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Cascading failures in networks with proximate dependent nodes
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We study the mutual percolation of a system composed of two interdependent random regular networks. We
introduce a notion of distance to explore the effects of the proximity of interdependent nodes on the cascade of
failures after an initial attack. We find a nontrivial relation between the nature of the transition through which
the networks disintegrate and the parameters of the system, which are the degree of the nodes and the maximum
distance between interdependent nodes. We explain this relation by solving the problem analytically for the
relevant set of cases. In the process, we solve a variant of Rényi’s parking problem on treelike graphs.
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I. INTRODUCTION

Previous studies of the robustness of interdependent
networks have focused on networks in which there is
no constraint on the distance between the interdependent
nodes [1–13]. However, many dependency links in the real
world connect nearby nodes. For example, the international
network of seaports and the network of national highways
form a complex system. As seen recently from the effects of
Hurricane Sandy in New York City, if a seaport is damaged, the
city that depends on it will become isolated from the highway
network due to the lack of fuel. Similarly, a city without roads
cannot supply a seaport properly. However, a city will depend
on a nearby seaport, not on one across the world. Li et al. [14]
investigated distance-limited interdependent lattice networks
by computer simulations and found that allowing only local
interdependency links changed the resilience properties of the
system. Here, we study the analogous problem in the case of
analytically tractable random networks.

We study the mutual percolation of two interdependent
random regular (RR) graphs. We build two identical networks,
A and B, each of whose nodes are labeled 1, . . . ,N . Each node
is randomly connected by edges to exactly k other nodes in
such a way that the two networks have identical topologies.
We then create one-to-one bidirectional dependency links,
requiring that the shortest path between the interdependent
nodes does not exceed an integer constant !.

Formally, we establish two isomorphisms between net-
works A and B, a topological isomorphism and a dependency
isomorphism. The topological isomorphism is defined for
each node Ai as T (Ai) = Bi and T (Bi) = Ai . If Ai and
Aj are immediate neighbors in network A, then Bi and Bj

are immediate neighbors in network B and vice versa. The
dependency isomorphism has the property that if D(Ai) = Bk ,
then D(Bk) = Ai . We create a restriction that Bk = D(Ai) only
if there are a maximum of ! connectivity links on the shortest
path connecting Ai and Ak = T (Bk).

There are many methods to create an isomorphism D
that satisfies the shortest path length restriction. The method
employed by Li et al. for lattices was based on creation of a
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random permutation of indices of the nodes that satisfies the
maximal distance restriction. This random permutation was
created iteratively by attempting a sufficiently large number of
elementary transpositions, each of which satisfied the distance
restriction. This method does not work in random networks,
because these transpositions switch the dependencies of a pair
of neighboring nodes and therefore cannot create permutations
which form the long loops that exist in random networks. The
problem of creating a random permutation that satisfies the
length restriction in random graphs is a formidable problem.
Various approaches such as identifying loops in the network
by the Hopcroft-Tarjan algorithm [15] cannot guarantee the
selection of all random permutations that satisfy the length
restriction with equal probability.

Therefore, for simplicity, we introduce two more restric-
tions in the dependency isomorphism. We set D(Ai) = Bi

only if there are no other possibilities for D(Ai). Addi-
tionally, we require that if D(Ai) = Bk , then D(Bi) = Ak .
This restriction decreases the computation time needed to
generate a permutation and, more importantly, precisely
defines the algorithm creating the dependency isomorphism.
This makes the model analytically tractable. We will call this
method of establishing dependency isomorphism the “parking
algorithm” due its similarity to Rényi’s parking problem (see
Appendix A). We will address the changes in the results
obtained using other algorithms in Appendix C.

Following the mutual percolation model described in
Buldyrev et al. [1], we destroy a fraction (1 − p) of randomly
selected nodes in A. Any nodes that, as a result, lost
their connectivity links to the largest cluster (as defined
in classical, single-network percolation theory [16,17]) are
also destroyed. In the next stage, nodes in B that have
their interdependent nodes in the other network destroyed
are also destroyed. Consequently, the nodes that are isolated
from the largest cluster in B as a result of the previous
destruction of nodes in B are also destroyed. The iteration
of this process, which alternates between the two networks,
leads to a cascade of failures. The cascade ends when no
more nodes fail in either network. The pair of remaining
largest interdependent clusters in both networks is called a
largest mutual component. If in the thermodynamic limit
N → ∞ the fraction of nodes µ in the largest mutual
component is greater than zero, it is called the giant mutual
component.
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FIG. 1. Numerical results of pc vs distance (!), obtained by
analyzing 100 realizations of networks consisting of N = 106 nodes
for different degrees of connectivity (k). Large symbols denote first-
order transitions, while second-order transitions are represented by
small symbols. The regions of first-order and second-order transitions
are denoted on the graph and are separated by the dashed line. The
ellipse around the value pc(8,1) indicates the special case of almost
coinciding first- and second-order transitions.

II. SIMULATION RESULTS

As p decreases, the giant component also decreases in size
and eventually disappears at the value of p that we call critical
p, or pc. We will denote pc for a degree k and distance ! as
pc(k,!). We investigate how pc varies as a function of k and !
(Fig. 1).

