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A fundamental problem in network science is to predict how certain individuals are able to initiate new
networks to spring up “new ideas.” Frequently, these changes in trends are triggered by a few innovators
who rapidly impose their ideas through “viral” influence spreading, producing cascades of followers and
fragmenting an old network to create a new one. Typical examples include the rise of scientific ideas or
abrupt changes in social media, like the rise of Facebook to the detriment of Myspace. How this process
arises in practice has not been conclusively demonstrated. Here, we show that a condition for sustaining a
viral spreading process is the existence of a multiplex-correlated graph with hidden “influence links.”
Analytical solutions predict percolation-phase transitions, either abrupt or continuous, where networks are
disintegrated through viral cascades of followers, as in empirical data. Our modeling predicts the strict
conditions to sustain a large viral spreading via a scaling form of the local correlation function between
multilayers, which we also confirm empirically. Ultimately, the theory predicts the conditions for viral
cascading in a large class of multiplex networks ranging from social to financial systems and markets.
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I. INTRODUCTION

The adoption of new ideas or products and even novel
scientific theories often depends upon the foregoing sup-
port of a few innovators, pioneers, or knowledgeable
individuals. These early adopters disseminate the new idea
through viral influence spreading that leads to cascades of
followers [1–6]. Examples are found in the rise of brand-
new consumer products, where a few early adopters can
have a large effect on the entire population, a process
leading to modern engagement strategies of “viral market-
ing.” Similarly, scientists in a given academic field work in
specialized topics by developing collaboration networks.
As innovative ideas arise, the majority of them may rapidly
transition to the study of the new topic. When the pioneers
migrate to develop a new idea, their former social network
weakens its roots, hence leading to its rapid disintegration
[7–11]. A prominent example is the rise of the social-
networking community Facebook to the detriment of the
previously dominant Myspace, as shown in Fig. 1(a).
The conditions favoring such a process of disintegration
at the tipping point of a dominant network or community
and the rise of a competing network have not been
conclusively demonstrated so far.

Typically, the innovators exert their influence not only
through the regular channels of communication in their
social networks—such as mutual connectivity through
friendship, collaborations, family, or other types of direct
contact—but through unidirectional links based upon their
“cognition influence.” This process means that scientific
innovators, for instance, would lead the introduction of new
scientific ideas by engaging learners through “links of
influence.” These ties are hidden directed links that can be
found in many situations, e.g., people following trends set
by popular singers and actors, even though the actors do not
“know” their followers. Equally important are financial
networks and markets, where one company or bank may
depend on others for financial or technical reasons [13].
This situation illustrates a fundamental property of social
networks: While network functionality depends on a layer
of mutual connectivity links, the network stability depends
on a hidden “guided-influence” network quantified by the
state of being influenced by knowledgeable individuals.
Systems consisting of network layers with multiple types

of links such as those treated here are referred to as
multiplex networks [14–16] that, in some cases, are
equivalent to interdependent networks [10]. Such a
network-of-networks structure is shown to be crucial for
cascading failure [10], transport [17], diffusion [18],
evolution of cooperation [19], competitive percolation
[20], and neuronal synchronization [21]. Specifically
related to spreading processes, previous research has
addressed the spreading of human cooperation in multiplex
networks [19], showing that it depends significantly on the
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properties of the correlations between network layers, as
described in Ref. [22]. Our approach has a close con-
nection with recent work on generalized percolation [23].
Furthermore, the percolation modeling that we apply is
related to the study of percolation in multiplex networks
in the context of interdependent networks, as studied in
Refs. [24,25].

II. RESULTS

The multiplex structure can be investigated in the
collaboration networks formed by scientists [26] and in
online social blogging communities of information dis-
semination such as LiveJournal [27,28]. Formally, we
consider a network with two types of link: connectivity
and influence links. The connectivity links are undirected
and correspond to a close relationship between two nodes:
for instance, scientists who have coauthored at least s
articles during a specified interval in the journals of the
American Physical Society (APS). Underlying this basic
structure, there is a hidden network of influence links
among scientists that can be quantified through the citation
list of papers. When author A systematically cites papers of
author B, then we assume that there is a directed outgoing-
influence link A → B. A similar structure can be defined in

the LiveJournal network of information dissemination,
which will be studied below.
We start by tracking the upsurge and disappearance of

physics trends through the creation and removal of fields in
the Physics and Astronomy Classification Scheme (PACS)
compiled by the APS from 1975 to 2010. (See Appendix A
for general details.) The PACS is a hierarchical classifica-
tion of the literature in the physical sciences where each
published paper is assigned one or more PACS numbers.
Figure 1(b) shows the number of scientists in the largest
connected component (analogous to the giant component
in the thermodynamic limit) of scientists in the statistical
physics community which, until around 1998, was publish-
ing under PACS 64.60: “General Studies of Phase
Transitions.”After 2000, many of those researchers quickly
switched to publish in the field of “Complex Networks”
(under a series of PACS numbers 89.75-k created in 2001).
The number of scientists in the giant component of the
collaboration networks [Fig. 1(b)] shows a similar behavior
to Myspace and Facebook users in Fig. 1(a). This similarity
hints at possible generic features acting when a new trend
competes with an older trend for the same pool of users.
To quantify the viral cascading process, we perform a

real-time percolation analysis [29,30] on the most impor-
tant fields contributing to the rise of “Complex Networks.”

FIG. 1. Rise and fall of communities. (a) Comparison of activity on Myspace versus Facebook from 2004 to 2012 through Google’s
Search Volume Index [12], which measures the number of Google searches of each word. The fall of Myspace coincided with the rise of
Facebook, suggesting that users moved from one network to the other. The tipping point can be identified on March 25, 2007. (b) The
size of the largest (giant) connected components of scientists studying “Phase Transitions” (PACS 64.60) and “Complex Networks”
(PACS 89.75) from 1997 to 2009. The steady increase in the study of “Phase Transitions" declined as the “Complex Networks” field
started to grow in the physics community. (c) The frequency of citations per year of the top five fields of contributing scientists to the rise
of “Complex Networks”.
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These fields include “Fluctuations” (PACS 05.40), “Chaos”
(PACS 05.45), “Phase Transitions” (PACS 64.60),
“Thermodynamics” (PACS 05.70), and “Interfaces”
(PACS 68.35). These fields have experienced either a
decline or slower growth in the number of published papers
after 2000, as shown in Fig. 1(c). We notice that scientists
publishing in “Complex Networks” still include in their
papers the original PACS number of, for instance, “Phase
Transitions” or “Chaos.” Therefore, the decay in the
frequency of citations plotted in Fig. 1(c) is not very large,
even though scientists are already working in the field of
“Complex Networks.” This situation explains why the
frequency of citation in Fig. 1(c) does not decay as rapidly
as the giant component in Fig. 1(b) but either remains
relatively constant or presents a small decay after scientists
start to publish in “Complex Networks.”

A. Empirical results on APS collaboration networks

We calculate the size N∞ of the giant connected
component of authors in each field from the articles
published in the period prior to the advent of “Complex
Networks” (1997–2001). Then, we identify the fraction
1 − p of pioneers from each field defined as those scientists
who have published at least one paper in “Complex
Networks” in 2001. To quantify the effect of cascades,
we measure the size of the largest component of the original
collaboration network n∞ at a later time (2005–2009).
Figure 2(a) shows the fast decay of the fraction of nodes
in the largest connected component, which we call
P∞ ¼ n∞=N∞ with 1 − p for the different PACS fields,
as evidenced by the rapid disintegration of each physics
community. We notice that the fraction of departing
pioneers is 1 − p. Thus, Fig. 2(a) should be interpreted,
for instance, for the field of “Phase Transitions,” as follows:
A small fraction 1 − p ¼ 10% of departing pioneers leads
to a large 81% shrinking in the largest component of the
network. The cascading behavior triggered by the departure
of 1 − p pioneers is visualized in the influence-network
representation of Fig. 2(b) and the connectivity represen-
tation in Fig. 2(c) (see also Appendix A, Fig. 6).
In addition to considering the largest component, many

networks consist of other clusters. For this reason, we have
also calculated the sizes of the second-largest clusters for the
five networks involved in the APS communities: “Chaos,”
“Fluctuations,” “Interface,” “Phase Transitions,” and
“Thermodynamics.” We find that the sizes of the second-
largest clusters are 31, 21, 49, 29, and 46, respectively. These
numbers are small compared with the sizes of the largest
components of the networks: 1126, 522, 232, 193, and 87,
respectively. In principle, the second-largest clusters can be
analyzed in the same way as the largest component.
However, we find that the sizes of the second-largest clusters
are too small to obtain meaningful statistical results.
The disintegration process can be interpreted as a

percolation-phase transition at a critical threshold pc,

defined when P∞ðpcÞ ¼ 0. For each network, 1 − pc
quantifies the minimum fraction of departing nodes (pio-
neers) who are able to break down the network [29,30]. The
data seem to percolate at remarkably large values of pc
[Fig. 2(a)], implying that the collaboration networks are
highly vulnerable. This result is in sharp contrast to the
prediction of classical percolation theory on scale-free
networks without influence links: pc ¼ 0 [29–33].
[Collaboration networks have been found to have a
power-law tail in the degree distribution [26] PðkÞ ∼ k−γ
with γ < 3.] The prediction pc ¼ 0 exemplifies the extreme
resilience of scale-free networks under the random removal
of nodes.
In principle, a plausible explanation of the extreme

fragility of the scientific communities could be that the
respective networks are being disrupted by the departure of
the most connected people: Scale-free networks are resil-
ient against the random removal of nodes (pc ¼ 0) [30,32],
but they are very vulnerable (pc close to 1) in regard to hub
departure [31]. However, we find empirically that the
pioneers are not the highly connected scientists. Yet, they
are minor players who develop a novel, appealing idea,
leading to the creation of an entire new community and to
the disintegration of the old system [see Fig. 2(d) and
Table I]. This collapse is particularly true since the most
well-connected individuals follow the new trend, sustaining
a viral cascade of influences.
We compare the average connectivity degree of pioneers

in the largest connected component hkpioi for each PACS
community and find that hkpioi is much smaller than the
maximum degree in the network kmax, as shown in Fig. 2(d)
and Table I. Furthermore, hkpioi is either smaller than or of
the same order as the average degree of the nodes hki. This
result indicates that the pioneers are not always the hubs in
the network. Instead, the pioneers have a degree that is very
close to the randomly selected nodes.

