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Abstract – The robustness of complex networks with dependency links has been studied in recent
years. However, previous studies focused mostly on the robustness of networks with dependency
relations having local and simple structures, not considering the general cases where global network
topology is formed by dependency links. Here, we analyze the percolation properties of network
models composed of both connectivity and dependency links, where in addition to the usual
connectivity links, dependency links also follow a certain network topology. We perform theoretical
analysis and numerical simulations to understand the critical effects of dependency topology on
the network robustness. Our results suggest that for a given network topology of connectivity,
dependency topology can influence the network robustness, leading to different percolation types.
Furthermore, we also give the theoretical analysis and simulation results on different combinations
of connectivity topology and dependency topology. Our results may help to design and optimize
the network robustness considering the underlying complicated dependency relationships.

Copyright c⃝ EPLA, 2017

Introduction. – Components in critical infrastruc-
tures cannot function independently, and usually in-
teract with others through connectivity or dependency
links [1–15]. With the aid of connectivity links, nodes
can function cooperatively as a network and will stop
functioning either through their own failure or when they
become disconnected from the giant component of the
network. Dependency links show distinct functional re-
lationships: if node A depends on node B, the failure of
node B will cause node A to fail directly even if node
A is still connected to the giant component [5,6]. For
example, nodes in the power grid convey power flow to
certain loads, whose faults may induce overloads and fail-
ures of other nodes. These successive failures can be
represented as certain dependency link between nodes,
i.e., failure spreads with a characteristic length [16]. Ini-
tiated by random failures or malicious attacks, these
dependencies may lead to catastrophic events including

(a)E-mail: daqingl@buaa.edu.cn

blackouts in power grids and jamming in transportation
networks [17,18].

Previous studies consider the network robustness with
a simple dependency structure. Parshani et al. [5] intro-
duced a network model having dependency groups with
fixed size 2, see fig. 1(a). Bashan et al. [6] generalized
Parshani’s results and also studied the effects of depen-
dency groups whose sizes follow a normal distribution or a
Poisson distribution. Meanwhile, dependency is also con-
sidered while studying the robustness of interdependent
networks, as significant interactions exist between mod-
ern infrastructures [3,4,8,9,11,13,19–22]. Buldyrev et al. [3]
developed a theoretical framework to understand the
robustness of two coupled networks, and dependency is
represented as a one-to-one correspondence between two
networks, meaning that each node in one network depends
on one and only one node in the other network and vice
versa. Shao et al. [9] proposed a more general network
model where interdependent networks may have multi-
ple support-dependencies considering that a node in one
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Fig. 1: (Colour online) Network with different dependency
structures. (a) Dependency group structure: connectivity net-
work with dependency groups of size 2, studied in [6]. The solid
blue lines represent connectivity links, and dependency groups
are surrounded by dash-dotted lines; (b) network with topology
of dependency links: the solid blue lines represent connectivity
links and the red dashed lines represent a network topology of
dependency links. Here, the size of dependency groups is not
limited as in (a).

network may rely on more than one node in the other net-
work and will function until its last support node fails.
Rather than dependencies which are connected randomly,
some studies [20,21] analyzed the case where nodes with
similar degrees tend to be coupled in an interdependent
network and found that this case is more robust to random
failures. While the robustness of two coupled networks
systems has been studied separately only for dependency
coupling [3] and only for connectivity coupling [23] more
recently a system where both interdependent and inter-
connected links exist was also studied [8].

However, in realistic systems, dependencies between
nodes can be much more complicated and might form a
global network topology, which to the best of our knowl-
edge has not been considered yet. Different from simple
and local dependency structures studied earlier (fig. 1(a)),
here we analyze the percolation properties of networks
with global network topologies of dependency (fig. 1(b)).
Our theoretical results are supported by numerical sim-
ulations. We present results for different combinations
of connectivity and dependency topologies, namely i) ER
(Erdös-Rényi) connectivity and ER dependency (ER-ER),
ii) ER connectivity and RR (random-regular) depen-
dency (ER-RR), iii) RR connectivity and ER dependency
(RR-ER) and iv) RR connectivity and RR dependency
(RR-RR). Our results suggest that dependency topol-
ogy can lead to distinct network robustness, with dif-
ferent percolation thresholds and types of percolation
transition.