As the distance and the degree increase, the transition
at pc shifts from a second-order transition in which µ
continuously approaches zero to a first-order one, in which
µ decreases discontinuously in the thermodynamic limit. The
line separating these two regimes is shown in Fig. 1. Of
particular note is the shift for pc(k,1). If 3 ! k ! 7, the
transition is second order. For k " 9, the transition is first order.
For k = 8, we observe two transitions: the first-order transition
at p = pcI = 0.276 followed by the second-order transition at
p = pcII = 0.269. As we will explain, the existence of the
second-order transition in this case affects the behavior of the
first-order transition.

For each value of k, pc increases monotonically as !
increases. This monotonic increase is in contrast with the
results found by Li et al. [14], who found that in distance-
limited lattices, there is a maximum in pc as a function of !. In
Li et al., this maximum coincided with the distance at which
the transition shifts its nature from second-order for smaller
distances to first-order for larger distances. In our model, a
similar shift occurs at a very low value of ! ! 2 and is not
associated with a maximum of pc.

We describe the differences that we find between first-order
transitions and second-order ones with the goal of properly
characterizing the transition for pcI (8,1). The distribution of
the largest mutual cluster differs for first- and second-order
transitions. A system that undergoes a first-order transition
has a single mutual giant component of size µ, as well as
many much smaller clusters. When the system collapses, the
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FIG. 2. The cumulative distribution of the fraction µ of nodes in
the largest cluster at pc. Each data point represents the largest cluster
for 1 of 1000 realizations. These graphs represent networks of 106

nodes; similar patterns can be found for other sizes. In panel (a), a
first-order transition, none of the simulations result in β $ µ $ α.
In contrast, a second-order transition, shown in panel (b), displays a
distribution of µ with a continuous derivative. The third figure shows
the transition at pc(8,1); it is similar to a first-order transition, but the
gap between β and α cannot be clearly identified.

giant component breaks into many smaller mutual clusters;
even the largest of these clusters is much smaller than the
giant component.

If the transition is of the first order, the size of the largest
mutual component of a finite network at a fixed value of p ≈ pc

may fluctuate dramatically. Due to fluctuations always present
in a finite system, µ can be close to the value α, which is the
fraction of nodes in the mutual giant component for N → ∞ at
p = pc + ε, where ε is a small positive number. In other cases,
it can be close to β, the value of µ at p = pc − ε for N → ∞.
However, no values of µ are expected in the interval between
α and β. This phenomenon tells us that, due to the cascade
of failures, if a cluster becomes smaller than α, then it will
not reach stability until it falls below β. Figure 2(a) illustrates
the first-order transition observed at pc(9,1) = 0.2494; we see
that there is no intermediate value of µ when the simulation
is repeated for many such systems. As the size of the network
increases, the distribution concentrates around α and β, with
the probability density approaching a δ function at these two
points. We define pc as the point where half of the realizations
lead to each result. As the size of the network increases, β goes
to 0 in most cases. The sole exception is pcI (8,1) [Fig. 2(c)].

In the case of second-order transitions, the drop in µ(p) is
less dramatic. There is no gap in the size distribution of the
largest cluster [Fig. 2(b)]. Rather, there is a steady decline of
the cumulative distribution of µ. Thus, α and β are not defined.

These two categories describe every transition with the
exception of pc(8,1). There, we see a plateau in the cumulative
distribution of the largest component size, reminiscent of a
first-order transition. However, there is no clear gap in the
distribution of the mutual giant component in a finite network
and we cannot clearly identify α and β (Fig. 2). A second
noticeable difference between the two types of transitions is
the progress of the cascade of failures in the network. These
cascades are the cause of the network’s collapse, as described
in Buldyrev et al. [1]. The order of the transition determines the
behavior of the cascades. In a first-order transition, all of the
realizations begin with an abrupt initial decay, as the first stages
of the cascade take their toll [Fig. 3(a)]. The realizations that
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FIG. 3. The size of the giant cluster (µ), as a function of the
stage in the cascade. Each line represents a different simulation. In
the first-order transition (a), the simulations that quickly stabilize
form asymptotic lines near α, the smallest possible giant component.
The simulations that collapse decay quickly once they decrease to
below α. In the second-order transition (b), the largest cluster decays
steadily over the cascade’s progression. At pc(8,1) (c), we see both
behaviors.

will retain a mutual giant component then decline more slowly
and eventually stabilize, generating giant components greater
or equal to α. The realizations that do eventually collapse also
begin to stabilize. However, instead of stabilizing, they enter a
rapid decline once the largest cluster becomes smaller than α,
eventually forming clusters of sizes less than or equal to β. In a
second-order transition, in contrast, the largest cluster steadily
declines over time [Fig. 3(b)]. In pc(8,1), the largest cluster
approaches an asymptote, as it would in a first-order transition.
However, the clusters that eventually collapse, rather than
entering a rapid decline, decrease slowly, as if they were
undergoing a second-order transition [Fig. 3(c)].