B. Percolation modeling

To identify the conditions for viral cascading that leads
to network fragility, we develop a generic model and search
the space of solutions by calculating the percolation
threshold. The network contains undirected connectivity
links and directed influence links. Each node in the network
is characterized by the degree k of its connectivity links, the
degree kin of incoming influence links, and the degree kout
of outgoing-influence links. [See Fig. 3(a); by definition,
hkini ¼ hkouti.] In the most general case, these quantities
are correlated as measured by the joint probability-
distribution function Pðk; kin; koutÞ. Indeed, below, we
demonstrate that viral cascades can be sustained only when
there is a positive correlation between k and kout, which
indeed we find empirically [Figs. 3(g) and 5(b)].
We demonstrate a cascading process [Figs. 3(a)–3(f)]

initiated by the removal of a node who creates a new idea
and moves to a new field of science. We map out this
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FIG. 2. Cascades of followers through the influence of pioneers in the APS. (a) Relative size of the largest component P∞ðpÞ of
collaborating scientists in the indicated fields after the departure of 1 − p pioneers to the field of “Complex Networks." (s ¼ 2; other
values yield similar results.) The solid curves denote the different theoretical predictions. The black curve (extreme resilience)
represents classical percolation theory on a scale-free network predicting pc ¼ 0 [30–33]. The red curve (high vulnerability)
represents the prediction of influence-induced correlated percolation for ðα; β; hkoutiÞ ¼ ð0.91; 1.04; 0.44Þ with a predicted threshold
very close to the boundary between first- and second-order transitions pI

c ≈ pII
c ¼ 0.54. The blue curve (extreme vulnerability)

represents the prediction of influence-induced correlated percolation for ðα; β; hkoutiÞ ¼ ð0.91; 1.04; 0.83Þ, giving rise to a first-order
transition with pI

c ¼ 0.97. This process means that the departure of 3% of pioneers will cause cascading followers and the collapse of
the original network. The red and blue curves are bounds to the real data. (b) The influence network (blue links) of collaborating
scientists in the field of “Phase Transitions.” Green nodes are a sample of pioneers of the field of “Complex Networks,” and the yellow
nodes are their closest followers that departed afterward. The large cascading effect produced by the departing nodes is apparent.
Black links are connectivity links. (c) The largest connected component of the collaboration networks of “Phase Transitions” up to
2001 and its reduced state from 2005 to 2009 with the concomitant creation of “Complex Networks.” (d) Pioneers are not the hubs.
The average degree of pioneers in the largest cluster hkpioi versus the maximum connectivity degree kmax over the members of each
PACS field. We find that, in general, the degree of the pioneers is much smaller than the maximum degree, indicating that the pioneers
are not the hubs (see also Table I).
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process to a correlated percolation model to find analytical
solutions to predict pc, as well as the universal boundaries
of the phase diagram over an ensemble of correlated
random graphs. The main analytical treatment of the
problem is based on the method of generating functions
[10,29,34]. We generalize the previous uncorrelated theory
[10,29,34] to the case of a correlated network using

Gðx1; x2; x3Þ ¼
X

k

X

kin

X

kout

Pðk; kin; koutÞxk1x
kin
2 xkout3 : (1)

At the heart of the model, there is a cascading process
that mimics the departure of nodes that follow influential

nodes. Such a process is described by a certain probability
qh that is estimated from the data and determines the
departing process as follows. Imagine that node A is
following kout ¼ 15 other nodes. The model takes into
account that node A will leave the network with a certain
probability qh when one of his 15 influential nodes leaves.
This probability is a parameter of the model and is
determined from the experimental data, as analyzed in
Fig. 9 and Appendix G. For the sake of argument, imagine
that node A will follow the departing nodes with low
probability, let us say, qh ¼ 0.2. Implementing such a
probability per link of node A would imply that node A
would have a 20% chance to leave the network when one of
the kout ¼ 15 followees departs. A direct implementation of
this rule would lead to a rather intractable model from the
mathematical point of view. Rather than implementing this
probability into the model directly, we perform a mapping
to a completely equivalent process: We first create an
equivalent network where we reduce the number of original
outgoing links kout to an equivalent kequivout , for instance, for
node A from 15 to 3 (that is, kequivout ¼ qh × kout ¼ 3). We
then consider that if any of the three nodes in the equivalent
network leave, then node A leaves with probability 1. In the
statistical ensemble, both networks are fully equivalent.
The main parameter of the model is the average effective
outgoing link hkouti, which is obtained from the real data, as
explained in Fig. 9 and Appendix G. This mathematical
trick, which has been introduced previously in Ref. [33],

(a)

(d)

(g)

(h)

(e) (f)

(b) (c)
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FIG. 3. Modeling the cascading process of followers. (a) Sketch of the model network (considered as the giant component) with
undirected connectivity links (solid black links) superimposed by a network of directed influence links (green links). The nodes are
characterized by ðk; kin; koutÞ, as indicated in the sample node. The node indicated by the black circle is the pioneer moving to another
field and is therefore removed first. (b) First connectivity-percolation process: Two additional nodes are removed (open circles) since
they are not connected anymore to the giant component after the removal of the pioneer node in (a). (c) Influence-induced process: One
extra node is removed due to the influence link pointing to the pioneer that induces two more influence departures, as indicated. Such
removals induce a cascading effect, since now other nodes are disconnected from the giant component, a step that is considered next.
(d) Percolation-connectivity process: Three extra nodes are disconnected from the giant component and are therefore removed.
(e) Influence-induced percolation process: A final node is removed due to the influence link to one of the nodes removed in (d). (f) At the
end of the cascade, the giant component is reduced to six nodes. (g) Empirical study of local correlations between the influence degree
and the connectivity degree averaged over all APS networks. We obtain kout ∝ kα and kin ∝ kβ with α ¼ 0.91$ 0.04 and
β ¼ 1.04$ 0.05. (h) Comparison between simulations and theoretical results. The symbols denote the simulation results, and the
curves are the prediction of theory for P∞ðpÞ. We use a scale-free network with γ ¼ 2.5 and minimal degree 1. We first generate the
connectivity network and then generate the correlated influence-directed links according to the connectivity degree of each node and
ðα; βÞ and calculate P∞ðpÞ by directly performing a percolation analysis on the network. Then, we calculate Gðx1; x2; x3Þ to obtain the
theoretical predictions of Eqs. (B17) and (C10). We find that the theoretical results agree very well with the simulations.

TABLE I. General properties of the APS communities accord-
ing to their PACS numbers. Values are calculated for s ¼ 2.N∞ is
the size of the largest connected component calculated from 1997
to 2001, n∞ is the size of the largest component from 2005 to
2009, hkpioi is the average connectivity degree of the departing
pioneers in 2001, kmax is the maximum connectivity degree, and
hki is the average connectivity degree.

