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Abstract. Many real networks, such as infrastructure networks, are 
interdependent and their structure is influenced by spatial constraints. 
However, the existence of spatial constraints and dependency links makes the 
system more vulnerable to an initial random failure. In this paper, we model 
the interdependent network with the strength of embedding length ζ. We 
propose an effective recovery strategy which recovers the boundary of the failed 
nodes during the cascading of failures with probability γ. We find that without 
changing the transition type, both the range and the duration of the cascading 
failure can be decreased by increasing γ. Our model could be used to improve 
the robustness of real-world network systems.

Keywords: network reconstruction, critical phenomena of socio-economic 
systems, network dynamics

S Hong et al

Cascading failure and recovery of spatially interdependent networks

Printed in the UK

103208

JSMTC6

© 2017 IOP Publishing Ltd and SISSA Medialab srl

2017

J. Stat. Mech.

JSTAT

1742-5468

10.1088/1742-5468/aa8c36

PAPER: Classical statistical mechanics, equilibrium and non-equilibrium

10

Journal of Statistical Mechanics: Theory and Experiment

© 2017 IOP Publishing Ltd and SISSA Medialab srl

ournal of Statistical Mechanics:J Theory and Experiment

IOP

2017

1742-5468/17/103208+9$33.00

mailto:ztd@buaa.edu.cn
mailto:shenghong@buaa.edu.cn
stacks.iop.org/JSTAT/2017/103208
https://doi.org/10.1088/1742-5468/aa8c36
http://crossmark.crossref.org/dialog/?doi=10.1088/1742-5468/aa8c36&domain=pdf&date_stamp=2017-10-30
publisher-id
doi


Cascading failure and recovery of spatially interdependent networks

2https://doi.org/10.1088/1742-5468/aa8c36

J. S
tat. M

ech. (2017) 103208

1. Introduction

The cascading of failures, is a process that evolves on top of systems, such as infrastruc-
tures, triggered by an initial failure or overload that propagates eventually destroying 
the functionality of the full system. The last few years this process has been studied in 
Networks of Networks such as Interdependent networks composed by internal connec-
tivity links inside each network and interdependent links between them. It was shown 
that under an initial failure 1− p of the nodes in one network, the cascade of failures 
propagates between the networks step by step. At each time step, depending on the 
value of p the system decreases its resilience and at a critical threshold pc the system 
fully collapse, i.e. at this critical value the system overcomes a first order phase trans-
ition in which the size of the functional giant component (GC) suddenly jump from a 
finite value to zero. The cascading of failures in interdependent complex random regu-
lar (RR), Erdős–Rényi (ER) networks and scale-free (SF) networks have been exten-
sively studied via simulations and theoretically using the percolation framework [1–13]. 
In order to decrease the catastrophic effects of the cascade of failures, many researchers 
studied how to improve the resilience of complex networks, modeling mitigation and 
recovering strategies [24–28]. Motter proposed a selective removal strategy of nodes 
that is applied after the initial failure [24]. Majdandzic et al studied the spontaneous 
recovery in single and interacting networks based on a mean-field approach [25, 26]. 
Valdez et al [30] proposed a spontaneous recovery model with competition between 
different kinds of failures using a degree based approach. Stippinger et al [27] intro-
duced a healing process, to bridge non-functioning nodes enhancing the network resil-
ience. Di Muro et al [2] implemented a recovery strategy for interdependent networks 
under the cascading of failures in which the nodes in the border of the functional GC 
are restored. Hu et al [28] proposed a recovery strategy in a single infrastructure net-
work under localized attacks and applied it to real-world highway network. Böttcher 
et al [31] studied the spontaneous failure and recovery in the single spatially embedded 
and random networks which mapped the dynamics to a generalized contact process. 
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Their research suggests that the spatially embedded system with short characteristic 
link lengths whose dynamics are described by their model are substantially more robust 
against abrupt failures.

All these studies were performed in complex networks. However, many complex 
systems in the real world, such as transportation, infrastructure and the neural net-
works are often organized under the form of the networks in which the length of the 
links between nodes is spatially constrained. Isolated spatial networks such as the 
lattice based model [14], the random geometric graph [15], the Waxman model [16], 
the spatial Watt–Strogatz model [17] and the spatial growths model [18] have being 
proposed in the past. In the lattice based model links are more likely to exist between 
nearby nodes than between distant nodes. As a consequence interdependent infra-
structure networks can be represented as multiplex networks, in which each network 
or layer has connectivity links among nearby nodes. In lattice networks, the effect of 
spatially on the robustness of a multiplex network embedded in a 2-dimensional space, 
in which links in each layer are variable but constrained length, was studied in [19–23]. 
It is found that weak coupling leads to an abrupt collapse whereas the non-embedded 
networks undergo a smooth continuous transition, which indicate the extreme vulner-
ability of the spatially multiplex network [19]. The authors also find that when the 
length of the dependency link is longer than a certain critical value, abrupt, discontinu-
ous trans itions take place, while at and below this critical value the transition is con-
tinuous, indicating that the risk of an abrupt collapse can be eliminated if the typical 
link length is shorter than the critical one [23]. On the other hand, few strategies have 
being proposed to restrain the cascading of failures in interdependent lattice networks, 
however the long range links between nodes were not taken into account. Increasing 
the probability of long-range links in the network, using a strength of spatially embed-
ding, will reduce the robustness of the spatially multiplex networks [29] under an initial 
random failure and thus it is important to implement recovery strategies in order to 
avoid the collapse of the system.

