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The small-world phenomenon is one of the most important properties found in social networks. It

includes both short path lengths and efficient navigation between two individuals. It is found by Kleinberg

that navigation is efficient only if the probability density distribution of an individual to have a friend at

distance r scales as PðrÞ # r$1. Although this spatial scaling is found in many empirical studies, the origin

of how this scaling emerges is still missing. In this Letter, we propose the origin of this scaling law using

the concept of entropy from statistical physics and show that this scaling is the result of optimization of

collecting information in social networks.
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Since the finding of the ‘‘six degrees of separation’’
phenomenon [1,2], i.e., ‘‘the small-world property’’ of
human society, much attention from many disciplines has
been attracted to the study of social networks [3–11]. The
small-world property is based on two important features
[12]. First, there exist very short paths between any two
individuals in a social network. Second, individuals can
find their searching target efficiently via short paths by
merely local information. While the first feature is well
understood [13–15], the understanding of the second factor
is not yet complete. In particular, although Kleinberg
proved that for power law distribution of distance, efficient
searching is possible only when the link length distribution
PðrÞ # r$1 [12,16], the explanation on how this scaling
emerges in social networks is still missing.

In recent years, more and more empirical studies have
confirmed this spatial scaling in different social networks.
Liben-Nowell et al. explored the geographic properties in
an online social network [17]. They used data from the
LiveJournal online community with about 5% 105 mem-
bers, in which their state and city of residence, as well as a
list of their LiveJournal friends are available. They found
that the probability density function (PDF), PðrÞ, of an
individual having a friend at a geographic distance r is
about PðrÞ / r$1. Almost at the same time, Adamic and
Adar have also found the same scaling phenomenon [18].
They investigated a relatively small social network,
the Hewlett-Packard Labs email network. The PDF of the
distance between interacting people is also found to scale
as PðrÞ / r$1. More recently, Lambiotte et al. investigated
a large mobile phone communication network [19]. The
network consists of 2:5% 106 mobile phone customers that
have placed 8:1% 108 communications, for whom they
have the geographical home location information. They
found that the probability of two nodes (u and v) to have
a long range connection of length rðu; vÞ is Prðu; vÞ /
rðu; vÞ$2. For two-dimensional space, the number of nodes

which have distance r from a given node is proportional
to r. This implies that the PDF of an individual to have a
friend at distance r is PðrÞ / rr$2 ¼ r$1. Very recently,
Goldenberg and Levy investigated several large online
communities, and also detected the same spatial scaling
phenomenon [20]. From the above empirical investiga-
tions, one can conclude that the PDF of having a friend
at distance r is

PðrÞ / r$1: (1)

The importance of this scaling has been illustrated
by Kleinberg [12,16]. Kleinberg has proved that in a
d-dimensional space, when the probability of having a
long range connection of length r between u and v is
Prðu; vÞ / rðu; vÞ$d, the network is optimally navigated
[12,16,21]. For d-dimensional lattice, the number of nodes
that have the same distance r to a given node is propor-
tional to rd$1. So when the PDF of the distance from a
given node is PðrÞ / rd$1r$d ¼ r$1 for all d, the network
structure is optimal for navigation. This spatial scaling
property enables people to send messages efficiently in a
minimal number of hops to all nodes of the system.
However, the optimal local search cannot be the origin of
this kind of spatial scaling law, because there is no moti-
vation for individuals to find short paths to all individuals
which are not known to them and are not in their friendship
circle. Even if this motivation exists there is no way for the
individual to know how to implement it, since he needs
global information on the network structure. Thus, there
should be a fundamental origin that governs the emergence
of the spatial scaling law, Eq. (1).
Indeed, for some online social networks, it is possible

that the geographical distance is not evident to the indi-
viduals and thus the r dependent is not expected. In this
case, the number of individuals linked to a given individual
at distance r should be proportional to r instead of r$1, so
PðrÞ should be proportional to r. As found by Kleinberg,
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this kind of social network will not be efficiently navi-
gable. In contrast, as discussed above, for some online
social networks PðrÞ / r$1 is observed [17,20] meaning
that in this kind of social network geographical distance
plays an important role in choosing friends. Such networks
are efficiently navigated. For this kind of online social
networks, the intersection of online and off line friendships
is probably high since people expect the online friends to
become off line friends, thus, yielding PðrÞ / r$1.

In this Letter we propose a plausible origin of this
scaling with one of fundamental statistical physics con-
cepts, the entropy. We hypothesize that human social be-
havior is based on gathering maximum information
through different types of activities. Making friends can
be regarded as a way of collecting information. Thus we
suggested that the formation of a local structure of social
network may be determined by collecting optimal infor-
mation. Entropy is a concept used to measure the quantity
of information and diversity as proposed by Shannon, see
e.g., [22]. To get optimal information, one should max-
imize the diversity of his friendships and this could be
described by maximizing information entropy. So max-
imization of entropy could be a general purpose for an
individual which collectively shapes the social network
architecture. We will show that a social network based on
Eq. (1) is an optimal network with a maximum entropy
which benefits people in collecting maximal information.