Field PACS N∞ n∞ hki hkpioi kmax

1. “Chaos” 05.45 1126 846 4.26 5.56 40
2. “Fluctuations” 05.40 522 227 3.97 5.68 28
3. “Interfaces” 68.35 232 77 5.64 4.14 21
4. “Phase Transitions” 64.60 193 36 3.84 5.69 28
5. “Thermodynamics” 05.70 87 32 3.70 5.36 15
“Complex Networks” 89.75 9 190 % % % % % % % % %
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renders an untractable mathematical model tractable.
The probability qh that determines the effective outgoing
links is a parameter of the model, and wewill show in Fig. 2
that the experimental data on the five considered APS
communities are within the upper and lower bounds
predicted by the theory of the effective hkequivout i ¼ 0.44
and hkequivout i ¼ 0.83.
Figures 3(a)–3(f) illustrate the cascading process in a

simple network considered as the giant component in the
model (black links and red nodes) plus the influence-
directed network (green links). For simplicity, we describe
the process in the equivalent network, which is the one that
is solved analytically. In Fig. 3(a), a given pioneer departs,
as indicated. Such a departure produces a regular perco-
lation process (not cascading) of disconnecting two other
nodes from the giant component, as seen in Fig. 3(b).
Additionally, the pioneer node produces an influence-
induced departure of an extra node, as indicated in
Fig. 3(c), which in turn produces another two influenced-
induced departures, as shown in the same figure. At this
point, the cascading starts, since the influence-induced
departures produce extra percolation disconnections from
the giant component of three nodes, as depicted in Fig. 3(d).
The process now continues back and forth between the
simple percolation departure followed by the influence-
induced departure until the cascading stops. For instance,
one extra node departs in Fig. 3(e) due to influence that
leads to the final giant component of Fig. 3(f), where all
the remaining influence links point toward nodes in the
giant component, and, therefore, no more cascading
processes are possible.
The full cascading process is mathematically modeled on

the equivalent network as follows (see Appendix B for a
detailed derivation): (i) We first apply a classical percola-
tion process of random removal of a node [Fig. 3(a)] and
remove all the nodes that become disconnected from the
giant component due to the loss of the corresponding
connectivity links to the network [Fig. 3(b)]. In terms of
generating functions, this process leads to the set of
recursive equations (B4)–(B6), as shown in Ref. [10].
(ii) The next step corresponds to the process of node
removal through correlated influence links. When a node
leaves the network, the followers connected to the node via
kin links leave, too [Fig. 3(c)], triggering a cascading effect
described by Eqs. (B11–B13). Notice that, here, we are
applying this percolation step to the equivalent network and
not to the original. Thus, the nodes in the original network
will still leave the network with probability qh < 1 when
one of his kout followees departs. That is, the model is
mathematically solved in the equivalent network (where
nodes leave with probability 1 following influential nodes
but with a smaller number of links), but the real dynamics
is still applied to the original network with the original
number of outlinks, where nodes leave the network with a
probability qh < 1. (iii) This influence-induced departure

of followers can be mapped back to a second percolation
removal of nodes [Fig. 3(d)] and the subsequent removal by
influence [Fig. 3(e)]. The whole process is captured by the
set of iterative equations (B16) that describe a cascading
process that terminates when all the influence links of the
nodes in the giant component point to unremoved nodes in
the same component [Fig. 3(f)].

C. Solving the cascading process

(i) The first stage in the cascading process is described by
~p ¼ p, where ~p is the fraction of links remaining in the
giant component at a given stage in the cascading process.
We obtain the size of the giant component x and the
survival probability t of remaining nodes after the first
removal of p nodes as

x ¼ p½1 −Gðt; 1; 1Þ'; (2)

t ¼ 1 − ~pð1 − fÞ; (3)

where f ¼ ðGx1 ½1 − ~pð1 − fÞ; 1; 1'=Gx1ð1; 1; 1ÞÞ and
Gx1 ≡ ∂x1G. The physical meaning of t is that a node with
connectivity degree k has a probability 1 − tk to belong to
the giant component.
(ii) After the first undirected connectivity-percolation

step, we arrive at the second-stage removal process, which
is caused by influence links. In this new process, nodes are
removed if and only if they reach any node outside the giant
component following influence links. This removal process
corresponds exactly to percolation on the directed influence
network, where the correlation Pðk; kin; koutÞ needs to be
explicitly taken into account. This process can be described
by the following equations:

y ¼ HðhxÞ; (4)

HðxÞ ¼ x
Gx2 ½1; 1; HðxÞ'

hkini
; (5)

where h ¼ ðhkxini=hkiniÞ is proportional to the sum of the in-
degree of all nodes in x. These equations are derived in
Eqs. (B8–B13) and described in Appendix B 2. The
physical meaning of y is that a node with an out-degree
kout will survive this removal process with probability ykout.
It implies that integrating the initial removal in (i) and these
two processes in (ii) is equivalent to randomly removing
each node from the original network with probabil-
ity 1 − pykout.
(iii) Therefore, the whole process of (i) and (ii) can be

thought of as a single removal in the original network
with the definitions ~p ¼ ðpGx1ð1; 1; yÞ=Gx1ð1; 1; 1ÞÞ and
f ¼ ðGx1 ½1 − ~pð1 − fÞ; 1; y'=Gx1ð1; 1; yÞÞ, while x and t
remain the same as in Eqs. (2) and (3). [Detailed derivations
are in Eqs. (B14) and (B15) in Appendix B 3]. This kind
of new “initial” removal can be described exactly by a
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generating function. Thus, we arrive again to stage (i) to
perform a modified undirected connectivity-percolation
step. The process continues until the cascading avalanche
is over.
The above analysis leads to a set of recurring relations

that define the cascading process. After the second stage,
the current cascading effect can be mapped to a removal
process in the original network. This property allows us to
write down the cascading process as recursive equations—
see also Eqs. (B16)—which allow us to solve the whole
cascading process by finding its fixed point.
Integrating the above three stages, we can rewrite the

cascading process as follows:

x ¼ pf1 −G½1 − ~pð1 − fÞ; 1; 1'g;

f ¼ Gx1½1 − ~pð1 − fÞ; 1; y'
Gx1ð1; 1; yÞ

;

~p ¼
pGx1ð1; 1; yÞ
Gx1ð1; 1; 1Þ

;

t ¼ 1 − ~pð1 − fÞ;

hkxini ¼
Gx2ð1; 1; 1Þ −Gx2ðt; 1; 1Þ

1 −Gðt; 1; 1Þ
;

h ¼ hkxini
hkini

;

y ¼ hx
Gx2ð1; 1; yÞ

hkini
: (6)

The physical meaning of these recursion relations is that,
after each first stage, a node that is not removed in the initial
attack has a 1 − tk survival probability. After the second
stage, the survival node can be mapped out to a removal
process that occurs on the original network with probability
1 − pykout . These two properties allow us to write down
the formula of the relative size of the giant component
P∞ at the final stable state of the cascading process at
equilibrium:

P∞ðpÞ ¼ p½Gð1; 1; yÞ −Gðt; 1; yÞ': (7)

D. Phase diagram

The model predicts the existence of first-order [35] and
second-order phase transitions. When the transition is
second order, we obtain an explicit formula for the
percolation threshold [see Eq. (C10) for the derivation]:

pII
c ¼ hki

∂2
x2Gð1; 1; 0Þ

: (8)

Equation (8) generalizes the classical uncorrelated perco-
lation result [30] pc ¼ ðhki=hkðk − 1ÞiÞ to networks with
influence links and generic correlations Pðk; kin; koutÞ. The

threshold for a first-order transition pI
c is obtained through

the implicit formula (C11):

∂tðy; pI
cÞ

∂y
∂yðt; pI

cÞ
∂t ¼ 1; (9)

where tðy; pÞ and yðt; pÞ are the functions describing
the influence-induced percolation process according to
Eqs. (C11–C13). The boundary between the first- and
second-order transitions in phase space is obtained by
setting pI

c ¼ pII
c , leading to Eq. (C14).

To determine the conditions for the viral cascading of
influence, we consider two cases in turn: uncorrelated
and correlated networks. For uncorrelated networks,
Puncðk; kin; koutÞ ¼ P1ðkÞP2ðkinÞP3ðkoutÞ, where the three
functions are generic probability distributions. In this case,
the transition is of second order and pII;unc

c is obtained
explicitly [see Eq. (D4)]:

pII;unc
c ¼ hki

q0hkðk − 1Þi
; (10)

where q0 is the fraction of nodes with kout ¼ 0.
Surprisingly, we still find pc ¼ 0 for scale-free networks

[due to the diverging second moment in Eq. (10) for γ < 3],
despite the existence of influence links. This result means
that, without correlations, the influence links alone cannot
sustain a viral spreading process to break down the strong
resilience of scale-free networks; i.e., viral cascades cannot
be sustained in an uncorrelated scale-free influence net-
work. Indeed, empirically, we find that there exist strong
correlations between kin, kout, and k: The most active
authors with large collaborative projects tend to receive
and provide the largest influence from and to their peers
[Fig. 3(g)]. We find that

kout ∝ kα; kin ∝ kβ; (11)

where the correlation exponents are close to 1.
(α ¼ 0.91$ 0.04 and β ¼ 1.04$ 0.05 for the APS data.)
When these correlations are included in Eq. (8), we predict
a nonzero correlated percolation threshold [see Eq. (E3)]:

pII;cor
c ¼ hki

P
kkðk − 1ÞPðkÞ expð−k

αhkouti
hkαi Þ

: (12)

