϕ2 = p{1 − qA [1 − gB(ϕ1,φ2)]}, P A

2 = ϕ2gA(ϕ2,φ2),

φ3 = 1 − qB[1 − pgA(ϕ2,φ2)], P B
3 = φ3gB(ϕ2,φ3),

where φi ,ϕi are the remaining fractions of nodes at stage i of
the cascade of failures and P A

i , P B
i are the corresponding

giant components of networks A and B at the cascading
stage i, respectively. Generally, the nth step is given by the

equations

ϕn = p{1 − qA[1 − gB(ϕn−1,φn)]},
φn = 1 − qB[1 − pgA(ϕn−1,φn−1)], (2)

P A
n = ϕngA(ϕn,φn), P B

n = φngB(ϕn−1,φn).

By introducing two new notations,

uA ≡ gA(ϕ∞,φ∞), uB ≡ gB(ϕ∞,φ∞), (3)

we can write Eqs. (2) at the end of the cascading process,
n → ∞, as

φ∞ = p[1 − qA(1 − uB)], ϕ∞ = 1 − qB(1 − puA), (4)

and the giant components are

P A
∞ = uAφ∞ = uAp[1 − qA(1 − uB)],

(5)
P B

∞ = uBϕ∞ = uB[1 − qB(1 − puA)].

III. POISSONIAN DEGREE DISTRIBUTIONS

We consider the case where all degree distributions of the
connectivity intra- and interlinks are Poissonian, for which
the functions uA and uB obtain a simple form. Assuming kA

and kB are the average intralink degrees in networks A and B
and kAB , kBA are the average interconnectivity links degrees
between A and B (allowing the case kAB %= kBA, since the two
networks may be of different sizes), we obtain

uA = 1 − e−kApuA[1−qA(1−uB )]−kABuB [1−qB (1−puA)],
(6)

uB = 1 − e−kBApuA[1−qA(1−uB )]−kBuB [1−qB (1−puA)].

Generally, for fixed parameters kA,kB,kAB,kBA,qA,qB , and
p, it is often impossible to achieve an explicit formula for
the giant components P A

∞ and P B
∞. However, one can still

solve Eqs. (6) graphically (numerically) and substitute the
numerical solution into Eqs. (5). For simplicity and without
loss of generality, we study the case where kA = kB ≡ k
and kAB = kAB ≡ K . Figure 2(a) compares the numerical
solutions with the simulation results for P A

∞ and P B
∞ as a

function of p, showing that the analytical results of Eqs. (5)
and (6) are in excellent agreement with the simulations.

A. Partial dependence

Next we are interested in the properties of
the phase transition under random attack, so first we
determine the conditions when transition does not occur. This
is the case where for a given qB < 1, even if all nodes of
network A are removed (i.e.,p = 0), there still exists a giant
component in network B [see circles in Fig. 2(a)] and no
phase transition occurs. For Poissonian degree distributions,
it is easy to see that, if after the removal of all B nodes that
depend on the attacked A nodes the new average intralink
degree in network B is less than one, i.e.,

kB(1 − qB) < 1, (7)

a phase transition does occur. Therefore, our further analysis
is based on condition (7). In addition, from now on, we will
set both dependency couplings, qA and qB , to be larger than
zero.
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FIG. 2. (Color online) (a) Giant components P A
∞ and P B

∞ vs a
fraction of the remaining nodes, p, for N = 10 000, k = 2, and
K = 1. Networks A (open symbols) and B (full symbols) are shown
for different (qA,qB ) pairs: (0.8,0.1) (◦), (0.1,0.8) ('), and (0.8,0.8)
(!). The symbols represent simulations and the lines represent the
theory. We see three different types of behaviors: no phase transition
(◦), second-order phase transition ('), and first-order phase transition
(!). (b) Phase diagram showing the first-order, second-order and
hybrid phase transition regimes and the boundaries, for qB = 1 and
k = 3. In the second-order transition regime, between the two dashed
curves (red and blue), there exists a hybrid phase-transition regime
[see details in Fig. 3(c)]. Since the hybrid transition is continuous
in the neighborhood of pc and the jump occurs well above pc,
we classify this hybrid phase transition as a second-order phase
transition.

