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Although anomalous episodic warming of the eastern equatorial
Pacific, dubbed El Niño by Peruvian fishermen, has major (and oc-
casionally devastating) impacts around the globe, robust forecast-
ing is still limited to about 6 mo ahead. A significant extension of
the prewarning time would be instrumental for avoiding some of
theworst damages such as harvest failures in developing countries.
Here we introduce a unique avenue toward El Niño prediction
based on network methods, inspecting emerging teleconnections.
Our approach starts from the evidence that a large-scale coopera-
tive mode—linking the El Niño basin (equatorial Pacific corridor)
and the rest of the ocean—builds up in the calendar year before
the warming event. On this basis, we can develop an efficient
12-mo forecasting scheme, i.e., achieve some doubling of the early-
warning period. Our method is based on high-quality observational
data available since 1950 and yields hit rates above 0.5, whereas
false-alarm rates are below 0.1.
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The so-called El Niño-Southern Oscillation (ENSO) is the most
important phenomenon of contemporary natural climate var-

iability (1–4). It can be perceived as a self-organized dynamical
see-saw pattern in the Pacific ocean-atmosphere system, featured
by rather irregular warm (El Niño) and cold (La Niña) excursions
from the long-term mean state. ENSO has considerable influence
on the climatic and environmental conditions in its core region,
but affects also distant parts of the world. The pattern is causing
disastrous flooding in countries like Peru and Ecuador as well as
heavy droughts in large areas of South America, Indonesia, and
Australia. It is arguably also associated with severe winters in
Europe, anomalous monsoon dynamics in East Asia, intensity of
tropical cyclones such as hurricanes in the Caribbean, and epi-
demic diseases occurring in a variety of places (5–9).
Strong El Niño events, in particular, have affected, time and

again, the fate of entire societies. A popular, yet quite informative
account of ENSO’s destructive power is provided in ref. 10. This
book investigates the pertinent droughts in India, China, and
Brazil toward the end of the 19th century, which killed an esti-
mated 30–50 million people.
What happened in premodern times is unlikely to be repeated

in the future. However, anthropogenic global warming (11, 12) may
have a significant effect on the character of ENSO and render this
geophysical pattern even more challenging for certain societies. In
fact, the phenomenon is listed among the so-called “tipping ele-
ments” in the Earth System (13, 14) that might be transformed—
sooner or later—by the greenhouse-gas emissions from fossil-fuel
burning and land-cover change. The scientific jury is still out,
pondering the question of how El Niño events will behave in a
world without aggressive climate-protection measures (15). Will
the eastern tropical Pacific warm permanently, periodically, or as
irregularly as nowadays? Will the oscillation go away completely
(something that appears rather unlikely according to the recent
assessment by Wang et al. in ref. 4) or gain in strength (as sug-
gested by some paleo-climatic data)? In the latter case, anything

that helps to improve the predictive power of the scientific ENSO
analysis would be even more important than it is already today.
The ENSO phenomenon is currently tracked and quantified,

for example, by the NINO3.4 index, which is defined as the aver-
age of the sea-surface temperature (SST) anomalies at certain grid
points in the Pacific (Fig. 1). An El Niño episode is said to occur
when the index is above 0.5 °C for a period of at least 5 mo. So-
phisticated global climate models taking into account the atmo-
sphere–ocean coupling as well as dynamical systems approaches,
autoregressive models, and pattern-recognition techniques ap-
plied on observational and reconstructed records have been used
to forecast the pertinent index with lead times between 1 and
24 mo. Up to 6 mo, the various forecasts perform reasonably well,
whereas for longer lead times the performance becomes rather
low (16–29). A particular difficulty for prediction of the NINO3.4
index is the “spring barrier” (see, e.g., ref. 30). During boreal
springtime, anomalies that develop randomly in the western Pa-
cific reduce the signal-to-noise ratio for the dynamics relevant to
ENSO and make it harder to predict across the barrier.
In this study, we follow a different route. Instead of considering

the time dependence of climate records at single grid points i, we
study the time evolution of the interactions (teleconnections) be-
tween pairs of grid points i and j, which are represented by the
strengths of the cross-correlations between the climate records at
these sites. The interactions can be considered as links in a climate
network where the nodes are the grid points (31–34). Recent
empirical studies have shown that in the large-scale climate net-
work the links tend to weaken significantly during El Niño epi-
sodes, and this phenomenon is most pronounced for those links
that connect the “El Niño basin” (solid circles in Fig. 1) with the
surrounding sites in the Pacific ocean (open symbols in Fig. 1) (the
El Niño basin considered here consists of the NINO1, NINO2,
NINO3, and NINO3.4 regions plus one grid point south of the
NINO3.4 region) (32, 33).
Therefore, we concentrate on these links and show that well