In order to determine pc for second-order transitions, we
examine the size of the second largest cluster. This quantity
peaks at p = pc. For p > pc, the giant component spans the
entire cluster, preventing other large clusters from forming. For
p < pc, the networks are too fragmented to allow large clusters
to form. These phenomena are common to both first- and
second-order transitions, but are more useful in second-order
transitions because they serve as the best indication of pc. This
measure of pc coincides with the traditional calculation of the
percolation threshold, the point where µN , the average size of
the largest cluster, begins to increase rapidly as a function of p.
However, the average size of the second cluster as a function
of p yields a more precise measure of pc (Fig. 4) because it
has a sharp peak at p = pc [3].

III. ANALYTIC SOLUTION

We offer an analytic solution for the case where ! = 1,
which is the simplest case, in which we see the transition shift
from second order to first order.

A. Parking problem

In our simulation, we establish dependency links in the
following way: At each step, we select at random a node
Ai that currently does not have a dependency link and set
two dependency links D(Ai) = Bj and D(Aj ) = Bi , where
Bj is randomly chosen among Bi’s immediate neighbors
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FIG. 4. The size of the second largest cluster as a function of p,
for k = 7 and ! = 1. Note the maximum at pc(7,1) = 0.294.

without a dependency link, if at least one such neighbor
exists. We call (i,j ) a dimer. If all of the neighbors of Bi

already have dependency links, we set D(Ai) = Bi and i is
called a monomer. This system of assigning dependency links,
introduced for computational efficiency, allows us to find an
exact solution. In order to calculate pc, we find the fraction of
indices that are monomers,

m =
∫ 1

0

2k exp
(
2
∫ A

0
(Bk−1)dB

[Bk(k−2)−2(k−1)](B−1)

)

2(k − 1) − Ak(k − 2)
dA − 1. (1)

Finding the value of 1 − m is a version of Rényi’s parking
problem [18] that applies to a discrete graph; another version
on a discrete graph was solved by Dehling et al. [19]. A full
derivation of Eq. (1) appears in Appendix A.

In our analytic calculation of µ(p), we will use the
probability q that a link leaving a dimer reaches a monomer.
Because, in our algorithm, two monomers cannot be adjoining,
any connectivity link that has a monomer at one end has a
dimer at the other end. Thus, q is simply the number of links
with monomers at one end divided by the number of links
that leave dimers, which is km

(k−1)(1−m) . The factor k − 1 in the
denominator comes from the exclusion of the link between the
two members of the dimer.

B. Analytic determination of pc

When ! = 1, it is possible to express the problem of finding
the mutual giant component of two networks as the problem
of finding of a giant component in a single network, while
taking into account the disruption caused by the other network.
To determine pc for a single RR graph, percolation theory
introduces a probability b that a randomly selected link does
not lead to the giant component. This probability satisfies the
equation [16]

b = (1 − p) + pbk−1. (2)

The first term on the right side of the equation refers to the
probability that the link leads to a node that was destroyed
in the initial attack, while the second term represents the
probability that the node survived, but does not have any
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outgoing links that lead to the giant component. Previous
studies of interdependent networks have used this equation
[10–12], often modifying the value of p and the degree
distribution [1–8]. They use these modifications to describe the
diminished network at each stage of the cascade. However, this
method is only useful when the nodes destroyed in each stage
of the cascade can be seen as a random subset of nodes in the
other network. The distance restriction in our model precludes
us from doing so. We modify the equation itself to account
for the local interdependency between our two networks. This
allows us to study both networks at once and to account for
more complex relationships between them.

When studying a link in network A, we assume that the link
starts from a node Ai , such that its interdependent counterpart
in network B, Bk = D(Ai), a priori belongs to the mutual giant
component. This assumption allows us to isolate the effect that
the destruction of nodes in network A will have. Formally, this
is done by assuming that Bk is artificially connected to the
mutual giant component in a way that does not affect the
topology in network A. We thus define a as the probability
that a randomly chosen link leaving node Ai would not lead
to the mutual giant component, if Bk = D(Ai) were to be
artificially attached to the mutual giant component. If the link
leaving Ai leads to a node Aj that survived the initial attack, x
represents the event that Aj is not connected to the mutual giant
component via any of its outgoing links, even with our a priori
assumption. However, even if x does not occur, Aj may still
be dead because its interdependent node Bl = D(Aj ) does not
belong to the mutual giant component. Accordingly, we define
the event y that the node Bl is not connected to the mutual
giant component via links of network B. Thus, we can write

a = (1 − p) + p[P (x ∪ y)], (3)

where P (x ∪ y) plays the role that bk−1 did in Eq. (2). We
need to study separately monomers, “matched” dimers (in
which both nodes in the dimer survive the initial attack), and
“unmatched” dimers (in which only one of the two nodes
survives). Equation (3) is a general framework which must be
adapted to account for the three different types of nodes in
our system. We thus obtain three equations from Eq. (3). The
equation for am studies links that leave monomers, while the
equation for ad studies links that leave matched dimers and
the equation for au studies links that leave unmatched dimers.

