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Themost important driver of climate variability is the El Niño Southern Oscillation, which can trigger disasters in various parts of the globe. Despite
its importance, conventional forecasting is still limited to 6moahead. Recently,we developed an approachbased on network analysis,which allows
projection of an El Niño event about 1 y ahead. Here we show that our method correctly predicted the absence of El Niño events in 2012 and 2013
and now announce that our approach indicated (in September 2013 already) the return of El Niño in late 2014 with a 3-in-4 likelihood. We also
discuss the relevance of the next El Niño to the question of global warming and the present hiatus in the global mean surface temperature.
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El Niño Southern Oscillation
Natural climate variability is driven by nu-
merous processes, but the most important
one is the El Niño-Southern Oscillation
(ENSO) phenomenon (1–5). It can be per-
ceived as a self-organized dynamical see-saw
pattern in the Pacific ocean-atmosphere sys-
tem, featured by rather irregular warm (El
Niño) and cold (La Niña) excursions from
the long-term mean state. The ENSO phe-
nomenon is tracked and quantified by the
NINO3.4 index, which is defined as the

average of the sea surface temperature (SST)
anomalies at certain grid points in the Pacific
(Fig. 1). An El Niño episode is said to occur
when the index is 0.5 °C above the average
for a period of at least 5 mo.
Because especially strong El Niño episodes

can wreak havoc in various parts of the world
(through extreme weather events and other
environmental perturbations) (6–10), early
warning schemes based on robust scientific
evidence are highly desirable. Sophisticated
global climate models taking into account the

atmosphere-ocean coupling, as well as sta-
tistical approaches like the dynamical systems
schemes approach, autoregressive models, and
pattern recognition techniques, have been
used to forecast the pertinent index with lead
times between 1 and 24 mo (1, 11–26).
Monthly updated overviews of the current
conventional forecasts can be obtained from
the International Research Institute for Cli-
mate and Society (27) and the National Oce-
anic and Atmospheric Administration (28).
Unfortunately, the forecasting methods used
thus far have quite limited anticipation power.
In particular, they generally fail to overcome
the so-called “spring barrier” (29, 30), which
shortens their warning time to around 6 mo.
To resolve this problem, we recently in-

troduced an alternative forecasting approach
(31) based on complex networks analysis
(32–35) that can considerably shift the
probabilistic prediction horizon. The ap-
proach exploits the remarkable observation
that a large-scale cooperative mode linking
the “El Niño basin” (i.e., the equatorial Pacific
corridor) and the rest of the Pacific ocean
(Fig. 1) builds up in the calendar year before
a pronounced El Niño event. An appropriate
measure for the emerging cooperativity can
be derived from the time evolution of the
teleconnections (links) between the atmo-
spheric temperatures at the grid points (nodes)
inside and outside of the El Niño basin. The
strengths of those links are represented by the

Fig. 1. The NINO3.4 index and the climate network. The network consists of 14 grid points in the El Niño basin (solid
red symbols) and 193 grid points outside this domain (open symbols). The red rectangle denotes the area where the
NINO3.4 index is measured. The grid points are considered as the nodes of the climate network that we use here to
forecast El Niño events. Each node inside the El Niño basin is linked to each node outside the basin. The nodes are
characterized by their surface air temperature (SAT), and the link strength between the nodes is determined from their
cross-correlation (see below). The figure is from ref. 31.
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values of the respective cross-correlations
(Data and Methods). The crucial entity is the
mean link strength SðtÞ as obtained by aver-
aging over all individual links in the network
at a given instant t (for details, see refs. 31 and
35 and Data and Methods). SðtÞ rises when
the cooperative mode builds up and drops
again when this mode collapses rather con-
spicuously with the onset of the El Niño event.
The rise of SðtÞ in the year before an El Niño
event starts serves as a precursor for the event.

Forecasting the Next El Niño
For the sake of concrete forecasting, we used
in ref. 31 high-quality atmospheric tempera-
ture data for the 1950–2011 period. The
optimized algorithm (Data and Methods)
involves an empirical decision threshold Θ.
Whenever S crosses Θ from below while the
system is outside the El Niño mode, the al-
gorithm sounds an alarm and predicts El
Niño inception in the following year. For
obtaining and testing the appropriate
thresholds, we divided the data into two
halves. In the first part (1950–1980), which
represents the learning phase, all thresholds
above the temporal mean of SðtÞ are con-
sidered, and the optimal ones, i.e., those
ones that lead to the best predictions in the
learning phase, are determined. We found
that Θ-values between 2.815 and 2.834 lead
to the best performance (31). In the second
part of the data set (1981–2011), which rep-
resents the prediction (hindcasting) phase,
the performance of these thresholds was
tested. We found that the thresholds between
2.815 and 2.826 gave the best results (Fig. 2,
where Θ= 2:82). The alarms were correct in
76% and the nonalarms in 86% of all cases.