Equation (12) is remarkable in two aspects: First, the
value of pc increases sharply from 0 as α increases until a
maximum value that depends on γ and hkouti is reached
[Fig. 4(a)]. The vulnerability increases until the term hkαi
becomes dominant and stabilizes the network with
the concomitant decrease of pII;cor

c back to 0 as α → ∞.
Second, pII;cor

c is independent of β, since x2 ¼ 1 in Eq. (8),
implying, rather surprisingly, that the influence exerted by
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the large number of ingoing-influence links of the hubs is
not enough to produce viral spreading.
The theoretical results are tested against computer

simulations of numerically generated scale-free networks
with a prescribed set ðα; β; γ; hkoutiÞ. We first generate a
scale-free network with a given value of γ ¼ 2.5 and a
minimal degree equal to 1. For a given node with
connectivity degree k, the influence out-degree is propor-
tional to kα and the in-degree is proportional to kβ. We
choose the number of in- and out-influence links from a
Poisson distribution, with an average given by these two
values. The Poisson distributions PðkoutjkÞ and PðkinjkÞ are
validated for the five APS communities in Fig. 8. Thus,
we generate the connectivity network and the correlated
influence-directed links according to the connectivity
degree of each node and ðα; βÞ. We then calculate numeri-
cally P∞ðpÞ by performing a percolation-cascading
process directly on the network. Then, we calculate
Gðx1; x2; x3Þ to obtain the theoretical predictions of
Eqs. (B17) and (C10). Figure 3(h) shows the comparison
between the theoretical results and the simulations. We
obtain very good agreement between the predicted P∞ðpÞ
and pII

c and the numerical estimation obtained by applying
a percolation process to a correlated network with influence
links with the parameters expressed in the figure.
It is important to note that the generating-function

formalism is based on a locally treelike assumption.
Such an assumption is satisfied locally in random networks
as well as scale-free networks, and this tree structure is the
reason of the very good agreement between theory and
simulation in Fig. 3(h). However, real networks are not
treelike, and local clustering is an important property of any
real-world network. For instance, clustering in complex

networks can be classified in two different classes, weak
and strong. Strong clustering occurs where triangles in the
network share edges, so that the multiplicity of edges can
be high. Weak clustering occurs when triangles do not
share edges. A formalism for weakly clustered networks
has recently been considered in Ref. [36]. However, strong
clustering occurs more often in real networks. Thus, a more
realistic theory would need to be considered to capture the
existence of strong clustering in real-world systems.
Taken together, these results paint a picture of a viral

cascading process where a few small players—not the
hubs—initiate the cascades. However, the hubs play a key
role in sustaining the cascades, not as pioneers but as
followers: Since the well-connected nodes receive a greater
influence (via kout ∼ kα), they are more “aware” of the latest
developments. This situation allows the hubs to “jump”
easily to the new trend. In percolation terminology, the
random removal of nodes (which targets mostly low-degree
individuals) becomes, at a later stage in the cascade, a
targeted attack on the hubs via their large number of
outgoing-influence links. This result is due to the cascading
effect where low-degree pioneering nodes can now have
easy access to the well-connected hubs through their large
number of kout links. This effect explains the condition for
the catastrophic fragility and the viral spreading in the
highly correlated influence network. Contrary to expect-
ations, the large ingoing influence of the hubs (via kin ∼ kβ)
plays no role in sustaining the cascade.

E. Testing the theoretical results

We test our theoretical predictions by calculating P∞ðpÞ
from Eq. (7) and comparing with the collaborative net-
works of Fig. 2(a). (A comparison with LiveJournal is

(a) (b)

ou
t

out

out out out

0.83

APS

- - -
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FIG. 4. The phase diagram predicted by the influence-percolation model with correlation. (a) Prediction of the percolation threshold
versus α according to Eqs. (9) and (12) for ðβ; γÞ ¼ ð1.04; 2.90Þ and hkouti, as indicated. Solid lines denote the region in α of second-
order transitions, while dashed lines denote first-order transitions. The inset shows the increase of pII

c with hkouti for ðα; β; γÞ ¼
ð0.91; 1.04; 2.90Þ. (b) Phase diagram denoting the areas in the plane ðα; βÞ of first-order and second-order regimes for two values of
hkouti, as indicated. The first-order regime is inside the indicated curve, while the second order is outside for a given value of hkouti.
The location of the APS networks in the phase diagram is indicated as a red dot. The networks are located near the boundary of the
transitions for hkouti ¼ 0.44 and inside the region of first order for hkouti ¼ 0.83. The LJ network is also located in the first-order-
transition regime.
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performed in the next section.) The statistical estimation
procedure of parameters (via, for instance, the standard
maximum likelihood of power-law distributions) to pro-
duce inputs to the mathematical model is a drawback of the
modelization. Indeed, the mathematical model has prob-
abilistic underpinnings, and, therefore, estimation based
directly on those underpinnings would be more appropri-
ate. Therefore, we directly use the empirical degree dis-
tribution in the theory to provide the theoretical estimation
of the giant component in the ðp;P∞Þ plane in Fig. 2(a).
Additionally, current approaches in the statistical liter-

ature [37] model the observed links of networks as the
fundamental level of data hierarchy through which network
structure is considered. Thus, rather than using amalga-
mated data, such as degree distribution, for the base level of
the model, we perform statistical analysis in terms of the
exponential random-graph models (ERGMs) [37] using
stochastic algorithms based on the Markov-chain Monte
Carlo (MCMC) method to allow for the use of statistics
(degree distribution) of a network as a predictor of links.
This method further allows for the estimation of distribu-
tions of functions based on a model for a network
(predictive distributions).
For the exponential-family random-graph model, we

define PθðΩ ¼ ωÞ ¼ exp½
Pn

k¼0 θkpkðωÞ', where pkðωÞ is
the probability of randomly choosing a node with degree k
in a network ω. First, we use the empirical network to
estimate all the parameters θk. Then, we use the MCMC
method to generate 100 networks with the same features
captured by the model. We use the professional software
ERGM obtained from Ref. [38] to estimate the parameters
θk and generate the 100 networks [39]. (More details will
be given in Appendix F.)
We then employ a bootstrap method to estimate the

exponent γ of the degree distribution. Employing the
bootstrap method combined with a maximum-likelihood
estimation and a Kolmogorov-Smirnov test [44], we obtain
the exponent of the degree distribution as γ ¼ 2.97 (0.01
standard deviation).
Furthermore, we use ðα; βÞ ¼ ð0.91; 1.04Þ, obtained

from the real data. We also estimate the lower and upper
bounds of the average influence degree hkini ¼ hkouti from
the data (see Appendix G). The empirical lower bound is
hkequivout i ¼ 0.44, which gives rise to the predicted P∞ðpÞ
shown as the red curve in Fig. 2(a) with a percolation
threshold of 0.54. The figure shows that this theoretical
prediction provides a lower bound to the empirical data,
providing support for the model. For larger hkouti—for
fixing (α, β)—the vulnerability of the network increases
according to larger percolation thresholds [see the inset of
Fig. 4(a)]. Furthermore, a second-order transition at small
hkouti turns into an abrupt first-order transition at large
hkouti, as shown in the phase diagram of Fig. 4(b). As hkouti
increases, the threshold condition changes from Eq. (8) to
Eq. (9), and the transition becomes discontinuous. For

instance, while, for hkouti ¼ 0.44, the transition is just at the
boundary between the first-order and second-order tran-
sitions [red dot in Fig. 4(b)], for hkouti ¼ 0.83, the transition
becomes first order. The values hkouti ¼ 0.44 and 0.83
provide lower and upper bounds of the empirical data
P∞ðpÞ, as shown by the red and blue curves in Fig. 2(a),
providing further support for the model. The first-order
scenario implies a dramatic viral spreading where a net-
work near its threshold will suddenly disintegrate by the
departure of an infinitesimal number of its members. Since
the empirical data in Fig. 2(a) are close to the upper bound
provided by hkouti ¼ 0.83 (especially the fields “Phase
Transitions,” “Fluctuations,” and “Interfaces”), it is plau-
sible that these scientific communities are being disinte-
grated by catastrophic discontinuous events.
We would like to note that we do not claim to fit the five

data points on the APS communities with a single func-
tional form obtained from the theory. In fact, each point
may correspond to an independent percolation process
given by a different hkouti. Instead, we show that these five
data points are within the upper and lower bounds of the
theory. Indeed, later, we will repeat the same analysis
on the LiveJournal (LJ) communities. These communities
are much larger in number, totaling 10,981 LJ commun-
ities. The data for this large number of communities
are strikingly well fitted by the theory, as we will see
in Fig. 5.
One assumption of the model is that the scientists who

leave a declining network are leaving due to the influence
exerted by the pioneers. However, scientists might be
leaving a field for a variety of reasons, such as a declining
field, and also for other destinations.
To study these questions, we have measured the

ratio between departing scientists who moved to
“Complex Networks” to the total number of departing
scientists from a given field. The percentages for the
different fields are “Fluctuation,” 86.0%; “Chaos,”
88.1%; “Thermodynamics,” 95.7%; “Phase Transitions,”
85.1%; and “Interfaces,” 36.4%. Thus, except for the field
of “Interfaces,” the other fields show a large percentage of
departing scientists going to “Complex Networks.”
Yet, the fact that scientists leave a field to work in

“Complex Networks” does not necessarily mean that they
are following the pioneers. That is, the motives behind such
a decision could be different, and attributing the full
attrition of a field to the influence of pioneers implies an
assumption of causality that may not be satisfied. For
instance, a scientist may leave the field under the impres-
sion that the original field is declining.
While a definite answer to this question would require a

survey to know the actual motives of scientists, the good
agreement between the model and empirical data (including
the LiveJournal network studied next) suggests that the
influence-percolation model reproduces well the disinte-
gration of communities. This result, in turn, suggests that
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an important mechanism behind the network disintegration
is the correlated influence links.
We note that, while the model assumes local correlations

between the different degrees of a given node, the corre-
lations between the connectivity and influence networks
themselves are neglected. To test for these correlations, we
measure the average influence degree (in and out) of the
nearest neighbors hkNNi of a node with connectivity degree
k connected via an influence link in the APS networks
(Fig. 10). We find a lack of correlations indicated by a flat
hkNNi. If such a correlation exists, it may contribute to an
underestimation of the cascade effect. Therefore, in
Appendix H, we propose an extension of the theory to
treat these correlations as well.