We then calculate the probability that Aj (the node to
which the link leads) is a given type of node (for example, a
monomer). We then multiply this by the probability that if Aj is
a monomer (for example), Aj does not connect Ai to the giant
component, given our a priori assumption. Once we calculate
these probabilities for each of the three types of nodes, we add
these probabilities, finally arriving at the total probability that
a node does not lead to the giant component, given our a priori
assumption that its support node does. We find

ad = (1 − p) + qp
(
ak−1

m

)
+ (1 − q)p(1 − p)

×
(
ak−2

u +
[
1 − ak−2

u

]
ak−1

u ) + (1 − q)p2(a2k−3
d

)
, (4)

am = (1 − p) + p(1 − p)
(
ak−2

u +
[
1 − ak−2

u

]
ak−1

u

)

+p2(a2k−3
d

)
. (5)

These two equations are relatively simple; P (x ∪ y) is either
just P (x) or P (x) + P (y) − P (x ∩ y). That is, y, failure due to
the second network, is either (1) impossible due to the a priori
assumption, or (2) independent of x. Case 1 occurs when both
Ai and Aj are monomers or parts of matched dimers; in these
cases, nodes that survived the initial attack connect D(Aj ) and
D(Ai), allowing D(Aj ) to be connected to the giant compo-
nent. Case 2 occurs when Aj is a part of an unmatched dimer;
due to the local treelike structure of the large RR network, the
path that connects Aj to its giant component will not overlap
with the path that connects D(Aj ) to its giant component. Thus,
the existence of one path has no correlation with the existence
of the other. A complete derivation of Eqs. (4)–(8) follows in
Appendix B. The calculation of au is more difficult. The events
x and y are not always independent because Aj ’s and Bj ’s
paths to the mutual giant component may overlap. We must
find P (x ∩ y) )= P (x)P (y). Therefore, we introduce another
two variables, zm and zd , which denote the probabilities that
neither the link from Ai to Aj nor the link from Bi to Bj lead to
the giant component. The principle in these cases is the same
as the one used in the determination of am and ad . P (x ∩ y)
can be expressed as a power of zm or zd . We find

au = (1 − p) + qp
(
2ak−1

m − zk−1
m

)

+ (1 − q)p(1 − p)
(
ak−2

u +
[
1 − ak−2

u

]
ak−1

u

)

+ (1 − q)p2(2a2k−3
d − z2k−3

d

)
, (6)

zd = q(1 − p) + (1 − q)(1 − p)2 + qp
(
zk−1
m

)

+ 2(1 − q)p(1 − p)
(
ak−2

u +
[
1 − ak−2

u

]
ak−1

u

)

+ (1 − q)p2(z2k−3
d

)
, (7)

zm = (1 − p)2 + 2p(1 − p)
(
ak−2

u +
[
1 − ak−2

u

]
ak−1

u

)

+ p2(z2k−3
d

)
. (8)

Finally, the fraction of nodes in the mutual giant component is

µ = p
{
1 − m

(
2ak

m − zk
m

)
− (1 − m)

[
p
(
2a2k−2

d − z2k−2
d

)

+ (1 − p)
(
2ak−1

u − a2k−2
u

)]}
. (9)

To solve the equations (4)–(8), we define *ξ ≡
(ad,au,am,zd,zm), and a function *ϕ(*ξ ), which represents
the right-hand sides of Eqs. (4)–(8). These equations always
have a trivial solution of (1,1,1,1,1), for which µ = 0.
Through an iterative process *ξ0 = *0, *ξn = *ϕ(*ξn−1), we search
for a nontrivial fixed point *ξ = *ϕ(*ξ ) for different values of p.
The results for µ(p) are presented in Fig. 5. Our results for pc

coincide with our numerical data to within the precision of the
simulation. We remarkably see three types of transitions in
the value of *ξ as a function of p, as the simulations indicated.
For k ! 7, we observe a second-order transition. For k " 9,
we find a first-order transition. For k = 8, as p decreases, we
first see a first-order transition at p = pcI = 0.2762, where
µ changes dramatically (but not to zero) and a second-order
transition to µ = 0 when p decreases to pcII = 0.2688.
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FIG. 5. The fraction of nodes in the mutual giant component
µ(p) for ! = 1 and (a) k = 9, (b) k = 7, and (c) k = 8. Dotted lines
in the lower graph represent the fraction of nodes in the mutual
giant component (µ) derived from the analytic solution. The circles
represent the values obtained in simulation of networks with N = 106

nodes, which show excellent agreement with theory. The upper graph
represents ad , one of the probabilities defined in Eqs. (4)–(8). The
other probabilities behave similarly. Insets show the detailed behavior
of ad (p) near the transition revealing, respectively, a discontinuous
increase to 1 characteristic of the first-order transition (k = 9), a
continuous increase to 1 characteristic of the second-order transition
(k = 7), and a discontinuous increase to 0.9616 at p = pcI = 0.2762
followed by a continuous increase to 1 at p = pcII = 0.2688,
indicating the existence of two transitions (k = 8). In all cases, ad = 1
indicates the complete destruction of the mutual giant component, as
shown in the lower graph.