The paper is organized as follows. In the second section,
we will introduce the network model composed of depen-
dency links following a certain topology. In the third sec-
tion, we show the general framework for the theoretical
analysis. In the fourth and fifth sections, we present both
the simulation and analytical results of network robustness

with different connectivity and dependency topologies. In
the last section, we summarize our results.

Model description. – We study the robustness
of networks containing different network topologies of
connectivity and dependency links. The iterative pro-
cess between percolation stage and dependency stage is
as follows [5,6,24]:

1) Initially, we randomly remove a fraction 1−p of nodes
from the network as well as their associated links;

2) Percolation stage: in the connectivity network, nodes
(and their links) that do not belong to the giant com-
ponent are also removed;

3) Dependency stage: if a node fails, all the other nodes
in the same dependency cluster will fail (they are as-
sumed to depend on each other).

4) The failure of the clusters in step 3 leads to failures of
other nodes that become disconnected from the giant
component. Then a cascade of failures will continue
until no additional failures occur.

Framework for theoretical analysis. – Here we
show the theoretical analysis studying the iterations be-
tween the percolation stage and the dependency stage in
the initial presence of random failures based on the for-
mulism in [5,6].

When we first randomly remove a fraction of 1 − p of
nodes, the fraction of remaining nodes in the connectivity
network is defined as αc,1 = p. Since initial random re-
moval will cause additional nodes to disconnect from the
giant component, the remaining fraction of nodes βc,1 after
the first percolation stage is given by βc,1 = αc,1Ec(αc,1 ),
where Ec(αc,1 ) denotes the fraction of nodes belonging to
the giant component after a random removal of 1 − αc,1
nodes from the original network.

Before the dependency stage, the total removed frac-
tion of nodes from the original network is 1 − βc,1 =
(1 − αc,1)+ (αc,1 − βc,1 ). Accordingly, the remaining frac-
tion of nodes before the dependency stage is αd,1 = βc,1 .
Due to dependency links, if a node within a dependency
cluster fails, the entire dependency cluster will be disabled.
The size of the functional part after the first dependency
stage is given by βd,1 = αd,1Ed(αd,1 ), where Ed(αd,1 )
stands for the fraction of nodes that do not depend on
failed nodes. The accumulated consequence of the first
cascade stage is equivalent to a single random removal of
the 1 − pEd(αd,1 ) fraction from the original network [5].
In this way, the formulism of the iterative equations can
be described as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αc,1 = p, βc,1 = αc,1Ec (αc,1 ),
αd,1 = pEc (αc,1 ), βd,1 = αd,1Ed (αd,1 ),
αc,2 = pEd (αd,1 ), βc,2 = αc,2Ec (αc,2),
αd,2 = pEc (αc,2), βd,2 = αd,2Ed (αd,2).

(1)
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Accordingly, one can get αc,i, αd,i, βc,i and βd,i for any
stage of the cascading failures:

{
αc,i = pEd(αd,i−1 ), βc,i = αc,iEc(αc,i),
αd,i = pEc(αc,i), βd,i = αd,iEd(αd,i).

(2)

Cascading failures will terminate at the steady state
when no further damages occur. In the steady state
(i → ∞), αc,i = αc,i+1 or αd,i = αd,i+1 . The final state of
the system can be derived by solving the following equa-
tion: {

αc,∞ = pEd (αd,∞),
αd,∞ = pEc (αc,∞).

(3)

Denoting αd,∞ = x and αc,∞ = y, eq. (3) is reduced
into

x = pEc (pEd(x)). (4)

In order to obtain the analytical solutions of eq. (4), we
have to derive explicitly both Ec(T ) and Ed(T ).