before an El Niño episode their mean strength tends to increase.
We use this robust observation to forecast El Niño development
more than 1 y in advance. We use the time span between 1950
and 2011, where the information on ENSO dynamics is reliable
and the observational data necessary for constructing the climate
network are complete (35).
We use the network shown in Fig. 1, which consists of 14 grid

points in the El Niño basin and 193 grid points outside this
domain. Following ref. 33, we consider at each node k the daily
atmospheric temperature anomalies Tk(t) (actual temperature
value minus climatological average for each calendar day) at
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the surface area level. The data have been obtained from the
National Centers for Environmental Prediction/National Cen-
ter for Atmospheric Research Reanalysis I project (35, 36).
For obtaining the time evolution of the strengths of the links

between the nodes i inside the El Niño basin and the nodes j
outside we compute, for each 10th day t in the considered time
span between 1950 and 2011, the time-delayed cross-covariance
function defined as CðtÞ

i; j ð−τÞ= hTiðtÞTjðt− τÞi− hTiðtÞihTjðt− τÞi
and CðtÞ

i; j ðτÞ= hTiðt− τÞTjðtÞi− hTiðt− τÞihTjðtÞi, where the brack-
ets denote an average over the past 365 d, according to
hf ðtÞi= 1

365
P364

m=0 f ðt−mÞ. We consider time lags τ between 0 and
200 d, where a reliable estimate of the background noise level can
be guaranteed. Finally, we divide the cross-covariances by the
corresponding standard deviations (SD) of Ti and Tj, to obtain the
cross-correlations. Note that for estimating the cross-correlation
function at day t, only temperature data from the past are consid-
ered. A representative example of CðtÞ

ij ðτÞ is shown in SI Appendix,
Fig. S4.
Next we determine, for each point in time t, the maximum, the

mean, and the SD of CðtÞ
ij ðτÞ around the mean and define the link

strength SijðtÞ as the difference between the maximum and the
mean value, divided by the SD. Accordingly, SijðtÞ describes the
link strength at day t relative to the underlying background and
thus quantifies the dynamical teleconnections between nodes i
and j. We obtain the desired mean strength S(t) of the dynamical
teleconnections in the climate network by simply averaging over
all individual link strengths. In this average, we do not weight
nodes from different latitudes according to their density, because
the range of such weights varies insignificantly for the narrow
range of latitudes depicted in our network.
Fig. 2 shows the time evolution of S(t) between January 1, 1950

and December 31, 2011. To statistically validate our method, we
have divided this time interval into two equal parts. The first part
(up to December 31, 1980) (Fig. 2A) is used for learning the
optimum prediction algorithm. In the second part (from January 1,
1981 to December 31, 2011) (Fig. 2B) we apply this algorithm to
predict the El Niño episodes. Fig. 2 compares the time dependence
of S(t) (left scale) with the standardNINO3.4 index (right scale). The
El Niño episodes where the index is above 0.5 °C for at least 5mo are
marked in blue. Fig. 2 shows that during an El Niño event, the mean

strength S of the interactions tends to decrease, supporting the
hypothesis that the El Niño basin tends to decouple from the rest
of the globe when the anomalous warming is in full swing (33).
More relevant, from the perspective of forecasting, is the finding

that well before an episode S(t) tends to increase; i.e., the coop-
erativity between the El Niño basin and the surrounding sites in
the Pacific area grows. This feature is used here for predicting the
start of an El Niño event in the following year. To this end, we
place a varying horizontal threshold S(t) = Θ in Fig. 2A and mark
an alarm when S(t) crosses the threshold from below, outside an El
Niño episode (i.e., when the NINO3.4 index is below 0.5 °C). We
assume that such an alarm forecasts an El Niño to develop in the
following calendar year. If there are multiple alarms in the same
calendar year, only the first one is regarded. The alarm results in
a correct prediction, if in the following calendar year an El Niño
episode actually sets in; otherwise it is regarded as a false alarm.
For illustrating the algorithm, we shifted the S(t) curve in Fig.