IV. CONCLUSION

In conclusion, our results demonstrate an interesting be-
havior of collapsing random networks with distance-restricted
dependency links. We find that networks with long dependency
distances are much more vulnerable than networks with
short dependency distances. Moreover, the networks with
large dependency distance and large degree collapse via an
abrupt first-order transition, near which a removal of a single
additional node can create a collapse of the entire system,
while the networks with short dependency distances and low
degree gradually disintegrate via a continuous second-order
transition without catastrophic cascades, which make such
networks safer. For the transitional case, we have found a
two-stage collapse. The first-order transition is sudden, as
expected, but the network survives until the second transition,
which completely destroys the networks. In contrast to
interdependent two-dimensional lattices [14], for which the
critical dependency distance associated with the change of
the transition order from the second to the first coincides
with the distance of maximal vulnerability, for interdependent
random networks of any degree k, the vulnerability always
monotonically increases with the dependency distance. This
difference is caused by the fact that for large dependency
distances in two dimensions, the phase boundary between
the destroyed and intact phases must be created in order for

the cascade of failures to spread over the system. In random
networks, which are effectively infinitely dimensional, the
boundary between phases is not well defined and hence the
cost of its formation for large dependency distances does not
affect the system behavior.

As we mention above, all the results are obtained for a
model in which the dependency isomorphism was created by
the “parking algorithm.” These results obtained by an exact
analytical method and verified by extensive simulations can
serve as a benchmark for more complex cases. We compare
these results with the results produced by other algorithms
which incorporate the creation of long loops in the dependency
permutations (Appendix C). We find that in the presence of
loops, the critical fraction of nodes pc decreases by no more
than 5%, with the exact value depending on the algorithm
used. However, the presence of loops makes the transition
more abrupt, so that for ! = 1 the transitions become first
order for smaller values of k, with the exact value depending
on the algorithm.
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APPENDIX A: DERIVATION OF PARKING CONSTANT

In our process, we combine neighboring nodes into dimers
or assign single nodes to be monomers. Let t represent the
time. It will increase by 1 whenever we select a new node, but
not when we select the second node of a dimer. At the end of
the assignment process, tfinal = N (m + d), where Nm is the
number of monomers and Nd is the number of dimers. The
number of nodes in the dimers is 2dN ; thus, m + 2d = 1.

Let E(t) represent the number of links that leave unassigned
nodes at time t , and F (t) represent the number of links that
connect one unassigned node with one assigned node at time
t . Then

A(t) ≡ F (t)
E(t)

(A1)

is the probability that a link leaving an unassigned node will
arrive at an assigned node.

Since E(t) is simply the number of unassigned nodes
multiplied by k,

(E(t)
(t

= −k{1 + [1 − A(t)k]}. (A2)

The first term in the braces represents the decrease in unas-
signed nodes associated with the node originally chosen for
assignment, while the second term is the additional decrease
when a dimer is formed, which occurs with probability
1 − A(t)k .

To calculate the change in F (t), we will first consider
the effect of a single link that leaves the node that we are
considering. This link will, with probability 1 − A(t), reach
an unassigned node. If it does, F (t) will increase by 1. If the
link leads to an already assigned node [which will occur with
probability A(t)], F (t) will decrease by 1, because the link
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will no longer connect an unassigned node with an assigned
one. Adding the two effects, we see that each link contributes
1 − 2A(t) to F (t). There is a 1 − A(t)k probability that the
assigned node will form a dimer, in which case we examine
the effect of the second node of this dimer. This calculation is
nearly the same as for the first node of the dimer. However, in
this case, only k − 1 links must be examined, because one link
leads to the first node of the dimer. Additionally, the choosing
of the second node causes F (t) to decrease by 1, since the
link connecting the two nodes in the dimer no longer connects
an unassigned node with an assigned node. Considering both
possibilities, we arrive at the equation

(F (t)
(t

= k[1 − 2A(t)] + [1 − A(t)k]{[k − 1][1 − 2A(t)] − 1}.

(A3)

We can redefine the variables F (t) ≡ F (t)/N , E(t) ≡
E(t)/N , and t ≡ t/N so that we can take the continuous limit
as N → ∞.

Recalling Eq. (A1),

dA

dt
=

dF
dt

− dE
dt

A

E
. (A4)

Differentiating by E(t) instead, we arrive at

dA

dE
=

dF
dE

E
− A

E
. (A5)

Integrating Eq. (A5), we, after some algebra, arrive at

E(A) = k(1 − A)

× exp
(

2
∫ A

0

Bk − 1
[Bk(k − 2) − 2(k − 1)](B − 1)

dB

)
.

(A6)

Equation (A2) can be restated as

dt

dA
= dE

dA
k(Ak − 2). (A7)

At the very end of the assignment process, A = F
E

→ 1.
Differentiating Eq. (A6) with respect to A, substituting dE/dA
into Eq. (A7), and integrating it over the entire process, i.e.,
from A = 0 to A = 1, we obtain

tfinal =
∫ 1

0

−k

Ak(k − 2) − 2(k − 1)

× exp
(

2
∫ A

0

(Bk − 1)dB

[Bk(k − 2) − 2(k − 1)](B − 1)

)
dA.