F. Disintegration of LJ communities

The mathematical modeling assumes that the settings are
mutually exclusive, while, in practice, this assumption may
not be true in the example of the APS communities. For this
reason, we also test the model on another data set: the

communities formed by bloggers on LiveJournal. (All data
sets are available from Ref. [40].)
LJ is a large social network of 8.3 million users who

post information and articles of common interest. This
community has been used in network studies of infor-
mation flow and influence [27,28], since it was shown to
have features consistent with other large-scale social
networks.
We have recorded the posts in the LiveJournal social

network from February 14, 2010, to November 21, 2011.
We have also sampled the full network of LJ users and also
the declared interest of each user that defines the commu-
nity to which the user belongs. Data collections on the
network have been performed every 1.5 months so that we
have 14 snapshots of the entire LJ structure. The entire
history of posts of users has been recorded continuously
over the studied period of time. This information allows us
to define the variables that are used in the model to describe
the disintegration of communities: (a) In the connectivity
network, users i and j declare their friendship in the
network. (b) In the influence network, user i cites posts
of user j; then, we consider a directed influence link from
i → j since user i is a follower of user j. Thus, we can
define the respective degrees of connectivity links k and
influence links kin and kout and search for correlations
between these variables. (c) Finally, each user in LJ
declares a community to which the user belongs (sports,
literature, etc.).
Therefore, we have the three main ingredients of the

theory: connectivity and influence links and well-defined
communities that we can track over an extended period
of time. Crucially, we are able to track those communities
that are created and disintegrated in the number of
10,981. In LJ, the communities are declared by the
users, and users change interest very often, creating
and disintegrating communities quite often. In this case,
the settings may be mutually exclusive, since the com-
munities appear to be very dynamic and users rapidly
change interests.
The analysis of the LJ communities reveals a remarkable

result: In Fig. 5(a), we study the size of the giant
components P∞ of the disintegrated networks to produce
the percolation plot of P∞ as a function of the leaving
pioneers 1 − p. We find that the disintegration of the LJ
communities follows closely a quite generic curve in the
ðp;P∞Þ plane, indicating rapid disintegration and great
fragility of the communities via cascading effects with a
critical percolation threshold pc ¼ 0.962. The empirical
curve can be well fitted by the theoretical model [Fig. 5(a)]
when similar local correlations between connectivity and
influence links to those in the APS communities are taken
into account [Fig. 5(b)]. Our results are consistent with an
abrupt first-order transition occurring during the disinte-
gration process, as indicated in the phase diagram in
Fig. 4(b).

FIG. 5. Disintegration of communities of bloggers on Live-
Journal. (a) Percolation plot in the plane ðp; P∞Þ of the declining
communities. The communities follow a generic curve in the
plane ðp; P∞Þ quantifying the rapid disintegration and cascading
effects. We find a very good agreement with the empirical data
that suggests that LJ communities disintegrate following a first-
order transition. [See also Fig. 4(b) for the position of LJ in the
phase diagram.] (b) Similarly to the results on the APS com-
munities, we find positive local correlations of out- and in-
influence degrees and connectivity degrees with exponents
α ¼ 0.79$ 0.03 and β ¼ 0.76$ 0.03, respectively.
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III. DISCUSSION

From the development of new ideas, from brand-new
products to political trends, the present model shows the
conditions for viral spreading: When kout and k become
highly correlated (large α), a few individuals, who are not
necessarily the hubs, can trigger a large cascade that
leads to network fragmentation. In conclusion, through
mathematical and empirical calculations, we establish two
emergent properties that result when overlying multiplex
networks interact. (i) We mathematically derive the
necessary conditions for sustaining a viral spreading
process. We show how damage in a network can, in
turn, damage the influence network and vice versa,
leading to viral cascades of followers. Our modeling
predicts the conditions for these interactions to sustain a
large viral spreading via a precise scaling form of the
correlation function between multilayers [Eqs. (11)].
(ii) This theoretical prediction is in agreement with our
empirical observations [Figs. 2(a) and 5(a)]. We find the
conditions for viral spreading [Eqs. (11)] to be valid in
the studied networks. This viral effect is empirically
quantified with the large percolation threshold [pc in
Figs. 2(a) and 5(a)], which is also predicted by the
theory. Contrary to expectations, the innovators are not
the hubs but the small players.
A related question arises as to whether there is a

universal model to explain the fall of all kinds of
communities, trends, or topics even when characterized
by different time scales. Such a model would be difficult
to implement. Here, we show that in two different
networks, the disintegration of communities can be
understood via a modified percolation model in a multi-
plex network including correlated influenced links. These
two networks have different time scales for disintegration,
where communities rise and fall in a matter of weeks (LJ)
to years or even decades, as in scientific trends in science.
Certainly, we have not exhausted all the cases, but the
present data are indicative enough to suggest that the
same modeling could be applied to other networks. In
particular, it could be applied to Facebook or Twitter,
where trends appear and disappear in a similar fashion to
those in LJ.
Our results have consequences for a range of social,

natural, and also engineered systems. They cause us to
rethink the assumptions about the robustness and resil-
ience of social networks, with implications for under-
standing viral spreading in social systems and the design
of robust multiplex interconnected networks. In the
present study, we have tested the theoretical results on
typical cases of scientific collaboration networks and
online information dissemination, but the results are
equally applied to a variety of interconnected multiplex
systems with correlated influence links. These systems
range from political networks to financial markets and the
economy at large.
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APPENDIX A: GENERAL PROPERTIES
OF STUDIED NETWORKS

We consider the top five PACS numbers of contributing
scientists to the “Complex Networks” field. The PACS
numbers are listed in Table I. The whole data set is made
available in Ref. [41], and it was provided by APS. The
field of “Complex Networks” started in 2001 in the physics
community and encompasses a series of PACS numbers
under the general class 89.75, “Complex Systems.” This
generic PACS number contains the subclasses 89.75.Da,
“Systems Obeying Scaling Laws”; 89.75.Fb, “Structures
and Organization in Complex Systems”; and 89.75.Hc,
“Networks and Genealogical Trees.” The newly developed
community of “Complex Networks” publishes under the
above PACS numbers. To test this assumption, we have
checked all APS papers with PACS numbers 89.75 from
2000 to 2009. We have checked that the titles of 1193
papers in PACS 89.75 contain at least one of these words:
“network,” “networks,” “graph,” “graphs,” “link,” “links,”
and “degree.” Then, it is reasonable to assume that this
PACS number has been assimilated by the newly formed
community of “Complex Networks.” Indeed, the present
paper will be archived under PACS 89.75.
According to the records in the APS database, we find all

the scientists who at least published one scientific paperwith
the PACS number 89.75 from 2001 to 2009, then go back
to the period from 1993 to 2000 and count the frequency of
all PACS numbers used by these scientists. Thus, we can
detect the order of each PACS number contributing to
network science. The top five PACS numbers contributing
to “Complex Networks” are (ordered from large to small)
the following. 1. 05.45, “Nonlinear Dynamics and Chaos.”
This PACS number includes “Low-Dimensional
Chaos,” “Fractals,” “Control of Chaos,” “Applications of
Chaos,” “Numerical Simulations of Chaotic Systems,”
“Time Series Analysis,” “Synchronization,” “Coupled
Oscillators,” etc. 2. 05.40, “Fluctuation Phenomena,
Random Processes, Noise, and Brownian Motion.” This
PACS number includes “Noise,” “Random Walks and
Levy Flights,” and “Brownian Motion.” 3. 68.35, “Solid
Surfaces and Solid-Solid Interfaces.” This PACS number
includes “Interface Structure and Roughness,” “Phase
Transitions and Critical Phenomena,” “Diffusion,”
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“Interface Formation,” etc. 4. 64.60, “General Studies of
Phase Transitions.” This PACS number includes “Specific
Approaches Applied to Studies of Phase Transitions,”
“Renormalization-Group Theory,” “Percolation,” “Fractal
andMultifractal Systems,” “Cracks, Sandpiles, Avalanches,
and Earthquakes,” “General Theory of Phase Transitions,”
“Order-Disorder Transformations,” “Statistical Mechanics
of Model Systems,” “Dynamic Critical Phenomena,” etc.
5. 05.70, “Thermodynamics.” This PACS number includes
“Phase Transitions: General Studies,” “Critical Point