For a second-order phase transition, the giant component
decreases continuously to zero at the percolation threshold pc.
Thus, by taking the limit of system (6) at uA = uB = 0 we
obtain the second-order threshold:

pII
c = 1 − kB(1 − qB)

[kA + (kBAkAB − kAkB)(1 − qB)](1 − qA)
. (8)

In particular for qA = 1 and 0 < qB < 1 this threshold
becomes

pII
c = 1

kB(1 − qB)
,

which together with Eq. (7) implies that pII
c > 1, and therefore

the phase transition must be of first order at pI
c < 1 (that will

be determined later).
When extracting uB from the first equation of system (6),

it can be rewritten as

uB = − log(1 − uA) + kAp(1 − qA)uA

kApqAuA + kAB[1 − qB(1 − puA)]
≡ H1(uA),

(9)
uB = 1 − e−kBAuAp[1−qA(1−uB )]−kBuB [1−qB (1−uAp)] ≡ H2(uA).

The intersection of the two curves (the maximum solution of
uA,uB) is the solution of the system. When the phase transition
is first order and p = pI

c, the curves of Eqs. (9) are tangentially
touching at the solution point, where

(
dH1

duA

= dH2

duA

)∣∣∣∣
p=pI

c

. (10)

Obviously, uA,uB , and p can be treated as variables of Eqs. (9)
and (10). Solving these equations, the minimal solution of p
and the corresponding maximal uA and uB is the solution of
the system at criticality.

B. Full dependence

When networks A and B are fully dependent, i.e.,
qA = qB = 1, both networks must be the same size and
therefore kAB = kBA ≡ K , and system (6) yields a simple

0
1

2
0

0.5

1
0

0.5

K

q
A

P
B ∞

(p
c)

0 1 2
0

0.1

0.2

0.3

0.4

K

P
A ∞

(p
c),

P
B ∞

(p
c)

PA
∞(p

c
)

PB
∞(p

c
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

u A
,u

B

u
A

u
B

p
c
h≈0.66

(a) (b) (c)

0.4 0.6 0.8
0

0.5

p

P∞
A,P∞

B

FIG. 3. (Color online) (a) Size of giant components vs dependency and connectivity links strength, for qB = 1 and k = 3. The giant
components size at pc changes from zero to a finite value while changing qA and K . When qA and K are at the boundary of different phase
transitions, the jump occurs [see Fig. 2(b)]. (b) The values of P A

∞(pc) (◦) and P B
∞(pc) (!) along the boundary for qB = 1 and k = 3. (c) A

hybrid phase transition, for qB = 1,qA = 0.35, k = 3, and K = 0.1. According to Eqs. (5), P A
∞ and P B

∞ have the same properties as uA and
uB , respectively. At p = ph

c ≈ 0.66 the values of uA and uB jump, and then for lower p values they continuously approach zero. In the inset,
simulation and theoretical results are shown as symbols and lines, respectively.
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form:
uA = 1 − exp[−puAuB(kA + K)],

uB = 1 − exp[−puAuB(kB + K)].

The size of the mutual giant component P∞ is thus given by

P∞ = P A
∞ = P B

∞ = p[1 − e−P∞(kA+K)][1 − e−P∞(kB+K)],

(11)

which is similar to the solution of the fully interdependent
system [31,34], where the only difference is that the de-
grees of networks A and B are now replaced by kA + kAB

and kB + kBA, respectively. Thus, interestingly, in a fully
interdependent coupled networks system, adding connectivity
interlinks has the same effect as increasing the intradegree of
the corresponding networks and, therefore, in this case, the
phase transition must be of first order. From Eqs. (9) and (10),
one can get the threshold:

pI
c = 1

kA(1 − uA)[−1 + (1 − uA)α − uAα(1 − uA)α−1]
,

(12)

where α ≡ (kB + kBA)/(kA + kAB), and uA satisfies the equa-
tion

uA =1− exp
{

uA[1 − (1 − uA)α]
(1 − uA)[−1 + (1 − uA)α − uAα(1 − uA)α−1]

}
.