(A8)

Recalling that m + d = tfinal and m + 2d = 1, m, as found in
Eq. (1), can trivially be obtained as 2tfinal − 1. The resulting
numerical values m(k) are presented in Fig. 6.

APPENDIX B: DERIVATION OF
PERCOLATION EQUATIONS

In our calculation of a, we examine a link that leads from
Ai → Aj and calculate the probability that the link does not
lead to a giant component, given our a priori assumption. The

0 20 40 60 80 100
k

0

0.02

0.04

0.06

0.08

0.1

0.12

m

FIG. 6. The fraction of monomers as a function of the network
degree k obtained by numerical integration of Eq. (1).

link i → j can lead to a dimer, an unmatched dimer, or a
monomer. We will denote these cases by referring to the nodes
involved; for example, md is associated with the case in which
a link goes from a monomer to a matched dimer. For the case
md we define an event, also denoted by md, that a link leading
from a monomer to a matched dimer does not lead to the giant
component, and denote the probability of this event P (md).
Similarly, P (mdx) is the probability of event md occurring due
to x, isolation in the A network. Analogous definitions apply
for the other seven cases: mu, dm, dd, du, um, ud, and uu,
some of which are illustrated by diagrams in Fig. 7. Note that
the case mm does not exist because in our model, a monomer
cannot be connected to another monomer. The probability of
cases dm and um must include the factor q, while the cases
dd, du, ud, and uu must include the factor 1 − q.

We first develop equations for ad and am. The link could
lead to a node Aj that is any of our three types, or to a node
that was destroyed in the initial attack. We express P (x ∪ y)
in each case in terms of Aj ’s respective a and multiply this
term by that type’s specific probability. Let us begin with the
cases md,dm, and dd. Consider the link that leads from node
Ai to node Aj . The counterpart of this link in network B leads
from node Bi to node Bj , where Bj , as part of a matched dimer
or monomer, also survives the initial attack. In the case md,
Bi = D(Ai) belongs to the mutual giant component. Thus,
Bj , by virtue of being linked to Bi , also belongs to the mutual
giant component. Since d = 1, D(Aj ) ≡ Bl is an immediate
neighbor of Bj , and having survived the initial attack, is also
connected to the mutual giant component in network B.

In cases dm and dd, Bk ≡ D(Ai) belongs to the mutual
giant component. Since d = 1, Ai and Ak must be immediate
neighbors, so Bk is connected to Bi . Bi is connected to Bj ,
and hence Bj belongs to the mutual giant component. In case
dd, Bl ≡ D(Aj ) is linked to Bj and hence also belongs to the
mutual giant component. Thus, in md,dm, and dd, y = ∅ and
hence P (x ∪ y) = P (x). Accordingly, the contributions for am

and ad from those three cases are

P (dm) = ak−1
m , (B1)

P (dd) = P (md) = a2k−3
d , (B2)
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+uux +uuy +udx +udy −udz
zmd

A
B + +
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k i

FIG. 7. Diagrams presenting various terms in Eqs. (5), (6),
and (8). The corresponding terms is Eqs. (4) and (7) follow the same
patterns. The top row in each diagram represents network A; the
bottom row represents network B. The nodes are shown by circles.
The white circles are the nodes which survive the initial attack; the
black circles are the dead nodes which do not survive the initial attack.
Connectivity links are represented by horizontal lines; vertical and
diagonal lines denote dependency links. The link under examination is
the one connecting Ai and Aj ; unmarked nodes follow the previously
established indices. In zm, we explore both networks. The arrows
that point left indicate that D(Ai) is assumed a priori to belong to
the mutual giant component. Small black circles at the end of the
outgoing links identify links that do not lead to the mutual giant
component; the absence of such circles indicates that connection of
this node to the mutual giant component via its outgoing links is
irrelevant. The number of such circles helps identify the power of the
terms in a particular case of k = 3.

where the powers of am and ad are, respectively, the numbers
of outgoing links in network A leaving the monomers and
matched dimers. The fact that these links do not lead to the
mutual giant component is depicted by a small filled circle at
the end of these links in Fig. 7.

In contrast, in the cases du and mu, a selected link arrives
at a surviving node of an unmatched dimer Aj . Thus Bj is
dead, as is Al ≡ D(Bj ). Therefore, the node Bl = D(Aj ) is
not connected to the node Bk = D(Ai) by the links shown on
the diagram. Thus, if all of its survived links do not lead to the
mutual giant component, it will not belong to the mutual giant
component. The event that Bl = D(Aj ) is connected to the
mutual giant component (that is, that y does not occur) is in-
dependent of the event that Aj is connected to the mutual giant
component via its outgoing links (that is, that x does not occur).
This independence stems from the fact that the node Bl may be
connected to the giant component by paths which are totally
independent of the paths of the outgoing links of network Aj .
This is because locally, a large randomly connected network
has a tree structure, so the paths leading to the mutual giant
component can meet only after infinitely many steps. Further-
more, the nodes on these paths connecting Aj and Bl = D(Aj )
to the giant component cannot be interdependent due to the
short range of the dependency links. Thus, P (x ∩ y) = P (x) +
P (y) − P (x)P (y). In Fig. 7, the first term P (x) corresponds
to the diagram mux, while the second term P (y) corresponds
to the diagram muy and the third term P (x)P (y) corresponds
to the diagram muxy. Note that node Bl does not belong to the

mutual giant component if and only if all of its k − 1 survived
links in network B are not connected to the mutual giant
component, because its support node Aj belongs to the mutual
giant component due our a priori assumption. Accordingly,

