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We show that a complex network of phase oscillators may display interfaces between domains

(clusters) of synchronized oscillations. The emergence and dynamics of these interfaces are studied for

graphs composed of either dynamical domains (influenced by different forcing processes), or structural

domains (modular networks). The obtained results allow us to give a functional definition of overlapping

structures in modular networks, and suggest a practical method able to give information on overlapping

clusters in both artificially constructed and real world modular networks.
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The functioning of many natural (biological, neural,
chemical) or artificial (technological) networks displays
coordination of parallel tasks [1]. This phenomenon may
be represented as the interplay between two simultaneous
processes. The first (involving most of the network nodes)
leads to the emergence of organized clusters (or moduli, or
cohesive subgroups), where nodes in the same cluster
adjust their dynamics into a common (synchronized) be-
havior to enhance the performance of a specific task. The
second process (involving just a few nodes of the graph) is
to form interfaces (or overlapping structures) between the
moduli that are responsible for the coordination between
the different tasks.

In this Letter, we report the first evidence that, under the
presence of different functional (synchronized) clusters,
interfaces appear and show a specific dynamical behavior
that enables one to develop an algorithm for identifying
their structure in a modular network. Indeed, the study of
separate modular structures [2] and synchronization [3] in
complex graphs has so far not unravelled the crucial point
concerning the role of synchronization interfaces and their
usefulness in detecting overlapping communities. We re-
port results on networks consisting of two domains of
interacting phase oscillators (each one synchronously
evolving at a different frequency), where the nature of
the two different frequency domains is the result of either
a dynamical process (influenced by different forcing pro-
cesses) or a structural design (modular network). Under
these conditions, most of the oscillators will contribute to
the synchronous behavior of the two clusters, whereas a
few nodes will be in a frustrated situation due to contrast-
ing inputs from the two clusters. Moreover, we propose an
analytic treatment of an abstracted system that yields
further insight. Based on our findings, we also develop an
algorithm that is able to detect overlapping structures in
both artificially constructed and real modular networks.

Let us start with the case of a generic random graphG of
N coupled oscillators, whose original frequencies f!ig are

randomly drawn from a uniform distribution in the interval
0:5� 0:25, subject simultaneously to an internal bidirec-
tional coupling and an external pacemaking unidirectional
forcing. The network dynamics is described by

_� i ¼
8
<

:

!i þ d
ðkiþkpi Þ

P
N
j¼1 aij sinð�j ��iÞ

þ dpkpi
ðkiþkpi Þ

sinð�pi
��iÞ;

(1)

where dots denote temporal derivatives, ki is the degree of
the ith oscillator, �pi

is the instantaneous phase of a

forcing oscillator having kpi
unidirectional connections,

d and dp are coupling strengths, and the faijg are either 1
or 0 depending on whether or not a link exists between
node i and node j.
In our simulations, we study a networkG which consists

of N ¼ 200 phase oscillators arranged in an Erdös-Rényi
configuration [4]. Initially, we set dp ¼ 0 and kpi

¼ 08i,

and we choose d ¼ 0:1 so that G exhibits unsynchronized
motion. Next, we arbitrarily divide the nodes into two
groups: nodes from i ¼ 1; . . . ; 100 (from i ¼
101; . . . ; 200) are assigned to the community A (B). We
introduce two pacemakers of frequencies!pA

and!pB
, and

connect the nodes in the first (second) group with the first
(second) pacemaker. This implies in Eq. (1) that �pi

¼
�pA

� !pA
t (�pi

¼ �pB
� !pB

t) for all the nodes in A

(B). In order to assign its kpi
links with the pacemaker to

each node, we start at t0 ¼ 0 the evolution of Eq. (1) from
random initial conditions in the unforced case (kpi

¼ 08i),

and add links between nodes of the two communities and
the pacemakers at later times tl ¼ t0 þ l�t. At precisely
each time tl, the pacemaker �pA

(�pB
) forms a connection

with that node j in A (B) whose instantaneous phase at time
tl corresponds to the minimum minjj�� ��jmod2�j,
with ��j ¼ �jðtlÞ ��pðtlÞ, � 2 ð0; 2�Þ setting a specific

desired phase condition [5], and �pðtlÞ ¼ �pA
ðtlÞ

[�pðtlÞ ¼ �pB
ðtlÞ] for those nodes in A (B). In [5], it was

demonstrated that, by operating this attachment over a
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given time interval, the resulting dynamics of any arbitrary
network of oscillators can be entrained to any arbitrary
frequency !p.