Phenomena,” “Nonequilibrium and Irreversible Thermo-
dynamics,” and “Interface and Surface Thermodynamics.”
For each APS network identified by the above PACS

numbers, we calculate the size of the largest connected
component N∞ using the coauthorship in papers published
over a window of five years from 1997 to 2001 using the
threshold s ¼ 2. (The results are similar with s ¼ 1 and 3.)
That is, we consider scientists who published at least s
papers together from 1993 to 2009. Using the publication
information of 2001, we detect the fraction 1 − p of authors
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FIG. 6. Comparison of the fraction of papers published by pioneers, followers, and followers of followers. Followers are the scientists
who cited at least one paper of the pioneers between 1997 and 2001 and are not the cooperators of pioneers. For a given PACS number,
as indicated in the figures, we record the number of papers published in the PACS number and the number of papers published only in
89.75 (“Complex Networks”) for each author. Then, we get the total number of papers published in complex networks Nnet and the
number of papers with these two PACS numbers Nall for every author. The vertical axis shows the fraction ðNnet=NallÞ as a function of
time, which approximately satisfies pioneers > followers > the rest. This result suggests that influence links are important for
cascading dynamics.
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who published at least one paper in “Complex Networks.”
We then use a new five-year window to define a network
from 2005 to 2009 for each PACS number and calculate the
new size of the largest component n∞. In these five years, a
scientist may publish papers with the given PACS number
and 89.75 or both. In this case, we classify the paper as
89.75 when the scientist published with 89.75 more times
than other PACS numbers during the five-year period.
Thus, we obtain the relative size of the largest component
P∞ðpÞ ¼ n∞=N∞ for each PACS field, which represents a
measurement of the probability that a randomly chosen
node belongs to the spanning cluster in percolation theory.
The calculation is performed for s ¼ 2 and is plotted in
Fig. 2(a). (Other values of s yield similar results.)
LJ is a large social network of 8 312 972 users who post

information and articles of common interest. In LJ, each
user maintains a friends list, which declares social links to
these individuals. The network resulting from these social
links is believed to reliably represent the actual social
relations of LJ users. This network represents the con-
nectivity links in our model. More importantly, since we
know the entire history of posts over several years, we can
use this information to quantify the influence links between
two users: If user i cited repeatedly the posts of user j, then
we consider an influence link from i → j since i is a
follower of j. In LJ, the communities are declared by the
users, and users change interest very often, creating and
disintegrating communities quite often. In the two-year
period when we recorded LJ, we find that there are 10 981
communities that are being disintegrated. We analyze only
communities with more than 300 members, the largest of
which contains almost half of LJ. We have the full data on
the network connectivity and the influence connectivity of
LJ from February 14, 2010, to November 21, 2011. To
calculate the percolation plot ðp;PinftyÞ, we consider the
size of the giant component of a declining community at
the beginning of the period of observation and compare
with the size of the same community at the end of the
observation window.
The communities in LiveJournal evolve at a much faster

pace than the scientific communities in APS. Indeed, we
need many years (the APS data set spans 35 years) to see
an idea become established in the scientific community.
Further, many scientists keep working in their old fields
while also moving to a new one. However, the pace of
change is much faster in an online blogging community
like LJ. In LJ, the communities are declared by the users,
and users change interest very often, creating and disinte-
grating communities quite often.

1. General features in the dynamics of followers

Evidence of the cascading processes triggered by the
pioneers is depicted in Fig. 6, which shows general features
in the dynamics of followers. We track the pioneers who
first published in “Complex Networks” in 2001, then the

followers, and then the rest. For each of the top five PACS
numbers with 89.75 together, we calculate the largest
component of the coauthorship network according to the
APS publication records from 1997 to 2001. Using these
data, we detect the pioneers of network science and all of
the followers of pioneers in this coauthorship network.
Figure 6 shows general features in the dynamics of
followers. We compare the fraction of papers published
in complex networks among pioneers, followers,
and the rest for different PACS numbers from 2001 to
2009 and find that the fraction satisfies that
pioneers > followers > the rest. This results suggest that
influence links follow the influence links in a cascade of
followers.

APPENDIX B: GENERATING-FUNCTION
THEORY OF PERCOLATION IN CORRELATED

INFLUENCE NETWORKS

We consider a network with both bidirectional connec-
tivity links and directed influence links. Each node has
three degrees ðk; kin; koutÞ measuring the number of con-
nectivity links, ingoing-influence links, and outgoing-
influence links, respectively. The properties of such a
network are described by the three-dimensional generating
function

Gðx1; x2; x3Þ ¼
X

k;kin;kout

Pðk; kin; koutÞxk1x
kin
2 xkout3 ; (B1)

where the joint probability distribution Pðk; kin; koutÞ
describes the local correlations among ðk; kin; koutÞ. In
the following, we denote the higher-order derivatives as

Gxm1
1 ;xm2

2 ;xm3
3
ðx1; x2; x3Þ ¼

∂m1þm2þm3Gðx1; x2; x3Þ
∂xm1

1 ∂xm2

2 ∂xm3

3

: (B2)

If node i is being influenced by node j, there is a
directed influence link from node i to node j. In a real
system, the influence of the peers is applied with a given
probability qh that is less than 1. That is, even if there is an
influence link from i to j, if j departs, then i will depart
with a probability qh that, in general, is smaller than 1. In
Appendix G, we explain in detail how to estimate qh from
the APS data. This effect is taken into account in the
model. In order to simplify the problem, the removal that
follows influence links is analogous to randomly deleting
a 1 − qh fraction of influence links and then assuming that
all of the remaining nodes connected via influence links
are removed with probability 1. Without losing any
generality, in our analysis, we set this probability to be
qh ¼ 1, as done in previous percolation studies [33]. Next,
we analyze the cascading process following the recursive
stages: percolation process → influence-induced percola-
tion process → percolation process → influence-induced
percolation ….
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1. First Stage: Classical Percolation Process

The cascading process is triggered by initially randomly
removing a fraction of 1 − p nodes. We use ~p to denote the
fraction of remaining nodes after the initial random
removal. Thus, at this first stage, we have

~p ¼ p: (B3)

The generating function of the connectivity-degree
distribution related to the branching process is
ðGx1ðx1; 1; 1Þ=Gx1ð1; 1; 1ÞÞ [10,29,34]. Thus, the giant
component of size x after the first stage of the percolation
process can be written as

x ¼ p½1 −Gðt; 1; 1Þ'; (B4)

where

t ¼ 1 − ~pð1 − fÞ (B5)

and

f ¼
Gx1 ½1 − ~pð1 − fÞ; 1; 1'

Gx1ð1; 1; 1Þ
: (B6)

The physical meaning of the quantity t is that a node with
connectivity degree k will have a 1 − tk probability of
staying in the giant component [42]. Accordingly, we
get the average in-degree in the giant component of size
x (hkxini) as

hkxini ¼
Gx2ð1; 1; 1Þ −Gx2ðt; 1; 1Þ

1 −Gðt; 1; 1Þ
: (B7)

2. Second Stage: Influence-induced Percolation Process

In order to treat the local correlations between
ðk; kin; koutÞ, we develop a generating-function theory for
the first time by combining the percolation process on the
connective links and the influence-directed links in a
correlated fashion. It is instructive to first treat the second
stage, assuming that the network has influence links but
that they are uncorrelated, and then we will generalize the
results to the existence of correlation.
Let HðuÞ be the generating function for the probability

of reaching an outgoing component of a given size by
following a directed link on the original network.
According to Ref. [43], HðuÞ can be written as

HðuÞ ¼ u
Gx2 ½1; 1; HðuÞ'

hkini
: (B8)

Let

HðuÞ ¼
X

s

ηðsÞus: (B9)

Assuming we can reach s nodes following an outgoing-
directed link (influence links), thus, for any given random
subnetwork of size u (randomly selected from the original
network), the probability for all of the s nodes to be in u is
us. This results means that the generating function for
the probability that all the nodes reached by following a
directed link are in u is HðuÞ.
Next, we generalize the above argument by considering a

correlated selection of nodes in u, rather than considering a
random uncorrelated selection of nodes in u as above. If we
choose the nodes in a correlated fashion with the in-degree
kin only, any local structure in u is still treelike. Thus, the
probability that all the nodes reached by following a
directed link are in u is proportional to the sum of the
in-degree of all nodes in u. Let

û ¼ hkuini
hkini

; (B10)

then, the generating function of the probability that all the
nodes reached by following a directed link are in u isHðûÞ.
Furthermore, a node with the kout degree in u will survive
with probability HkoutðûÞ.
Considering the directed network composed by influ-

ence links, the generating function of the out-degree
distribution is Gð1; 1; x3Þ and the corresponding generating
function of the out-degree related to the directed branching
process is ðGx2 ½1; 1; HðxÞ'=hkiniÞ. Using y to denote the
probability that all the nodes reached by following a
directed link are in x, we have

y ¼ HðhxÞ; (B11)

where

HðxÞ ¼ x
Gx2 ½1; 1; HðxÞ'

hkini
(B12)

and

h ¼ hkxini
hkini

: (B13)

3. Third Stage: Recursive Percolation Process

Removing a node with k and kout in the second stage is
analogous to removing the node with probability 1 − pykout
from the original network in the first stage. This crucial
property implies that we can map out the cascading process
after the second stage into a new initial removal that occurs
in the original network. The fraction of remaining links
after the new removal process is
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~p ¼
pGx1ð1; 1; yÞ
Gx1ð1; 1; 1Þ

: (B14)

Thus, the resulting percolation equations are

f ¼
Gx1 ½1 − ~pð1 − fÞ; 1; y'

Gx1ð1; 1; yÞ
;

t ¼ 1 − ~pð1 − fÞ;
x ¼ p½1 −Gðt; 1; 1Þ': (B15)