P (mu) = P (du) = ak−2
u +

(
1 − ak−2

u

)
ak−1

u . (B3)

Combining all these terms, we find, equivalently to Eq. (5),

am = (1 − p) + p [(1 − p)P (mu) + pP (md)] , (B4)

and [equivalently to Eq. (4)],

ad = (1 − p) + p{qP (dm) + (1 − q)[(1 − p)P (du)

+pP (dd)]}. (B5)

The calculation of au is more difficult. In cases ud and um, the
events x and y are not independent because the topologically
correspondent links Aj → An and Bj → Bn, which connect
corresponding pairs of nodes in networks A and B, are not
independent. Their paths to the mutual giant component will
involve many of the same obstacles, due to the similarity of
the two networks. Thus, the event that Aj is connected to the
giant component is not independent of the event that Bj is
connected to the giant component. Therefore, we need to find
P (x ∩ y) )= P (x)P (y). In the case um, this event occurs when
all of the outgoing links of Aj and all links of Bj do not lead
to the giant component. In ud, we must add the links outgoing
from nodes Al and Bl . We can group these links in the two
networks in pairs of topologically correspondent links, none
of which should lead to the giant component. The number
of such pairs is k − 1 in um and 2k − 3 in ud. Therefore,
we introduce another two variables, zm and zd , which denote
the probabilities that both links in the pair of correspondent
links in a monomer or a matched dimer, respectively, do not
lead to the giant component. As we did previously, we will
consider the links going from Ai and Bi to Aj and Bj . As an
illustration, the terms included in zm are shown in Fig. 7. Then

P (um) = P (umx) + P (umy) − P (umz) = 2ak−1
m − zk−1

m ,

(B6)

P (ud) = P (udx) + P (udy) − P (udz) = 2a2k−3
d − z2k−3

d .

(B7)

The case uu is totally analogous to the case du:

P (uu) = ak−2
u +

(
1 − ak−2

u

)
ak−1

u . (B8)

Combining these three cases, we reproduce Eq. (6):

au = (1 − p) + p{qP (um) + (1 − q)[(1 − p)P (uu)

+pP (ud)]}. (B9)

The calculation of zm and zd is analogous to the calculation
of am and au except that the cases zdu and zmu must be taken
twice because now we are interested in cases both when Aj

survives the initial attack and Bj is dead and vice versa. For this
reason, we must also replace the initial 1 − p term in Eqs. (5)
and (4) with the term (1 − p)2, because when calculating z, we
require that both nodes Aj and Al ≡ D−1(Bj ) must be dead
in order for events zmu and zdu to not occur. Note that event
zmu is identical to event mu and event zdu is identical to event
du. In this case, because the link leads to an unmatched dimer,
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one of its nodes did not survive the original attack, allowing
us to examine only the links leaving the other node. Thus,

P (zdm) = zk−1
m , (B10)

P (zdd) = P (zmd) = z2k−3
d , (B11)

and [Eqs. (7) and (8)]

zm = (1 − p)2 + 2p(1 − p)P (mu) + p2P (zmd), (B12)

zd = q[1 − p + pP (zdm)] + (1 − q)[(1 − p)2

+ 2p(1 − p)P (du) + p2P (zdd)]. (B13)

APPENDIX C: OTHER DEPENDENCY ISOMORPHISMS

To investigate how different ways of assigning the depen-
dency links can affect the results, we perform simulations
in several test cases using other algorithms of establishing
the dependency isomorphism. It is evident that establishing
a dependency isomorphism is equivalent to a permutation
of node indices that satisfies the distance restriction. The
parking algorithm employed in this paper creates permutations
with maximal cycle loops of length 2, corresponding to
“dimers.” Some fraction of indices, m, is left unchanged in the
permutation created by the parking algorithm. These indices
correspond to “monomers.” If the maximal distance ! " 2, the
transposition algorithm employed by Li et al. [14] can produce
permutations with loops of considerable length but these loops
still do not follow the large loops in the biconnected compo-
nents (“blobs”) of the networks. We find that the pcs obtained
with the transposition algorithm differ from the values obtained
with the parking algorithm by no more than 5% and that the
change in algorithm does not change the order of the transition.