By selecting !pA
¼ 0:7, !pB

¼ 0:3, and
P

N
i¼1 kpi

¼
2000 links to the pacemakers (1000 to entrain the nodes
in A and the other 1000 to entrain those in B), and dp ¼ 1,

the dynamics display two large communities of entrained
oscillators. The situation is depicted in Fig. 1(a), where we
report the instantaneous frequency of each oscillator in G
as a function of time (averaged over a small window to
smooth fluctuations). We observe that most of the nodes in
A (B) have a constant frequency (that of the corresponding
pacemaker), whereas the few nodes belonging to the syn-
chronization interface exhibit a frequency that oscillates
around the mean value of the frequency of the two com-
munities �! ¼ ð!pA

þ!pB
Þ=2.

This switching mechanism is the result of the competi-
tion between two conflicting processes: the synchroniza-
tion within G (controlled by parameter d) that would lead
the whole network to exhibit a unique frequency, and the
forcing of the two pacemakers (controlled by dp) that tends

to separate the nodes into two clusters of entrained oscil-
lators. In order to quantify this competition and to describe
the size of the synchronization interface, we fix dp ¼ 1

and gradually increase d. The results are shown in
Figs. 1(a)–1(c) with (a) d ¼ 3:25, (b) d ¼ 5:75, and
(c) d ¼ 9:75. For intermediate coupling [Fig. 1(b)], it is
observed that the interface attracts more and more mem-
bers as the coupling increases. Because of the presence of
the two forcing pacemakers, this interface is organized in
an oscillating mode rather than in a constant frequency
mode. As the coupling d is further increased, almost the
entire system of oscillators eventually participates into this
interface oscillating mode, as seen in Fig. 1(c). Finally,
Fig. 1(d) gives evidence that in the low coupling regime
(d ¼ 3:5), the period TO of the switching process is in-
versely proportional to !� ¼ ð!pA

�!pB
Þ=2. Notice that

similar switching dynamics were previously observed in

the case of a chain of oscillators subject to two forcing
frequencies applied to the two ends of the chain [6].
In order to give analytical insight to our findings, let us

consider the simple case of three interacting phase oscil-

lators described by _�1 ¼ !1 þ K1 sinð�3 ��1Þ, _�2 ¼
!2 þ K2 sinð�3 ��2Þ, _�3 ¼ !3 þ K½sinð�1 ��3Þ þ
sinð�2 ��3Þ�. Here, �3 is the phase of an oscillator
(with natural frequency !3) receiving simultaneous cou-
pling from two other oscillators at natural frequencies
!1 � !2 � !3; K1, K2 � K are coupling constants. The
oscillators 1 and 2 model the two functional (frequency)
domains A and B, where the nature of the two different
frequency domains results from either a dynamical process
or a structural design. These two domains of synchronous
oscillators simultaneously interact with the small group of
nodes in the interface (modeled by the third oscillator), so
that we can reasonably assume K1 ¼ K2 ¼ 0, and conse-
quently �1;2 ¼ !1;2t.

The resulting equation _�3¼!3þ2Ksinð12ð!1þ!2Þt�
�3Þcosð12ð!1�!2ÞtÞ has an analytic solution

_� 3 ¼
~A cosð!�tÞ exp½2K!�

sinð!�tÞ�
1þ ~B exp½4K!�

sinð!�tÞ�
; (2)

for !3 ¼ �!, where �3 ¼ �3 � �!t, �! ¼ 1
2 ð!1 þ!2Þ,

!� ¼ 1
2 ð!1 �!2Þ, and ~A, ~B are suitable parameters. For

intermediate coupling, the third node switches between the
instantaneous frequencies of the other two, exactly as does
the synchronization interface. Furthermore, in good agree-
ment with the preceding discussion, Eq. (2) predicts that
(once !3 is selected to be the mean frequency of the two

forcing clusters) the instantaneous frequency _�3 will os-
cillate around �! with a period TO inversely proportional to
the difference in the frequencies of the two forcing clusters.
Notice that as K increases (the strong coupling regime), _�3
will approach zero, implying that the frequency of the third
oscillator will be progressively damped to the mean fre-
quency of the two other oscillators, even though there is no
threshold for this damping phenomenon.
So far we have considered the behavior of interfaces as