To model a social system we use a toroidal lattice to
denote the world in which each node represents an indi-
vidual. We assume that each individual has a finite energy
w which can be represented by the sum of distances
between an individual and all of his or her friends,

Xm

v¼1

rðu; vÞ ¼ w; (2)

wherem is the number of direct links of node u. Equation (2)
implies that every node u selects its long range acquain-
tances v, one by one, until the total distance reaches w.

The information that node v brings to u can be evaluated
by considering the information of node v and all its neigh-
bors. Thus, the information that u collects can be expressed
by the sequence of nodes as illustrated in Fig. 1 and the
entropy of the whole sequence measures the amount of
information [22]. We assume that all nodes are equivalent,
so the information obtained by one node can represent the
information obtained by each of the other nodes. Thus, our
model for constructing a social network is

Max " ¼ $
Xn

i¼1

qi logqi; (3)

subjected to Eq. (2). In Eq. (3), qi denotes the frequency of
node i in the information sequence (see Fig. 1) and n is the
size of the network. When i is not a neighbor and not a next
nearest neighbor of u, qi ¼ 0, and we define qi logqi ¼ 0.
Thus, Eq. (3) implies that the information entropy " is
determined by the sequence of friends and friends of

friends. We also analyzed the case where information is
achieved also from friends of ‘‘friends of friends’’ [23] and
obtained similar conclusions.
Our optimization model (OM) is based on Eqs. (2)

and (3) which represent two competing processes.
To maximize entropy [Eq. (3)], it is preferred to have
friends at long distances in order to explore new parts of
the network and to obtain more information. However, the
farther one goes he can have less friends due to the finite
energy limited by Eq. (2). The link length distribution of
these networks decays as a power law, which infers a
smaller amount of long range connections. These long
range connections can be regarded as ‘‘weak’’ in the sense
of their amount, but play a crucial role in the network
function similar to ‘‘weak ties’’ [24]. Assuming the PDF
of having a friend at distance r obeys

PðrÞ / r$!; (4)

we can explore the value of! that yields maximum entropy
under the condition of Eq. (2).
The optimization model is simulated on a toroidal lattice

whose size is L% L (L ¼ 10 000 means that individuals
can make friends in a population of 108) and lattice
(‘‘Manhattan’’) distance is employed. Because toroidal
lattice is a regular network and each node has a unique
index, we can calculate the lattice distance between any
pair of nodes and we do not need to construct the whole
network, enabling us to simulate very large lattices.
For a large enough two-dimensional lattice, the number

of nodes that have distance r from a given node is propor-
tional to r. So if w ! þ1, that means if we consider the
maximal diversity of friendships without any constraints of
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FIG. 1 (color online). The friends and friends of friends of
node 1. Nodes 2, 3 and 4 are the friends of node 1 for which
Eq. (2) yields dð1; 2Þ þ dð1; 3Þ þ dð1; 4Þ ¼ w. The size of the
network is n ¼ 12 and the information sequence is
f2; 3; 4; 5; 6; 7; 7; 8; 9; 9; 10g and the frequencies of all nodes
are q2 ¼ q3 ¼ q4 ¼ q5 ¼ q6 ¼ q8 ¼ q10 ¼ 1

11 , q7 ¼ q9 ¼ 2
11 ,

q1 ¼ q11 ¼ q12 ¼ 0. If one site is reached several times when
constructing the long range connections from node 1 or from
different nearest neighbors (such as nodes 7 that can be reached
through nodes 2 and 3), it will appear in the node sequence and
in Eq. (2) the same number of times.
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energy, we expect PðrÞ / r to be the optimal entropy
information since each node has the same probability in
the information sequence. In practice, individuals naturally
have a limited energy w. Our numerical results shown in
Fig. 2(a) indicate that when ! ( 1, the information en-
tropy " is near its maximum value for a very broad range of
w. For the range w 2 ð5% 104; 106Þ, we find the optimal !
to be ! ¼ 1) 0:05.

When the size of the lattice is L and PðrÞ / r$1, the
mean distance between friends is L

logL . Therefore, we can

find the average number of friends f to be

f ¼ w logL

L
(5)

which gives one to one correspondence between f
and w at the optimal state. When L ¼ 10 000 and
w 2 ð5% 104; 106Þ the average number of friends is
f 2 ð50; 1000Þ which indeed corresponds to reality [25].
In particular, when considering the average number of
friends we contact in 1 yr, f ¼ 300 [25], the optimal value
of ! is ! ¼ $0:99) 0:03 (as shown in Fig. 2).