If ! = 1, the transposition algorithm fails to produce
permutation cycles longer than 2. Therefore, we employ the
Hopcroft-Tarjan algorithm [15] to identify blobs and singly
connected links (“red bonds”) of the networks A and B
(which are identical due to the topological isomorphism of the
two networks). In this algorithm, we select nodes at random
one-by-one, as we do in the parking algorithm, using the
following four steps. Step I: A node is randomly selected
among the nodes with yet unpermuted indices. If and only if
all the nearest neighbors of this node are already permuted, the
node becomes a “monomer.” Step II: Otherwise, we randomly
select one of the neighbors. If and only if the link connecting
these nodes is a red bond, we establish a dependency between
these nodes, creating a “dimer.” Step III: Otherwise, we
produce a random walk on a subnetwork of nodes with yet
unpermuted indices, such that the walk can use only links of
the same blob, but cannot use the same link twice. Once this
walk forms a loop, we select the indices of the nodes of this
loop into a permutation cycle. If some of the originally selected
nodes do not belong to the loop, their indices will not be
permuted at this point. Step IV: If the random walk is trapped
among the nodes with permuted indices, we recalculate the
blobs in the subnetwork of nodes with unpermuted indices
by the Hopcroft-Tarjan algorithm, staring from the originally
selected node, and repeat steps II and III.

This method creates permutations with very long loops.
The distribution of these loop lengths t obeys a universal
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FIG. 8. Comparison of the behavior of the fraction of nodes in
the mutual percolation component vs p for two different algorithms
of assigning dependency links for k = 3 (a) and k = 7 (b). The thin
solid line shows analytical results for the parking algorithm, while
the bold line shows the results for the loop algorithm described in
Appendix C. Dots show simulations results for parking algorithm,
which demonstrate perfect agreement with theory. One can see that
for k = 7, pc = 0.2925 for the parking algorithm, while for the loop
algorithm, pc = 0.2825. However, in the presence of loops, µ changes
abruptly from 0.048 for p > pc to 0 for p < pc. For k = 3, pc

decreases from p = 0.5700 for the parking algorithm to p = 0.562
for the loop algorithm.

scaling law P (t > x) = f [x/〈t(N )〉], where f (x) decreases
slightly faster than exponentially and 〈t(N )〉 is the average
loop length, which scales as 〈t(N )〉 = ft (k)

√
N , where ft (k)

is a decreasing function of k, which converges to a positive
value for k → ∞. This scaling law follows from the analogy
with the birthday paradox [20].

Figure 8 compares the behavior of the fraction of nodes
in the mutual giant component for µ versus p for the parking
algorithm and the loop algorithm described above. One can see
that in the presence of loops pc slightly decreases for all k, but
the transition becomes sharper and becomes a discontinuous
first-order transition for any k. Alternative algorithms of
establishing dependency links with long permutation cycles
produce similar results, but the change of the order of the
transition from second to first takes place for 3 < k < 8,
depending on the algorithm. In general, the presence of loops
in the permutation describing the dependency isomorphism
makes interdependent networks slightly less vulnerable.

032808-8



CASCADING FAILURES IN NETWORKS WITH PROXIMATE . . . PHYSICAL REVIEW E 89, 032808 (2014)

[1] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and
S. Havlin, Nature (London) 464, 1025 (2010).

[2] Y. Hu, B. Ksherim, R. Cohen, and S. Havlin, Phys. Rev. E 84,
066116 (2011).

[3] R. Parshani, S. V. Buldyrev, and S. Havlin, Proc. Natl. Acad.
Sci. USA 108, 1007 (2010).

[4] J. Shao, S. V. Buldyrev, S. Havlin, and H. E. Stanley, Phys. Rev.
E 83, 036116 (2011).

[5] S. V. Buldyrev, N. W. Shere, and G. A. Cwilich, Phys. Rev. E
83, 016112 (2011).

[6] X. Huang, J. Gao, S. V. Buldyrev, S. Havlin, and H. E. Stanley,
Phys. Rev. E 83, 065101 (2011).

[7] G. Dong, J. Gao, L. Tian, R. Du, and Y. He, Phys. Rev. E 85,
016112 (2012).

[8] G. Dong, L. Tian, D. Zhou, R. Du, J. Xiao, and H. E. Stanley,
Europhys. Lett. 102, 68004 (2013).

[9] J. Gao, S. V. Buldyrev, S. Havlin, and H. E. Stanley, Phys. Rev.
E 85, 066134 (2012).

[10] S. W. Son, P. Grassberger, and M. Paczuski, Phys. Rev. Lett.
107, 195702 (2011).

[11] S. W. Son, G. Bizhani, C. Christensen, P. Grassberger, and
M. Paczuski, Europhys. Lett. 97, 16006 (2012).

[12] G. J. Baxter, S. N. Dorogovtsev, A. V. Goltsev, and J. F. F.
Mendes, Phys. Rev. Lett. 109, 248701 (2012).

[13] T. P. Peixoto and S. Bornholdt, Phys. Rev. Lett. 109, 118703
(2012).

[14] W. Li, A. Bashan, S. V. Buldyrev, H. E. Stanley, and S. Havlin,
Phys. Rev. Lett. 108, 228702 (2012).

[15] J. Hopcroft and R. Tarjan, Commun. ACM 16, 372 (1973).
[16] M. E. J. Newman, Networks: An Introduction (Oxford University

Press, Oxford, 2010).
[17] R. Cohen and S. Havlin, Complex Networks: Structure,

Robustness, and Function (Cambridge University Press,
Cambridge, 2010).
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