For obtaining Ec(T ), we can use generating func-
tions [25–28]. For a given network, the generating function
of the degree distributions for the connectivity network is
defined as follows:

Gc,0 (ξ) =
∞∑

k=0

P (k)ξk, (5)

where P (k) is the degree distribution, i.e., the proba-
bility that a node chosen at random has k connectivity
links. Similarly, the generating function of the underlin-
ing branching process is

Gc,1 (ξ) = G′
c,0 (ξ)/G′

c,0 (1) =
∞∑

k=1

kP (k)
⟨k⟩ ξk−1 . (6)

As described in [26], a random removal of (1 − T ) fraction
of nodes will lead to a new degree distribution of the re-
maining nodes that has a similar generating function with
argument [1 − T (1 − ξ)]. Thus, Ec(T ) which is the proba-
bility that a randomly chosen functional node belongs to
the giant component after the removal of (1 − T ) nodes is

Ec(T ) = 1 − Gc,0 [1 − T (1 − f)]. (7)

Here f = f(T ) satisfies the self-consistency and trans-
cendental function

f = Gc,1 [1 − T (1 − f)]. (8)

To calculate Ed(T ), we take the following considera-
tions. Dependency topology is made up of many depen-
dency clusters with different sizes. In the network of N
nodes, each node has a probability q(s) of belonging to a
dependency cluster of size s, thus the number of depen-
dency clusters of size s is q(s)N/s. Furthermore, after a
random removal of a fraction (1 − T ) of nodes, a depen-
dency cluster of size s will survive with probability T s,
and the overall number of remaining nodes is given by

∑∞
s=1 q(s)NT ss/s. As a consequence, Ed(T ) is defined

as probability that nodes survive under the removal of a
fraction (1 − T ),

Ed(T ) =
∞∑

s=1

q(s)T s−1 . (9)

In order to derive Ed(T ), we need to derive q(s) for the
sizes of dependency clusters. Note that Parshani et al. [5]
only focused on the special case of fixed size dependency
cluster (q(s) is delta function) while Bashan et al. [6]
generalized the formalism into the case, where q(s) fol-
lows a fixed distribution, including Poisson distribution
and Gaussian distribution. However, with the presence of
dependency topology, q(s) changes with the dependency
topology assumed and is usually different from homoge-
neous distribution assumed in [6].

We next calculate q(s) based on the generating function
formalism. We define Hd,1 (η) as the generating function
for the sizes of the dependency clusters reached by a ran-
dom link [25,29,30]:

Hd,1 (η) = ηGd,1 (Hd,1 (η)). (10)

Here, Gd,1 and Gd,0 are defined as the generating functions
of the underlining dependency topology. Analogously, the
generating function Hd,0 (η) for the size of the dependency
cluster to which a randomly chosen node belongs is

Hd,0 (η) = ηGd,0 (Hd,1 (η)). (11)

According to the definition of Hd,0 (η), q(s) can be given by

q(s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
(s − 1)!

[
ds−1

dηs−1

(
Hd,0 (η)

η

)]

η=0
=

G′
d,0 (1)

(s − 1)!

[
ds−2

dηs−2 [Gd,1 (η)]s
]

η=0
, s > 1,

the probability of having dependency zero, s=1.
(12)

We evaluate the robustness of a network by calculating
the size of the giant component at the steady state:

G = βc,∞ = βd,∞ = yEc(y) = xEd(x) =

x
∞∑

s=1

q(s)xs−1 =
∞∑

s=1

q(s)xs. (13)

Given Gc,0 (ξ), Gc,1 (ξ), Gd,0 (η) and Gd,1 (η), eq. (13)
can be solved with the set of equations

⎧
⎪⎪⎨

⎪⎪⎩

x = pEc(y) = p[1 − Gc,0 [1 − y(1 − f)]],
f = Gc,1 [1 − y(1 − f)],

y = pEd(x) = p
∞∑

s=1
q(s)xs−1 .

(14)

Results. – The framework for the theoretical analysis
presented in the above section can be applied to a net-
work with arbitrary connectivity and dependency topolo-
gies. We demonstrate analytically and numerically four
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Fig. 2: (Colour online) The size of the largest component, G, as
a function of the fraction of non-removed nodes p in networks
with different combinations of dependency and connectivity
topology: for (a), (c) and (e), ER-ER with kd = 0.5, kd =
1.0 and kd = 1.5, respectively; in (b), (d) and (f), RR-ER
with kd = 0.5, kd = 1.0 and kd = 1.5, respectively. Open
symbols represent the numerical results of systems of 100000
nodes averaged over 200 realizations. And the solid curves
represent the theoretical results attained by solving the set of
eqs. (14) and (13).

combinations of connectivity and dependency topologies
(ER network and RR network), and discuss their percola-
tion properties. We assume that the average connectivity
degree and the average dependency degree are kc and kd,
respectively.