In this work, we study a recovery strategy that is initiated at the beginning of the 
cascade of failures in a spatially interdependent networks. We find that our recovery 
strategy is effective for all the values of spatially embedding strength ζ. By recovering 
the failed nodes during the cascading of failures and connecting them to the giant comp-
onents with probability, γ, the critical percolation threshold of the network decreases, 
increasing the robustness of the system.

2. Model

2.1. The spatially interdependent network

In this paper, we consider two single spatially interdependent networks, denoted by A 
and B. Each single network model is a variant of the Waxman model [16]. This model 
is similar to the model in [29], and the modeling process can be summarized as follow:

 (i) We assign N = L2 nodes, where each node is in the coordinate (xi, yi) with 
i = 1, . . . , L.

https://doi.org/10.1088/1742-5468/aa8c36


Cascading failure and recovery of spatially interdependent networks

4https://doi.org/10.1088/1742-5468/aa8c36

J. S
tat. M

ech. (2017) 103208

 (ii) We randomly choose a node and compute the length of the link which starts 
from this node according to the length distribution P (l) ∼ e−l/ζ where ζ is the 
strength of the spatially embedding length. Since the distance between each pair 
of nodes i and j is dij =

√
(xi − xj) 2+(yi − yj) 2, we find the set of nodes, in the 

single network, Ω = {(x2, y2) |min (|l − d12|) , (x2, y2) ∈ [1 . . . , L]} i.e. the distance 
between (x1, y1) and (x2, y2) closer to l. Then we randomly choose a node with 
coordinates (x2, y2) ∈ Ω and build a link between them.

 (iii) We repeat step 2., until the number of the links reaches the desired number 
N ⟨k⟩ /2, where N is the system size and ⟨k⟩ is the average degree of the single 
network.

 (iv) We build the dependency links between nodes at the same position in different 
networks.

In figure 1 we show an example of the spatially interdependent network for L = 10.

2.2. Cascading failure and recovery procedure

The cascading failure process of the system is initiated by the random failure of a frac-
tion 1− p of nodes in network A. The nodes that do not belong to the GCA fail and 
as a consequence the interdependent nodes in the other network fail together with the 
finite components. Then the failure propagates at each time step of the cascade until 
the GC’s of both networks reach the steady state in which both GC’s have the same 
size [24]. Next we present the recovery strategy [5].

 (i) The initial failure is triggered by removing a fraction 1− p of nodes from network 
A. Due to the dependency links, nodes with the same position in network B 
also fail. The failed nodes of each network are denoted as FailA (t = 0) and 
FailB (t = 0), where t = 0 is the initial time step.

 (ii) For each pair of interdependent nodes that belong to FailA (t = 0) and FailB (t = 0), 
and were connected to the GC of each network GCA (t = 0) and GCB (t = 0), we 
recover both nodes with probability γ. Note that the recovery restores the failed 
nodes together with the links which connect the remaining functional nodes.

 (iii) The failure propagates through the connectivity link in network A. All the nodes 
which do not belong to the GC of network A will fail, and these failed nodes will 
produce the failure of their interdependent nodes in network B. We update the 
nodes in FailA, FailB, the GCA and GCB, and remove their connectivity in this 
step.

 (iv) As in step 2, we recover the pair of failed nodes which connected to the GCA and 
GCB at the initial state with probability γ and update the GCA and GCB.

 (v) The nodes in network B fail if they do not belong to the GCB, then the nodes in 
network A become dysfunctional if their interdependent node in network B fails. 
We update FailA, FailB, GCA and GCB.

https://doi.org/10.1088/1742-5468/aa8c36
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 (vi) We recover with probability γ the pair of interdependent failed nodes connected 
to the GCA and GCB.

 (vii) We repeat step 3-6 until the steady state is finally reached.

A schematic of the cascading of failures with the recovery procedure is shown in 
figure 2.

3. Results and analysis

We generate the spatially interdependent square network with N = 100× 100, ⟨k⟩ = 3 
and 4 respectively.