For Θ values between 2.827 and 2.834, the
performance was only slightly weaker.
Now, equipped with this hindcasting ca-

pacity of the algorithm, we turn to present
and future El Niño behavior by considering
all available temperature data, which extends
the prediction phase from the end of 2011
until November 2013. Fig. 2A shows that in
2011 and 2012, SðtÞ did not cross the
threshold from below, which correctly
forecasted the absence of El Niño events in
both 2012 and 2013. These predictions,
made by the end of 2011 and 2012, respec-
tively, are not trivial. For example, as late as
August 2012, the Climate Prediction Center/
International Research Institute for Climate
and Society Consensus Probabilistic ENSO
forecast focusing on the SSTs in the NINO3.4
domain yielded a 4-in-5 likelihood for an El
Niño event in 2012, which turned out to be
incorrect only few months later (27, 28).
However, as Fig. 2B reveals, a sea change

seems to be underway now. Between
September 7 (where S= 2:810 was below the
lowest threshold of 2.815) and September 17
(where S= 2:838 was above the upper
thresholds of 2.826 and 2.834), SðtÞ trans-
gressed the alarm threshold band, indicating
the return of El Niño in 2014.
Thus, our scheme generates an early

warning signal with a 3-in-4 likelihood. Note
that conventional forecasting methods fo-
cusing on SSTs in the NINO 3.4 domain (27,
28) keep predicting ENSO-neutral con-
ditions. In September 2013, the CPC/IRI
consensus probabilistic ENSO forecast yiel-
ded a 1-in-5 likelihood for an ENSO event
next year, which increased to a 1-in-3 like-
lihood by November 2013. We are aware of
the reputational risks associated with our

announcement, yet formulating falsifiable
hypotheses is at the heart of the scientific
method. Should our alarm turn out to be
correct, however, this would be a major step
toward better forecasting—and eventually
understanding—of the ENSO dynamics.
Our contribution may also be relevant for

the wider debate about anthropogenic global
warming (36). There have been speculations
that the recent hiatus in planetary mean sur-
face temperature rise indicates that the cli-
mate system is less CO2 sensitive than pre-
viously thought. On the other hand, new
studies have demonstrated that decadal at-
mospheric warming is considerably masked
by equatorial Pacific variability in heat uptake
and release (36–39).
In fact, an average El Niño event increases

the climate anomaly (deviation of global
mean surface temperature from preindustrial
level) by about 0.1 °C. The mean anomaly in
the La Niña–dominated period 2002–2011
was 0.59 °C, whereas the record temperature
deviation thus far happened in 2010 (0.69 °C)
(40). This suggests that a strong El Niño event
in late 2014 (as indicated by our scheme) can
make 2015 a record year, because air temper-
ature rise lags Pacific warming by about 3 mo.
On the other hand, the signal depicted in

Fig. 2B is relatively weak thus far. However,
we have not yet explored how the strength of
the precursor cooperativity pattern relates to
the degree of the ensuing Eastern Pacific
warming. This is an important topic for
future research.

Data and Methods
For the prediction of El Niño events or
nonevents, we use the cooperative behavior
of the atmospheric temperatures in the Pa-
cific as precursor. To obtain a measure for
the cooperativity, we consider the daily sur-
face atmospheric temperatures (SATs) be-
tween June 1948 and November 2013 at grid
points (nodes) of a Pacific network (Fig. 1).
We analyze the time evolution of the tel-

econnections (links) between the temper-
atures at nodes i inside the El Niño basin and
nodes j outside the basin. The strengths of
these links are represented by the strengths of
the cross-correlations between the tempera-
ture records at these sites (35).
The prediction algorithm (31) is as follows:

i) At each node k of the network shown in
Fig. 1, the daily atmospheric temperature
anomalies TkðtÞ (actual temperature value
minus climatological average for each cal-
endar day; see below) at the surface area
level are determined. For the calculation of
the climatological average, leap days were
removed. The data were obtained from the
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Fig. 2. The forecasting scheme. (A) We compare the average link strength SðtÞ in the climate network (red curve)
with a decision threshold Θ (horizontal line, here Θ= 2:82; left scale) and the standard NINO3.4 index (right scale)
between January 1981 and November 2013. When the link strength crosses the threshold from below, outside an El
Niño episode, we give an alarm and predict that an El Niño episode will start in the following calendar year. The El
Niño episodes (when the NINO3.4 index is above 0.5 °C for at least 5 mo) are shown by the solid blue areas. Correct
predictions are marked by green arrows and false alarms by dashed arrows. (B) Magnification of A for August (A),
September (S), October (O), and November (N) 2013. The figure shows that by September 17 (green arrow), the
optimal decision thresholds have been crossed, forecasting an El Nino event in 2014. In A, the learning phase (1950–
1980) where the optimal thresholds have been learned has been omitted (31).
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National Centers for Environmental Pre-
diction/National Center for Atmospheric
Research Reanalysis I project (41, 42).

ii) For obtaining the time evolution of the
strengths of the links between the nodes
i inside the El Niño basin and the nodes j
outside, we compute, for each 10th day
t in the considered time span between
January 1950 and November 2013, the
time-delayed cross-correlation function
defined as

where the brackets denote an average over
the last 365 d, according to

hf ðtÞi= 1
365

X364

m= 0

f ðt −mÞ: [3]

We consider time lags τ between 0 and
200 d, where a reliable estimate of the
background noise level can be guaranteed.

iii) We determine, for each point in time t,
the maximum, the mean, and the SD
around the mean of the absolute value of
the cross-correlation function

!!CðtÞ
ij ðτÞ

!! and
define the link strength SijðtÞ as the difference

between the maximum and the mean value,
divided by the SD. Accordingly, Sij describes

the link strength at day t relative to the un-
derlying background noise (signal-to-noise
ratio) and thus quantifies the dynamical tele-
connections between nodes i and j.

iv) To obtain the desired mean strength SðtÞ
of the dynamical teleconnections in the
climate network, we simply average over
all individual link strengths.

v) Finally, we compare SðtÞ with decision
thresholds Θ. When the link strength SðtÞ
(being above its temporal mean) crosses the
threshold from below and the NINO3.4 in-
dex is below 0.5 °C, we give an alarm and
predict that an El Niño episode will start in
the following calendar year.

We would like to add that, for the calcu-
lation of the climatological average in the
learning phase, all data within this time
window were taken into account, whereas in
the prediction phase, only data from the past
up to the prediction date were considered.
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