4. Recursive relations

The above analysis leads to a set of recurring relations
that define the cascading process. After the second stage,
the current cascading effect can be mapped to a removal
process in the original network. This property allows us to
write down the cascading process as recursive equations.
Integrating the above three stages, we can rewrite the
cascading process as follows:

x ¼ pf1 −G½1 − ~pð1 − fÞ; 1; 1'g;

f ¼ Gx1½1 − ~pð1 − fÞ; 1; y'
Gx1ð1; 1; yÞ

;

~p ¼
pGx1ð1; 1; yÞ
Gx1ð1; 1; 1Þ

;

t ¼ 1 − ~pð1 − fÞ;

hkxini ¼
Gx2ð1; 1; 1Þ −Gx2ðt; 1; 1Þ

1 −Gðt; 1; 1Þ
;

h ¼ hkxini
hkini

;

y ¼ hx
Gx2ð1; 1; yÞ

hkini
: (B16)

The physical meaning of these recursion relations is that,
after each first stage, a node that is not removed in the initial
attack has a 1 − tk survival probability. After the second
stage, the survival node can be mapped out to a removal
process that occurs on the original network with probability
1 − pykout . These two properties allow us to write down the

formula of the relative size of the giant component P∞ at
the final stable state of the cascading process as

P∞ðpÞ ¼ p½Gð1; 1; yÞ −Gðt; 1; yÞ': (B17)

APPENDIX C: THE CRITICAL THRESHOLD
AND UNIVERSAL BOUNDARY FOR

PHASE TRANSITIONS

It is of interest to understand the universal properties at
the critical point. Below, we derive the critical threshold for
first-order and second-order transitions and the boundaries
between these two phases. The equations are valid for any
type of correlation. In the following sections, we apply
our results to uncorrelated and correlated networks with
influence links.

1. Second-order phase transition

When the transition is of second order, the giant
component P∞ tends to 0 continuously as p approaches
the critical threshold pII

c . This results implies that when
p → pII

c , x → 0 and y → 0, as well as t → 1 and f → 1,
continuously. Let

z ¼ ~pð1 − fÞ; (C1)

and the second equation of the main recursive
equations (B16) can be written as

f ¼
P

k;kin;koutPðk; kin; koutÞkð1 − zÞk−1ykout
P

k;kin;koutPðk; kin; koutÞky
kout

: (C2)

Thus,

f ¼
P

k;kin;koutPðk; kin; koutÞk
Pk−1

μ¼0 C
k−1
μ ð−zÞμykout

P
k;kin;koutPðk; kin; koutÞky

kout
: (C3)

When p → pII
c , then z → 0. Therefore, close to the

critical point, we can ignore the terms of order Oðz2Þ
and OðyÞ, and the above equation can be written as

f¼
P

k;kin;0Pðk;kin;0Þ½k−kðk−1Þzþ1
2kðk−1Þðk−2Þz2'þ

P
k;kin;1Pðk;kin;1Þ½ky−kðk−1Þzyþ1

2kðk−1Þðk−2Þz2y'
P

k;kin;0Pðk;kin;0Þkþ
P

k;kin;1Pðk;kin;1Þky
: (C4)

Using Eq. (C1), Eq. (C4) can be reduced to

z ¼
P

k;kin;0Pðk; kin; 0Þ½kðk − 1Þ − 1
~p k' þ

P
k;kin;1Pðk; kin; 1Þ½kðk − 1Þy − 1

~p ky'P
k;kin;0Pðk; kin; 0Þ

1
2 kðk − 1Þðk − 2Þ þ

P
k;kin;1Pðk; kin; 1Þ

1
2 kðk − 1Þðk − 2Þy

: (C5)

Using the fourth equation in the main system equations (B16), we obtain
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t ¼ tðyÞ ¼ 1 −
P

k;kin;0Pðk; kin; 0Þ½kðk − 1Þ − 1
~p k' þ

P
k;kin;1Pðk; kin; 1Þ½kðk − 1Þy − 1

~p ky'P
k;kin;0Pðk; kin; 0Þ

1
2 kðk − 1Þðk − 2Þ þ

P
k;kin;1Pðk; kin; 1Þ

1
2 kðk − 1Þðk − 2Þy

: (C6)

Note that, here, t is written as a function of y.
When y → 0, the seventh equation of the main system equations (B16) can be written as

y ¼ yðtÞ ¼ hx

P
k;kin;0Pðk; kin; 0Þkin

hkini
: (C7)

Substituting Eqs. (B16) into Eq. (C7), we obtain

yðtÞ ¼
Gx2ð1; 1; 1Þ −Gx2ðt; 1; 1Þ

hkini
p½1 −Gðt; 1; 1Þ' 1

hkini
P

k;kin;0Pðk; kin; 0Þkin
1 −P

k;kin;1Pðk; kin; 1Þkin
: (C8)

Note that, here, we write y as a function of t.
By simplifying the third equation of the main system

(B16), we obtain

~p ¼
p
P

0;kin;koutpð0; kin; koutÞk
hki

: (C9)

Substituting Eqs. (C6) and (C9) into Eq. (C8) and ignoring
terms of higher order in y, we obtain the explicit formula
for the critical point in the second-order phase transition:

pII
c ¼ hki

Gx21
ð1; 1; 0Þ

: (C10)

This equation generalizes the classical uncorrelated
percolation result for networks without influence links
pc ¼ ðhki=hkðk − 1ÞiÞ [29–33] to an influence network
with generic correlations Pðk; kin; koutÞ.

2. First-order phase transition

For a given Gðx1; x2; x3Þ, if there exists a first-order
phase transition, the critical point functions tðyÞ [Eq. (C6)]
and yðtÞ [Eq. (C8)] must be tangential to each other (as
shown in Fig. 7). Thus, the condition for a first-order phase
transition is

∂tðy; pI
cÞ

∂y
!!!!
y¼0

∂yðt; pI
cÞ

∂t
!!!!
t¼1

¼ 1: (C11)

Contrary to the case of pII
c in Eq. (C10), it is not usually

possible to find an explicit formula for pI
c from Eq. (C11).

Therefore, we resort to a numerical integration
of Eq. (C11).

3. Boundary between transitions

According to Eqs. (C6), (C9), and (C10), we obtain

∂t
∂y

!!!!
y¼0

¼ −
P

k;kin;1Pðk; kin; 1Þ½kðk − 1Þ − Gx1
ð1;1;1Þ

pI
cGx1

ð1;1;0Þ k' −
pI
cGx1 ;x3

ð1;1;0ÞGx1
ð1;1;1Þ

½pI
cGx1

ð1;1;0Þ'2
P

k;kin;0Pðk; kin; 0Þk
1
2

P
k;kin;0Pðk; kin; 0Þkðk − 1Þðk − 2Þ

(C12)

and

∂y
∂t
!!!!
t¼1

¼
−Gx1;x2ð1; 1; 1Þp

I
cGx2ð1; 1; 0Þ

hkini2
: (C13)

Substituting Eqs. (C12) and (C13) into Eq. (C11), we
obtain the boundary between the first- and second-order
phase-transition regimes in the phase space:

1 ¼
2pII

c hkiGx21;x3
ð1; 1; 0ÞhGx2ð1; 1; 0Þ

hkiniGx3
1
ð1; 1; 0Þ

: (C14)

There also exists an additional boundary between a
stable network and an unstable network with pc ¼ 1. Such
a network will disintegrate after removing a vanishing
fraction of nodes in the thermodynamic limit.

FIG. 7. Condition for a first-order phase transition. This figure
shows that the functions tðyÞ and yðtÞ are tangential at the critical
point when the transition is of the first order. Here, hkouti ¼ 0.74,
γ ¼ 3, and the minimum degree m ¼ 2.
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APPENDIX D: NETWORKS WITH
UNCORRELATED INFLUENCE LINKS

We treat the case of a random uncorrelated network
with influence links but no local correlations among
ðk; kin; koutÞ. In this case, h≡ 1, and the main system
(B16) can be reduced to

x ¼ pf1 −G½1 − ~pð1 − fÞ; 1; 1'g;

f ¼ Gx1½1 − ~pð1 − fÞ; 1; y'
Gx1ð1; 1; yÞ

;

~p ¼
pGx1ð1; 1; yÞ
Gx1ð1; 1; 1Þ

;

t ¼ 1 − ~pð1 − fÞ;

y ¼ x
Gx2ð1; 1; yÞ

hkini
;

P∞ ¼ p½Gð1; 1; yÞ −Gðt; 1; yÞ': (D1)

Simplifying the above system, at the equilibrium state, the
giant component P∞ can be written as

P∞ ¼ pGð1;1;P∞Þf1−G½1−pGð1;1;P∞Þð1− fÞ;1;1'g
(D2)

and

f ¼ Gx½1 − pGð1; 1; P∞; 1; 1Þð1 − fÞ'
Gxð1; 1; 1Þ

: (D3)

When the transition is second order, the critical point can
be obtained explicitly as

pII;unc
c ¼ hki

q0hkðk − 1Þi
; (D4)

where q0 is the fraction of nodes with kout ¼ 0. Therefore,
for a scale-free network with γ < 3, we find pII;unc

c ¼ 0,
since the second moment diverges, despite the presence of

the influence links, as long as these links are uncorrelated
with each other.