2 vertically such that the El Niño threshold (0.5 °C) coincides
with our chosen threshold (here Θ = 2.82). Correct predictions
are marked by green arrows and false alarms by dashed arrows.
Between 1951 and 1980, there are 10 y where an El Niño episode
started (i.e., there are 10 events) and 20 y where it did not start
(i.e., there are 20 nonevents). In Fig. 2, we see 7 correct pre-
dictions and 2 false alarms, giving rise to the hit rate 7/10 and the
false-alarm rate 2/20, respectively. By altering the magnitude of
the threshold, we vary the hit rate and the false-alarm rate. Fig.
3A shows, again for the learning period between 1950 and 1980,
the best hit rates for the (tolerable) false-alarm rates 0, 1/20,
2/20, and 3/20. The best performances are for thresholds Θ in the
interval between 2.805 and 2.822, where the false-alarm rate is
2/20 and the hit rate is 0.7, and for thresholds between 2.780 and
2.792, where the false-alarm rate is 3/20 and the hit rate is 0.8.
For demonstrating that these results are not accidental, we

analyzed randomized S(t) curves obtained by reshuffling the
temperature records at each site. We randomized the calendar
years but not the data within each calendar year. In this way we
preserved the short-term memory in each record but reduced
the cross-correlations between them. We considered 100 such
randomizations and determined for each of them, for the false-
alarm rates 0, 1/20, 2/20, and 3/20, respectively, the best hit rates.

Fig. 1. The “climate network”. Each node inside the El Niño basin (solid red symbols) is linked to each node outside the basin (open symbols). The nodes are
characterized by their air temperature at the surface level (SAT), and the link strength between the nodes is determined from their cross-correlation. The red
rectangle denotes the area where the NINO3.4 index is measured. For the definition of the El Niño basin, we have followed refs. 32 and 33. In SI Appendix, we
provide a sensitivity test for this choice and show, for example, that the inclusion of the two nodes south of the Equator is not essential for our results.
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To characterize the distribution of the best hit rates, we cal-
culated their mean and SD. The results, also shown in Fig. 3A,
are well below the hit rates achieved with the observational
S(t) curve.

Next, we use the thresholds selected in the learning phase
to predict El Niño episodes in the second half of the dataset
between 1982 and 2011, where we have 9 episodes and 21 non-
episodes. For Θ between 2.816 and 2.822, which is depicted in
Fig. 2B, the hit rate is D = 6/9 ≅ 0.667—at a false-alarm rate α =
1/21 ≅ 0.048. For Θ between 2.805 and 2.816, the hit rate is also
D = 6/9, but the false-alarm rate is α = 2/21 ≅ 0.095. For 2.780 <
Θ ≤ 2.792, we have D = 5/9 ≅ 0.556 at α = 1/21 ≅ 0.048. These
results are highly significant because the prediction efficiency is
considerably better than for the shuffled data.
For comparison, we show also the results for 6- and 12-mo

forecasts based on state-of-the-art climate models (21, 37). In ref.
21, an ensemble of model trajectories has been used, whereas
for the forecast of ref. 37, only a single trajectory has been used.
In both references, the forecast has been compared with the
NINO3.4 index, as in the current analysis. Fig. 3B shows that the
method suggested here for predicting El Niño episodes more than
1 y ahead considerably outperforms the conventional 6-mo and
1-y forecasts. It should be noted that although one can tune lead
time and robustness in physical models, this is not possible in our
statistical predictions. In contrast to physical models, which pre-
dict the SST values in the relevant regions and use them for a
forecast of El Niño, our algorithm instead employs the precursors
in the dynamical strength of the teleconnections in the climate
network to predict the onset of the warming.
Our results suggest that for enabling local perturbations of the

environment to instigate an El Niño event, the network needs to
be in a “cooperative” state that can be characterized, to a certain
extent, by sufficiently large link strengths in the considered cli-
mate network. The cooperativity sets in well before the spring
barrier and thus allows for an early forecasting of ENSO. This

Fig. 2. The forecasting algorithm. We compare the average link strength S(t) in the climate network (red curve) with a decision threshold Θ (horizontal line,
here Θ = 2.82) (left scale) with the standard NINO3.4 index (right scale), between January 1, 1950 and December 31, 2011. When the link strength crosses the
threshold from below, outside an El Niño episode, we give an alarm and predict that an El Niño episode will start in the following calendar year. The El Niño
episodes (when the NINO3.4 index is above 0.5 °C for at least 5 mo) are shown by the solid blue areas. The first half of the record (A) is the learning phase
where we optimize the decision threshold. In the second half (B), we use the threshold obtained in A to predict El Niño episodes. Correct predictions are
marked by green arrows and false alarms by dashed arrows. The index n marks a nonpredicted El Niño episode. To resolve by eye the accurate positions of the
alarms, we show in SI Appendix, Fig. S5 magnifications of those parts of Fig. 2 where the crossings or noncrossings are difficult to see clearly without
magnification. We also show the alarms for the slightly smaller threshold Θ = 2.81 (SI Appendix, Fig. S6), which yields the same performance in the learning
phase and one more false alarm in the prediction phase. The lead time between the prediction and the beginning of the El Niño episodes is 0.94 ± 0.44 y,
whereas the lead time to the maximal NINO3.4 value is 1.4 ± 0.33 y.