Our results suggest that PðrÞ / r$1 is the optimal dis-
tribution for maximizing entropy between all power law
distributions. Is PðrÞ / r$1 the optimal distribution when
considering all kinds of distributions? We will demon-
strate, based on the following evolutionary model (EM),
that among all kinds of distributions, PðrÞ / r$1 is still

the optimal one. In the EM, we also construct a network
on a lattice of size L% L. A node ui is one of the neighbors
of node u when there is a direct link from u to ui.
Each node u has friends at distances rðu; uiÞ subject toP

ui2Urðu; uiÞ * w, where U is the set of all neighbors of

node u. In the initial stage of the EM, PðrÞ is set to be a
uniform distribution. Then we employ the extremal opti-
mization method [26], to maximize the entropy, Eq. (3),
through the following evolution of network architecture.
At each step, a node is chosen randomly. For a chosen
node u, we make two operations, deleting and adding
neighbors according to the marginal improvement of en-
tropy. Suppose u has k neighbors. For the deleting execu-
tion, we first calculate the marginal entropies of each

neighbor of node u, f !Eu1
rðu;u1Þ ;

!Eu2
rðu;u2Þ ; . . . ;

!Euk
rðu;ukÞg, where !Eui

means the change in the entropy of node u when we
delete node ui from the neighborhood of node u with
other parameters being unchanged. Then we randomly

select a comparatively small j !Eui
rðu;uiÞ j with probability

PrðuiÞ proportional to ðrankj
!Eui
rðu;uiÞ jÞ

$1$logðkÞ [26] and delete

ui from u’s neighborhood. For the adding link execution,
suppose v1; v2; . . . ; vh are all the candidates which are
currently next nearest neighbors of node u. We first calcu-
late the marginal entropies of each of the candidates,

f !Ev1
rðu;v1Þ ;

!Ev2
rðu;v2Þ ; . . . ;

!Evh
rðu;vhÞg, then we also employ the extremal

optimization method to choose a node whose marginal
entropy is comparatively large among all candidates’ mar-
ginal entropies as a friend of node u. We repeat the adding
execution until all the candidates are chosen or the energy
limit [Eq. (2)] is satisfied.
In the evolutionary model, we have to record all friends

of each node and therefore a system of size L% L with
L ¼ 10 000 is too large to simulate. So we simulate the
evolutionary model on a toroidal lattice of size 100% 100.
We assume that the energy scales linearly with distance as
suggested by Eq. (2). Thus, when reducing L from 10 000
to 100 (factor of 100) we expect the corresponding
energy to be reduced from the order of 105 to the order
of 103. We therefore study the EM of L ¼ 100 with
w ¼ 1086 (f ¼ 50).
In order to find the optimal distribution of the distances

for the EM, we first employ the optimization model de-
scribed by Eqs. (2)–(4) to analyze the above case with
the system size 100% 100 and w ’ 103. We find that the
maximum entropy is 7.18 and the corresponding ! is
! ¼ 0:95) 0:05 [see Figs. 3(a) and 3(b)]. Next we simu-
late the EM on a lattice with size 100% 100 and w ’ 103.
After long term evolution from the initial uniform distri-
bution (each node modifies the neighborhood more than
40 000 times), the system achieves its stationary state
[Fig. 3(c)]. The maximum entropy is 7.15 and the corre-
sponding PDF of the distance between the friends scales as
PðrÞ / r$1 [Fig. 3(d)], which are very close to the results
obtained by the OM. So we conclude that PðrÞ / r$1 is the
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FIG. 2 (color online). The relationship between ", w, f, !,
and L in the optimization model. (a) The contour map shows
the relationships between w, ! and ", for L ¼ 10 000. The
colors indicate the value of ". In (b), the dependence of the
information entropy " on ! for f ¼ 300, 500, 1000 is shown.
(c) The dependence of the optimal ! on the average number of
friends f. The error bars denote the standard deviations. (d) The
relationships between optimal ! and L of the lattice. From it we
can see that for large L the optimal ! approaches 1. The error
bars denote the standard deviations.
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optimal PDF of distances of friendships for collecting
maximal information. It implies that, the spatial structure
of the real social networks is the most optimal structure for
maximizing the diversity of the friends’ locations and help
individuals to collect information efficiently.

From empirical analysis, it is found that the probabi-
lity distribution of having a friend at distance r scales as
PðrÞ / r$1 which seems to be a universal spatial property
for social networks. This provides us with another remark-
able scaling phenomenon for which the origin was not
known. It is shown here that basic concepts of statistical
physics can be introduced to understand the origin of this
spatial scaling law. We show that these scaling laws result
from the maximization of entropy that can benefit indi-
viduals for optimally collecting information. Our findings
offer a useful framework to understand the structure and
function of social networks.
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FIG. 3 (color online). The results of the evolutionary model
when L ¼ 100 and f ¼ 50. (a) The simulation results of the OM
on a toroidal lattice with the preset power law distribution PðrÞ /
r$!. (b) The dependence of the information entropy " or ! for f
around 40 in the OM. We can see that when f ¼ 50, the optimal
exponent is 0.95 and it is very close to 1. (c) The changes of
entropy in the EM with the evolution time. Finally, the entropy
reaches its maximum and the system achieves a steady state. The
maximal entropy is 7.15, which is very close to the entropy 7.18
in the network of L ¼ 100 where we preset the distribution is
PðrÞ / r$1. The inset shows the time evolution of the difference
of the entropy in successive times, which decays exponentially.
Thus we can see that for a sufficient long time evolution, the
entropy converges to a fixed value and the system achieves a
steady state. (d) The cumulative distribution of the distance in
the EM is shown in a log-linear plot in the steady state. The close
to linear approximation shows that this distribution is very close
to PðrÞ / r$1 (dashed line).
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