APPENDIX E: NETWORKS WITH CORRELATED
INFLUENCE LINKS

When kin and kout correlate with k, the generating
function Gðx1; x2; x3Þ can be written as

Gðx1; x2; x3Þ

¼
X

k

P1ðkÞxk1
X

kin

P2ðkinjkÞxkin2
X

kout

P2ðkoutjkÞxkout2 : (E1)

For a given P1ðkÞ and ðα; β; hkiniÞ, the average in-degree
and out-degree for a given k are ðkβ=hkβiÞhkini, where
hkαi ¼

P
kP1ðkÞkα and hkβi ¼

P
kP1ðkÞkβ. P2ðkinjkÞ and

P3ðkoutjkÞ are both assumed to be Poisson distributions (see
Fig. 8); thus, the generating functions for P2ðkinjkÞ and
P3ðkoutjkÞ are

P
kinP2ðkinjkÞxkin2 ¼ eð1=hkβiÞhkinikβðx2−1Þ and

P
koutP2ðkoutjkÞx

kout
2 ¼ eð1=hkαiÞhkinikαðx3−1Þ. Therefore, the

main generating function can be written as

Gðx1; x2; x3Þ

¼
X

k

P1ðkÞxk1eð1=hk
βiÞhkinikβðx2−1Þeð1=hkαiÞhkinikαðx3−1Þ: (E2)

This simple formula allows us to solve for pII
c for any α

and β. Using Eq. (E2), we can write the critical threshold as

pII;cor
c ¼ hki

P
kkðk − 1ÞPðkÞ expð−k

αhkini
hkαi Þ

: (E3)

When there is no local correlation between k and kout,
α ¼ 0 and expð−kαhkouti=hkαiÞ ¼ expð−hkoutiÞ ¼ q0,
which is consistent with the uncorrelated result of Eq. (10).
Equation (E3) indicates that pII;cor

c only depends on α,
the connectivity-degree distribution PðkÞ (γ in the case
of a scale-free network), and the average in-degree or

(a) (b)

ou
t

out

in

in

FIG. 8. Distribution of (a) PðkoutjkÞ and (b) PðkinjkÞ for the five APS communities. We calculate the probabilities of kin and kout for a
given k and find that they can be approximated by Poisson distributions.
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out-degree, since hkini ¼ hkouti. Furthermore, pII;cor
c can be

different from 0 even for a scale-free network with γ < 3—
unlike the uncorrelated counterpart, Eq. (D4)—since the
exponential term stabilizes the divergence of the second
moment when α ≠ 0. Surprisingly, there is no β depend-
ence, implying that the large correlation between k and kin
plays a secondary role in sustaining the cascades or in
changing pII;cor

c . When the transition is of the first order,
pI;cor
c depends on both α and β.

APPENDIX F: ESTIMATION OF DISTRIBUTION
FUNCTIONS BASED ON EXPONENTIAL

RANDOM-GRAPH MODELS

Exponential-family random-graph models [37] are very
useful statistical tools to capture the essential properties of
networks. Here, we employ this tool to estimate the power-
law exponent of the degree distribution. For the exponen-
tial-family models, we define

PθðΩ ¼ ωÞ ¼ exp
"Xn

k¼0

θkpkðωÞ
#
; (F1)

where pkðωÞ is the probability of randomly choosing a
node with degree k in network ω. We use the conditional
logistic regression method to estimate the full vector θ. It is
a pseudolikelihood method [39] that estimates the vector θ
by maximizing

lðθÞ ¼
X

i;j

fPθ½Ωi;j ¼ ωi;jjΩu;v ¼ ωu;v; ðu; vÞ ≠ ði; jÞ'g:

(F2)

After obtaining the vector θ, we employ the Gibbs
sampling to update the links of the network. For a given
initial network ω1 (step 1), the links of this network are
stochastically updated. In step t, the probability of the
existence of the link between nodes i and j is

Pθ½ωtþ1
i;j ¼ 1jωtþ1

u;v ¼ ωt
u;v; ðu; vÞ ≠ ði; jÞ': (F3)

The distribution of the network ωt converges for t → ∞
to the exponential random-graph distribution. The above
updating process is the so-called MCMC method [39]. In
this way, we can get a lot of network samples and the
corresponding degree sequences. It allows us to estimate
the power-law exponent of the original networks by the
bootstrap method. We employ the standard maximum-
likelihood methods [44] to estimate the power-law expo-
nent of degree distribution for each network and get the
average value, and the standard deviation of this exponent
is γ ¼ 2.9$ 0.01.

APPENDIX G: ESTIMATION OF THE AVERAGE
NUMBER OF INFLUENCE LINKS

First, we detect all the pioneers who have published at
least one “Complex Networks” paper in 2001 and then find
all authors who have cited these pioneers (the followers).
Then, we identify which followers have published a paper
in “Complex Networks” in 2002 and 2003. We use this
information to estimate, from the real data, the maximum
fraction of influence links for each number of citationsw, as
shown in Fig. 9. The lower and upper bounds of the
averages hkoutið¼ hkiniÞ are estimated from the interval
½ð
P

wnwf
min
w =NÞ; ð

P
wnwf

max
w =NÞ', where nw is the number

of influence links with weight w in the giant component, N
is the size of the giant component, and fmin

w and fmax
w are the

minimum and maximum active influence links estimated as
follows.
To calculate fmax

w , we consider the number of authors
that cite a given author and calculate the number of
influence links that are active as those from a follower
who actually leaves the network: fmax

w ¼ ðamax
w =AwÞ and

fmin
w ¼ ðamin

w =AwÞ, where amax
w and amin

w are the maximum

1

2

3

4
56

7

9 10

11

w=1

w=2

w=3

w=1

w=2 w=1

w=1

w=1

w=1

w=1
12

FIG. 9. Estimation of fmin
w and fmax

w to obtain the bounds in
hkouti from the empirical data. In the figure, we show three
pioneers (red nodes), citation links with weights w given by the
number of citations, and all of the followers of the pioneers (open
circles). The open purple circles denote the followers who move
to “Complex Networks,”while the open blue circles do not move.
For the calculating of fmax

w , we consider the links that are active as
those from followers who move to “Complex Networks.” In the
figure, all the green and purple directed links are active. We
estimate fmax

w ¼ ðamax
w =AwÞ and fmin

w ¼ ðamin
w =AwÞ, as indicated

in the text. For the calculation of fmin
w , if a follower who moves to

“Complex Networks” depends on several pioneers, we consider
the influence link with the largest weight. For instance, for all the
green influence links in the figure, the links from nodes 12 to 1
with weight 3 are active and the links from 12 to 2 and 3 are not
active. In this case, we obtain fmax

1 ¼ 3
7, f

max
2 ¼ 2

2 ¼ 1, fmax
3 ¼ 1

and fmin
1 ¼ 2

7, f
min
2 ¼ 1

2, f
min
3 ¼ 1.
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and minimum numbers of active influence links with
weight w and Aw is the number of links from the followers
to the pioneers, including both active and inactive links
with weights w. For the calculation of fmin

w , if a follower
who moves to “Complex Networks” depends on several
pioneers, we consider the influence link with the largest
weight. Figure 9 illustrates the calculation with an example.
Applying this calculation to the APS communities, we find
the lower and upper bounds of the average influence links
as hkouti ∈ ½0.44; 0.83'. The lower bound hkouti ¼ 0.44 is
used to calculate P∞ðpÞ in Fig. 2(a), which shows how all
the empirical data are between the estimated bounds.
To measure the correlations between the connectivity

degree and the in- and out-degrees, first, we employ the
above method to measure the influence probability for each
directed influence link for a given network. Different
weights of the directed links give rise to different proba-
bilities. We keep the directed links with these probabilities
and record all pairs ðk; koutÞ and ðk; kinÞ. We repeat this
calculation 20 times and compute the average in- and out-
degrees for all the nodes whose connectivity degree is k.
Using the pairs ðk; koutÞ and ðk; kinÞ, the correlation-scaling
law of Fig. 2(d) can be obtained.

APPENDIX H: TEST OF CORRELATIONS
BETWEEN THE CONNECTIVITY AND

INFLUENCE NETWORKS

We investigate the correlations between both networks
by measuring the average influence degree (in and out) of
the nearest neighbors hkNNi of a node with connectivity
degree k connected via an influence link.
For the nodes with degree k, we measure the average

degree hkNNi of their following and follower nodes. We
find that there is almost no correlation between hkNNi and
k, as shown in Fig. 10. The lack of correlation is indicated
by a flat curve in the plot. We note that due to the fact that
the degree distribution is a power law, the second moment
is very broad, so that it makes the error bars (standard
deviation) very large.

This result implies that the correlation between the
connectivity networks and influence networks themselves
is not significant in the APS, such that the present theory
may suffice to capture the cascading effect. However, the
correlations between both networks might become signifi-
cant in other networks. In this case, the theory can be
modified to incorporate these types of correlation. In such a
case, the generating function should be generalized to a six-
dimensional function as follows:

Gðx1; x2; x3; x4; x5; x6Þ ¼
X

Pðk1; k1in; k1out; k2; k2in; k2outÞ

× xk11 x
k1in
2 xk

1
out
3 xk24 x

k2in
5 xk

2
out
6 (H1)

to describe the coupled-network system. Such a system will
not be difficult to solve with the same techniques developed
so far. The percolation techniques for a degree-correlated
network would be analogous to those described in
Refs. [45,46].
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