Fig. 3. The prediction accuracy [Receiver Operating Characteristic (ROC)-
type analysis]. (A) For the four lowest false-alarm rates α = 0, 0.05, 0.1, and
0.15, the best hit rates D in the learning phase (Fig. 2A). The best results are
obtained at α = 0.1 and 0.15. For α = 0.1, the decision threshold Θ is between
2.805 and 2.822. For α = 0.15, Θ is between 2.780 and 2.792. The results for
the randomized S(t) with error bars are shown as shaded circles. (B) The
quality of the prediction in the second half of the record, when the above
thresholds are applied. For 2.816 < Θ ≤ 2.822, we have D = 0.667 at α = 0.048;
for 2.805 < Θ ≤ 2.816, we have D = 0.667 at α = 0.095; and for 2.780 < Θ ≤
2.792, we have D = 0.556 at α = 0.048. For comparison, we show also results
for 6- and 12-mo forecasts based on climate models (21, 37). The shaded
squares and the error bars denote the mean hit rates and their SDs for
predictions based on the shuffled data.

11744 | www.pnas.org/cgi/doi/10.1073/pnas.1309353110 Ludescher et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1309353110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1309353110/-/DCSupplemental/sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1309353110


situation might be related to the mechanism suggested in ref. 38
for optimal SST growth, which is essentially the emergence of a
certain spatial SST pattern, resembling our finding of a cooper-
ated fluctuation.
To study the robustness of the forecasting algorithm with re-

spect to the underlying network structure, we varied the size of
the El Niño basin by (i) eliminating the grid point below the
equator in the middle of the Pacific (thus identifying the El Niño
basin with the union of NINO1, NINO2, NINO3, and NINO3.4
regions) and (ii) equating the El Niño basin with the NINO1,
NINO2, NINO3, and NINO4 regions (thus raising the number of
the grid points in the basin to 17). In addition, we diluted the
network by connecting only 20% of the surrounding nodes with
the El Niño basin. We found that with all these modifications the
performance of the forecasting algorithm was only slightly re-
duced (SI Appendix, Figs. S7–S11). We also tested the perfor-
mance of the algorithm when the outer grid points are not in the
Pacific region but in Europe. The performance of this network
(SI Appendix, Fig. S12) was considerably weaker and comparable
with the incumbent 12-mo forecasts (Fig. 3). Finally, we tested
whether our algorithm can also forecast high levels (above the
SD) of the negative standard southern oscillation index (SOI),
which is strongly correlated to the NINO3.4 index (see, e.g.,
ref. 39). In contrast to the NINO3.4 index, the SOI uses atmo-
spheric data, the pressure difference between Tahiti and Darwin.
In SI Appendix, Fig. S13 we show that our algorithm is also able
to forecast high levels of the negative SOI, with a hit rate close to
0.67 at a false alarm rate close to 0.17.
In summary, we propose a climate-network approach to forecast

El Niño episodes about 1 y ahead. Our approach is based on the
dynamic fluctuations of the teleconnections (links in the network)

between grid points in the El Niño basin and the rest of the Pacific.
The strengths of the links are obtained from the cross-correlations
between the observed sea-surface-level air temperatures in the
grid points. We have shown explicitly that our method outper-
forms existing methods in predicting El Niño events at least 6–12
mo in advance. In contrast to the algorithms using model data, our
method is exclusively based on instrumental accounts that are
easily accessible. Thus, the results of this study can be straight-
forwardly reproduced.
We did not aim to forecast La Niña events, where the NINO3.4

index is below −0.5 °C for more than 5 mo. In a trivial forecast,
one predicts that an El Niño event will be followed by a La Niña
event in the next year. This simple forecast has, in the considered
time window between 1950 and 2012, a hit rate close to 0.73 and
a false-alarm rate close to 0.17. An even better forecast of La Niña
events using the climate network requires an additional precursor
to be found and is beyond the scope of this article.
Altogether, our findings indicate that El Niño is a cooperative

phenomenon where the teleconnections between the El Niño
basin and the rest of the Pacific tend to build up in the calendar
year before an event. For characterizing the teleconnections we
have used a univariate model where only one climate variable
(atmospheric temperature) has been used.
Finally, we note that our algorithm (Fig. 2B) did correctly pre-

dict the absence of an El Niño event in 2012. This forecast was
made in 2011 already, whereas conventional approaches kept on
predicting the warming occurrence far into the year 2012 (40).
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