(13)

By substituting pII
c from Eq. (8) into Eqs. (9) and (10)

and evaluating both uA and uB , we can derive in the phase
diagram the boundary between the first- and second-order
transitions [see dashed line in Fig. 2(b)]. An interesting
phenomenon, which to the best of our knowledge has not been
observed before, is that when the phase transition changes
from first to second order, there are discontinuities (abrupt
jumps) of P A

∞(pc),P B
∞(pc) in the phase-transition boundary

[see Figs. 3(a) and 3(b)]. The boundary between the first- and
second-order phase transition satisfies pI

c = pII
c . Therefore,

by replacing pI
c by pII

c in Eq. (9) and evaluating both uA

and uB we obtain the boundary, seen in Fig. 3(a), between
the first- and second-order transitions. When we reduce the
three equations to a single equation, uA,uB should always be
the maximal non-negative solution in [0, 1]. When Eqs. (9)
and (10) have more than one solution, we always choose
the minimal non-negative value pmin

c and the corresponding
maximal values umax

A ,umax
B as the physical solution at the

threshold. In part of the boundary, umax
A > 0 and umax

B > 0,
and of course pmin

c ,uA = 0, and uB = 0 are also the solution
of the system. This means that there exist two intersections
that both satisfy the tangential condition on the boundary [as
shown in Fig. 4(a)]. This implies that when the order of the
phase transition changes from first to second, P A

∞(pc),P B
∞(pc)

are discontinuous [see Figs. 3(a) and 3(b)]. This phenomenon
contrasts most known systems possessing both first- and
second-order transitions. Usually, in physical systems, the
first-order jump in the order parameter and other related
properties, such as the specific heat, present a continuous
change along the transition line when the system changes from
first to second order [35].

In addition to the existence of jumps in P A
∞(pc),P B

∞(pc)
at the boundary between the first- and second-order phase
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FIG. 4. (Color online) Tangential conditions. (a) An abrupt jump
on the boundary for qA = 0.394,qB = 0.8 and k = 3,K = 0.2. Here
pI

c = pII
c = 0.5464, which is the threshold of the system. Although

both intersections (one of which is at the origin) satisfy the tangential
condition, the umax

A ,umax
B values are the physical solution and the

transition is of the first order. (b) Hybrid transition analysis, for qB =
1,qA = 0.35,k = 3, and K = 0.1. Here pc ≈ 0.556 and ph

c ≈ 0.66.
The maximal intersection S satisfies the tangential condition. When
continuously decreasing p, the solution of the system jumps from
the maximal intersection S to the minimal intersection Q and then
continuously decreases to zero.

transitions, we find also another unusual phenomenon. When
one network strongly depends on the other, there exist hybrid
phase transitions. A hybrid phase transition means that, when
the attack strength, 1 − p, increases, the size of the giant
component jumps at ph

c from a large value to a small value
and then continuously decreases to zero. A similar behavior
has been found in bootstrap percolation [36]. Since the second-
order transition is characterized by a giant component which
is continuous in the neighborhood of pc, we regard the hybrid
phase-transition regime as a second-order phase-transition
regime [see Fig. 2(b)]. For the hybrid phase transition, there
exists a threshold ph

c at which the jump occurs. For p just
below ph

c , the solution of Eqs. (9) for uA,uB will jump
to lower values. After the jump, when p further decreases,
uA and uB approach zero continuously, which implies that
the giant components’ sizes change to zero continuously
[see Fig. 3(c)].

For the three-equation system Eqs. (9) and (10), the minimal
solution of pmin in [0, [1] is pc (the physical solution).
Besides pmin, if Eqs. (9) have another solution ph

c ∈ (0,1) and
corresponding solution uh

A,uh
B , we can find a hybrid phase
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transition. The set (ph,uh
A,uh

B) means that when p is just
below ph

c the solutions uA,uB of the first two equations of
Eqs. (9) will jump to small values. After the jump, when
we continue to decrease p toward pc = pmin, both uA and
uB will continuously decrease to zero. For example, for the
parameters qA = 0.35,qB = 1,k = 3, and K = 0.1, we obtain
pc ≈ 0.556 and ph

c ≈ 0.66. When p is just below 0.66, the
giant components drop to smaller positive values like in a
first-order phase transition. After this discontinuous drop, the
giant components’ sizes continuously decrease to zero while
decreasing p from 0.66 to 0.556, like a second-order phase
transition [see Fig. 4(b)].