A) ER networks with dependency network of ER topol-
ogy (ER-ER). In this case, both connectivity links and
dependency links follow the ER topology. In the ER
topology, nodes are connected randomly with Poisson de-
gree distribution, then we can get Gc,0 (ξ) = Gc,1 (ξ) =
exp[kc(ξ − 1)]. Similarly, for dependency network of ER
topology, we get Gd,0 (η) = Gd,1 (η) = exp[kd(η−1)]. Using
eq. (12), we can obtain

q(s) =
exp(−kds)(kds)s−1

s!
. (15)

In ER dependency topology, eq. (15) is also valid for the
special case s = 1. Solving the set of eqs. (14) and eq. (13),
we obtain an expression for the size of giant component G:

G =
∞∑

s=1

exp(−kds)(kds)s−1ps

s!
(1 − exp(−kcG))s. (16)

Note that when an ER network does not have dependen-
cies (kd = 0), eq. (16) coincides with the well-known equa-
tion G = p(1−exp(−kcG)) [31–33]. Next, we compare our
analytical results with simulations. Our simulation results
are shown in fig. 2(a), (c), (e) and they agree well with
the theoretical predictions. In fig. 2(c), when kd = 1, we

Fig. 3: (Colour online) The size of the largest component, G,
as a function of the fraction of remaining nodes p in networks
with RR dependency topology: (a) ER-RR; (b) RR-RR.

find that the ER-ER system disintegrates in a continuous
percolation process while in the studies of homogeneous
dependency groups the transition was usually abrupt [6].
Moreover, for the ER dependency network with other kd,
the phase transitions of ER-ER are also found to be con-
tinuous (fig. 2(a), (e)).

B) RR network with dependency network of ER topol-
ogy (RR-ER). In RR-ER, every node has kc connec-
tivity links with other nodes, thus Gc,0 (ξ) = ξkc and
Gc,1 (ξ) = ξkc−1 . And for the ER topology of dependency
links, Gd,0 (η) = Gd,1 (η) = exp(kd(η − 1)). We can get

G =
∞∑

s=1

exp(−kds)(kds)s−1

s!
xs, (17)

where x could be obtained using eqs. (14). In fig. 2(b),
(d), (f), we show the analytical and numerical results for
RR-ER. First, it is seen that for the same pair of (kc, kd),
the RR-ER is more vulnerable compared to ER-ER, i.e.,
pc is larger for RR-ER. Furthermore, in contrast to ER-
ER here, the percolation process of RR-ER seems to show
two kinds of behavior: for a higher density of dependency
links (kc = 4, kd = 1) (fig. 2(d)), the system undergoes
an abrupt collapse, while for the same kd, as kc increases,
the system becomes more stable with a continuous phase
transition (e.g., kc = 6, kd = 1, in fig. 2(d)).

C) ER network with dependency network of RR topology
(ER-RR). Dependency links could form a RR topology
in an ER network. In RR topology, each node has kd

dependency links, the corresponding generating functions
are Gd,0 (η) = ηkd and Gd,1 (η) = ηkd−1 . Then according
to eq. (12), q(s) can also be calculated. Indeed for the
special case kd = 1, q(2) = 1, G is obtained in the form:

G = p2(1 − exp(−kcG))2, (18)

and this is reduced to the case of pairs of dependency
nodes discussed in ref. [6]. For the same pair of kd and kc,
compared with ER-ER (fig. 2(c)), ER-RR is more vulner-
able and undergoes an abrupt collapse at critical threshold
(fig. 3(a)) which indicates that the change of dependency
topology can alter the type of phase transition.