The simulation results are obtained by the Monte Carlo simulations with at least 
10 realizations. We compute the number of iteration steps (NOI) needed to reach the 
steady state which indicates the time scale of the process, and the order parameter P∞ 
which is the relative size of the GC of the networks at the end of the process.

In order to visualize the dynamical process of the cascading of failures and recov-
ery in figure 3, we plot the network structure at NOI  =  1, 3, 6 and 8 for p above the 
threshold. From the plot we can see that the GC of the networks reaches a stable state.

Figure 4 shows the order parameter P∞ and NOI as a function of p and γ, when 
γ > 0, ⟨k⟩ = 3 and ζ = 1. We can see that when the recovery strategy is taken, the 
network still undergoes a second order transition. But when the recovery probability γ 
improved, the percolation threshold pc decreases from 0.86 to 0.76, and the NOI at pc 
from 8 to 6. Thus our recovery strategy improves the robustness of the spatially inter-
dependent networks affected by the random failure, decreases both the range and the 
duration of the cascading failure.

Beside the embedding strength, the average degree of the network will also influence 
the effect of the recovery strategy. As shown in figures 5 and 6, as ⟨k⟩ increased to 4, 

Figure 1. The spatially interdependent network for L = 10. The red nodes and 
edges belong to network A and the blue nodes and edges to network B. The nodes 
of each layer at the same position are connected by dependency links.

https://doi.org/10.1088/1742-5468/aa8c36
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the recovery strategy is more efficient. This is due to the fact that the recovered nodes 
are selected from the failed nodes which were connect to the GC. A degree distribution 
with increasing broadness increases the connectivity of the node and as a consequence 
the networks become more resilient. From the figures we can also see that increasing 

Figure 2. The cascading failure process with recovery. The failure node in each 
step is denoted by an X mark and the recovery node is denoted with the green 
pentagram. The nodes which belong to the GC of each network are surrounded by 
dashed line.

(a) (b) (c) (d)

Figure 3. The network structure at NOI  =  1 (a), 3 (b), 6 (c) and 8 (d). 
Functional nodes are colored in black and dysfunctional nodes in white. Here 
L = 100, ⟨k⟩ = 3, ζ = 1, p = 0.83, γ = 0.5.

https://doi.org/10.1088/1742-5468/aa8c36
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ζ the efficiency of our strategy improves. In fact, the probability of an edge P (l) will 
become a constant for different edge length l when ζ → ∞. So the increase of ζ will 
make the network more like an interdependent ER network, hence improve the resilient 
of the network. Therefore, as ζ and ⟨k⟩ increases, a failed node increases the probability 
to be connected to the GC of functional nodes and will lead to an increasing recovery 
effect.

Moreover, the structure of real spatially networks is neither the lattice network or 
the ER random network. As shown in [29], ζ, the strength of the spatially embedding of 
EU power grid, has ζ ≈ 6 and Japan local railway network has ζ ≈ 12, remaining thus 
in an intermediate value between zero and infinity. Therefore, as shown in figure 5, our 

(a) (b)

Figure 4. The cascading failure procedure with recovery. For average degree 
⟨k⟩ = 3 and ζ = 1. (a): Order parameter P∞ as a function of p and γ, (b): the 
number of iteration steps NOI as a function of p and γ.

(a) (b)

Figure 5. The cascading failure procedure with recovery. The average degree of 
this network ⟨k⟩ = 4, and the strength of spatially embedding ζ = 3. (a): the order 
parameter P∞ as a function of p and γ. (b): the number of iteration steps NOI as 
a function of p for different values of γ.

https://doi.org/10.1088/1742-5468/aa8c36
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recovery strategy is very effective in improving the robustness of the interdependent 
network, by decreasing the percolation threshold pc form 0.56 to 0.38, and the NOI at 
pc from 12 to 6. Thus our recovery strategy can be successfully implemented in a real-
world network.

4. Conclusion

In summary, we investigated the modeling process of a spatially interdependent net-
work. Based on this network model, we proposed the in-process recovery strategy dur-
ing the cascading failure procedure. The simulation is made to illustrate that we can 
lower the percolation threshold pc and improve the network robustness against random 
failure by adjusting the recovery probability γ. By analyzing the parameter charac-
teristics of the real-world networks, we describe the implementation of the recovery 
strategy. Our future work will consider how the load and capacity features influence the 
cascading failure procedure of this network and provide an efficient recovery strategy.
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Figure 6. The cascading failure procedure with recovery. The average degree of 
this network ⟨k⟩ = 4, and the strength of spatially embedding ζ = 20. (a): the order 
parameter P∞ varying with p and γ. (b): the number of iteration steps NOI varying 
with p and γ.
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