IV. SUMMARY AND CONCLUSION

In summary, we studied the dynamics of the cascading
failures process and the state solutions of the giant components
in coupled networks, when both interdependent and intercon-
nected links exist, using a percolation approach. Although our
detailed analysis is for ER networks, the theory can be applied
to any network systems topology. We find that the existence
of interconnectivity links between interdependent networks
introduces rich and intriguing phenomena through the process
of cascading failures. Increasing the strength of interconnect-
ing links can significantly change the transition behavior and
often brings up some counterintuitive phenomena, such as
changing of the transition from second order to first order [as
seen in Fig. 2(b)]. We also find an unusual abrupt jump in the
boundary between first- and second-order phase transitions at
the criticality. Moreover, when one of the networks strongly
depends on the other network, unusual hybrid phase transitions
are observed represented by continuous and discontinuous
changes in the giant component.
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APPENDIX: HOW TO GET gA(ϕ,φ) AND gB(ϕ,φ)

We model the percolation process using the branching
process approach. Let GA

0 (xA,xB) =
∑

kA,kAB
ρA

kA,kAB
xkA

A xkAB

B

and GB
0 (xA,xB ) =

∑
kB,kBA

ρB
kB,kBA

xkBA

A xkB

B be the degree dis-
tributions’ generating functions. The probability of following

a randomly chosen AB link connecting an A node of degree
kA to a B node with excess kAB degree (i.e., having a total
A-to-B degree of kAB + 1) is proportional to (kAB + 1)ρA

kA,kAB
,

and the generating function for this distribution is [33],

GAB
1 (xA,xB ) =

∑

kA,kAB

(kAB + 1)ρA
kA,kAB+1∑

k′
A,k′

AB

k′
AB ρA

k′
A,k′

AB

xkA

A xkAB

B . (A1)

Analogously, we construct the other three excess generating
functions: GAA

1 (xA,xB),GBA
1 (xA,xB), and GBB

1 (xA,xB ).
After removing a fraction 1 − ϕ of nodes in network A

and a fraction 1 − φ of nodes in network B, we can set new
arguments to the generating functions, so that xA and xB will
be replaced by 1 − ϕ(1 − xA) and 1 − φ(1 − xB), respectively
[37–39]. Suppose gA(ϕ,φ),gB(ϕ,φ) are the fractions of A
nodes and B nodes in the giant components after removal of
1 − ϕ and 1 − φ fractions of networks A and B, respectively.
Then we have

gA(ϕ,φ) = 1 − GA
0 [1 − ϕ(1 − fA),1 − φ(1 − fBA)],

(A2)
gB(ϕ,φ) = 1 − GB

0 [1 − ϕ(1 − fAB),1 − φ(1 − fB)],

where

fA = GAA
1 [1 − ϕ(1 − fA),1 − φ(1 − fBA)],

fAB = GAB
1 [1 − ϕ(1 − fA),1 − φ(1 − fBA)], (A3)

fBA = GBA
1 [1 − ϕ(1 − fBA),1 − φ(1 − fB)],

fB = GBB
1 [1 − ϕ(1 − fBA),1 − ϕ(1 − fB)].

When all degree distributions of inter- and intranetworks A
and B are Poissonian distributed, all the functions can be more
simple. Assume kA and kB are the average intralinks degrees
in networks A and B and kAB , kBA are the average interlinks
degrees between A and B (allowing the case kAB %= kBA,
since the network sizes of A and B can be different), then we
have GAA

0 (xA) = ekA(xA−1), GAB
0 (xB) = ekB (xB−1), GBA

0 (xA) =
ekBA(xA−1), GBB

0 (xB) = ekB (xB−1), and

GAA
1 (xA,xB ) = GAB

1 (xA,xB ) = GA
0 (xA,xB)

= GAA
0 (xA)GAB

0 (xB), (A4)

GBB
1 (xA,xB ) = GBA

1 (xA,xB ) = GB
0 (xA,xB)

= GBA
0 (xA)GBB

0 (xB).

Submitting the above equations into systems (A2) and (A3),
we get

gA(ϕ,φ) = 1 − exp[−kAxgA(ϕ,φ) − kABygB(ϕ,φ)],
(A5)

gB(ϕ,φ) = 1 − exp[−kBAxgA(ϕ,φ) − kBygB(ϕ,φ)].
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