D) RR network with dependency network of RR topology
(RR-RR). Next we study the case where nodes in RR
connectivity network are also connected by dependency
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Fig. 4: (Colour online) Dependence of the critical threshold of
non-removed nodes pc on the average connectivity degree (kc)
and the average dependency degree (kd): (a) ER-ER: simula-
tion results; (b) ER-ER: theoretical results; (c) RR-ER: the
blue lines represent the analytical results and the blue symbols
represent the simulation results for the first change order cases,
while the red lines and the red symbols represent the cases of
the continuous transition. The corresponding kd from left side
to the right is 0.5, 1 and 1.5; in (d), we illustrate the values of
pc for ER-ER.

links following the RR topology. So Gc,0 (ξ) = ξkc and
Gc,1 (ξ) = ξkc−1 . For dependency links of RR topology,
Gd,0 (η) = ηkd and Gd,1 (η) = ηkd−1 . For fig. 3(b) (kd = 1),
the results are the same as shown in ref. [24]: the RR
network falls apart in an abrupt way. Compared with RR-
ER (fig. 2(d)), for kd = 1, we find that RR-RR becomes
more vulnerable than RR-ER when kc = 6 or 8 (fig. 3(b)).

Finally, we analyze the dependence of pc on the aver-
age connectivity degree kc and the average dependency
degree kd in ER-ER and RR-ER. Analytical results are
calculated using the graphical method illustrated in the
“Methods” section in fig. 5. For different types of phase
transitions (abrupt or continuous), the simulation results
of pc are obtained by two distinctive methods: i) for exam-
ple, in the RR-ER case (fig. 4(c)), for a constant average
dependency degree kd, when kc is small, the system dis-
integrates in an abrupt way, and we identify the critical
points in simulations when the number of iterative (NOI)
failures reaches the maximum [5]; ii) when kc becomes
larger, the system undergoes a continuous transition, the
critical point for the transition is identified when the size of
the second largest component approaches the maximum.
Figure 4(c) shows that for a given dependency topology
adding connectivity links will change the network collapse
manner (e.g., kc is 4 and 5) from abrupt to a continu-
ous transition. However, the phase transition of ER-ER
is found mainly continuous (fig. 4(d)). In addition, com-
paring fig. 4(c) with fig. 4(d), for a certain kd, we find
that the pc for RR-ER is slightly larger than the pc for
ER-ER, which indicates that ER-ER is more robust than
RR-ER when they have same number of connectivity and
dependency links.

Much attention has been paid to understand the in-
herent mechanisms that yield continuous or discontinu-
ous phase transition in complex networks. In bootstrap
percolation, the type of phase transition can be either
continuous or discontinuous, mainly relying on the type
of network topology (random or lattice), and on lattice’s
dimensionality [34]. In 2009, Achlioptas et al. [35] pro-
posed the explosive percolation model for abrupt transi-
tions. Then, Cho et al. found that the transition type
of explosive percolation depends on the bias against cer-
tain “bridging” bonds and system’s dimensionality [36].
When it comes to the study of cooperative co-infections,
Chen et al. found that the cooperativity between two
diseases could change the epidemic outbreak from contin-
uous into discontinuous. [37]. As most complex systems
are coupled together, while studying the cascading fail-
ures of interdependent networks, the phase transition is
found to be first order [3,4,13,19] while single networks
with only connectivity links exhibit a classical continuous
phase transition with respect to random failures [38,39].
Also, increasing the fraction of dependency between net-
works [4] and the strength of interconnectivity links [8]
lead to a change of phase transition from second order to
first order. In single isolated networks, introducing depen-
dencies between nodes will also change the behaviors of
phase transitions. In ref. [5], Parshani et al. showed that
the coupling strength of dependency between nodes has a
great impact on the percolation properties, and high frac-
tion (above certain threshold) of dependency links could
lead to cascading failures with abrupt first-order transi-
tion. Moreover, Bashan et al. found that the phase tran-
sition is changing from second order to first order while
increasing the size of fixed dependency group or the av-
erage size of dependency groups (their size follows nor-
mal distribution or Poisson distribution) leading to larger
value of percolation threshold [6]. Interestingly, however,
as found in the above different combinations of our work,
the transition feature of percolation is not only dependent
on the dependency strength, but it is also influenced by
dependency topology.

Methods. – Next, we show how to distinguish, in our
models, the order of percolation transition and identify
the corresponding percolation threshold and the size of the
giant component. The percolation threshold is the critical
fraction, 1 − pc, of nodes that will fragment the whole
network. Our method is based on graphical solutions of
the set of eqs. (14). Analytical results of the size of giant
component shown in fig. 2 and fig. 3 are also obtained by
this graphical method.

To demonstrate the solution we consider the following
cases: ER-ER and ER-RR (kc = 4.0, kd = 1), RR-ER and
RR-RR (kc = 6.0, kd = 1) as examples to show how to
differentiate the types of phase transition. According to
eqs. (14), we define

D(f) = Gc,1 [1 − y(1 − f)] − f, (19)
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Fig. 5: (Colour online) Graphical solutions of the set of
eqs. (14) for the cases of ER-ER, ER-RR, RR-ER and RR-RR.
The effective solution for f is given by the intersection point of
the curve shown in the graph. For (a), (c), the systems (ER-
ER and RR-ER) break down in a continuous transition. In
(b), (d), ER-RR and RR-RR disintegrate in an abrupt man-
ner. The dotted lines show the critical value of pc. The non-
trivial intersection points for a p above the critical threshold
are marked as black open circles.

and we get the value of f graphically as a function of p
that satisfies D(f) = 0 as illustrated in fig. 5. In figs. 5(b)
and 5(d), for smaller p, D(f) has only one intersection
point with D(f) = 0 at f = 1, which indicates the crit-
ical point where the system collapses. When p is in-
creased to a certain value, e.g., p = 0.783 in fig. 5(b)
or p = 0.631 in fig. 5(d), the corresponding curves begin
to have three intersection points with D(f) = 0, for the
first time. This means that, except for the trivial solu-
tion (f = 1), the system has two other possible states,
leading to an abrupt change. Consequently, the value at
which the curve is tangential to D(f) = 0 is defined as
the critical threshold of the phase transition. However, in
ER-ER (fig. 5(a)) or RR-ER (fig. 5(c)), the system disin-
tegrates in a continuous percolation transition. Different
from the first-order case, D(f) always have only maximal
two intersection points with D(f) = 0 above the thresh-
old pc. This graphical method can help to determine the
types of phase transitions and identify their corresponding
percolation thresholds.

Conclusions. – In this study we examine the perco-
lation properties of networks with dependency links fol-
lowing a certain topology, rather than a simple form of
local structure. We perform the theoretical and numer-
ical analysis of percolation properties including the size
of the giant component, the order of the phase transition
as well as the critical threshold. Particularly, we consider
the robustness of the ER network and of the RR network
with different network dependency topologies and predict
their critical thresholds of phase transitions. We find that
for the same connectivity network, different dependency
topologies can change the percolation criticality, including
the type of phase transition. Especially, our results indi-
cate that the ER network with ER dependency collapses
smoothly, while the ER network with RR dependency may
break down abruptly. Our results may help to model

the complicated failure behaviors in the real systems, and
perform the evaluation of system reliability [40].
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[33] Erdös P. and Rényi A., Publ. Math. Inst. Hung. Acad.

Sci., 5 (1960) 17.
[34] Adler J., Physica A, 171 (1991) 453.
[35] Achlioptas D., D’Souza R. M. and Spencer J.,

Science, 323 (2009) 1453.
[36] Cho Y., Hwang S., Herrmann H. and Kahng B.,

Science, 339 (2013) 1185.
[37] Chen L., Ghanbarnejad F., Cai W. and

Grassberger P., EPL, 104 (2013) 50001.
[38] Albert R., Jeong H. and Barabási A.-L., Nature, 406

(2000) 378.
[39] Cohen R., Erez K., Ben-Avraham D. and Havlin S.,

Phys. Rev. Lett., 85 (2000) 4626.
[40] Li D., Zhang Q., Zio E., Havlin S. and Kang R.,

Reliab. Eng. Syst. Saf., 142 (2015) 556.

36002-p7