the result of the competition of dynamical domains. We
now describe the competition of structural domains in
modular graphs in the absence of the forcing [dp ¼ 0

and kpi
¼ 08i in Eq. (1)]. For this purpose, we construct

the adjacency matrix of G by considering two large com-
munities (A, B), each formed by 50 densely and randomly
connected nodes (the average degree in the same commun-
ity is 16), which overlap a small community O made of a
complete graph of 5 nodes [3 random links to A (B)] that
form symmetric connections to nodes in both A and B.
Each of the 105 nodes of G is associated with a phase
oscillator obeying Eq. (1), which is integrated for an initial
distribution of frequencies such that nodes in A (B) [i.e.,
nodes from i ¼ 1 to 50 (51 to 100)] have natural fre
quencies uniformly distributed in the range 0:25� 0:25
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FIG. 1 (color online). (a–c) Instantaneous frequencies _�iðtÞ of
each one of the 100 oscillators in A (light lines) [in B (dark
lines)] vs time, obtained from simulation of Eq. (1) for
(a) d ¼ 3:25, (b) d ¼ 5:75, and (c) d ¼ 9:75. (d) Log-log plot
of the period TO of the switching process in the interface vs !�,
for d ¼ 3:5. The solid line represents a linear fit with TO �
120=!�. Each point is the average of 5 independent realizations.
Other parameters reported in the text.
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(0:5� 0:25), while nodes in O have frequencies uniformly
distributed in the range 0:375� 0:05) (i.e., around the
mean frequency of the two distributions).

Figure 2(a) shows that all oscillators in the communities
A and B behave synchronously with almost constant fre-
quency in time (closely approximating the mean of the
original frequency distribution), while all oscillators in O
constitute the synchronization interface and thus display an
instantaneous frequency oscillating in time around the
mean value of the two frequencies in the two clusters.
Figure 2(b) shows, in agreement with the analytical pre-
diction, that the period of the frequency oscillations of O
scales inversely proportional to the frequency difference
between the two communities A and B. Finally, Fig. 2(c)
gives the numerical results of Eq. (2) for !1 ¼ 0:5, !2 ¼
0:25 [representing the frequencies of the two main clusters
in (a)]. A direct comparison with Fig. 2(a) allows one to
appreciate how closely our numerical results agree with the
analytical model. Furthermore, all other analytical predic-
tions of Eq. (2) concerning the large coupling regime are
confirmed in our simulations. Indeed, Fig. 3(a) and 3(b)
shows that increasing the coupling strength d yields the
synchronized frequency of the interface to lock almost
always to the mean of the frequencies of the two commu-

nities, still showing persistent events of shooting to larger
(or lower) frequencies.
We have so far described the specific case in which the

nodes of the interface had initially, by construction, the
same number of links as the nodes of the two communities.
It is therefore interesting to ask what happens when the
nodes in O are asymmetrically connected to A and B.
While the low coupling regime does not substantially differ
from the symmetrical case, the high coupling regime [il-
lustrated in Fig. 3(c)] exhibits frequency oscillations of the
nodes in O that are biased toward the community in which
the nodes have more connections.
The overall scenario reported above suggests a practical

way to detect overlapping communities [Fig. 4(a)] in ge-
neric modular networks. It is important to remark that most
of the definitions of network communities proposed so far
lead essentially to a graph partition into components, such
that a given node belongs to and only to one of the
components of the partition [2]. The possibility, instead,
that two components of a partition may have an overlap-
ping set of nodes has been recently investigated by means
of topological arguments [7]. The novelty of our approach
consists in introducing a functional concept of overlapping
structures that are defined in relationship to the dynamical
response of the network as a whole. Namely, as far as
synchronized behavior of phase oscillators is concerned,
we define an overlapping structure as the set of nodes
which, instead of following the constant frequency of one
of the two domains, balance their instantaneous frequen-
cies in between these two. Therefore, they cannot be
considered as a functional part of any single domain. As
shown below, this definition allows the detection of addi-
tional information including single overlapping nodes, as
compared to previous studies.

FIG. 2. (a) Instantaneous frequencies _�iðtÞ vs time from simu-
lation of Eq. (1) with d ¼ 0:1 (other parameters and stipulations
are reported in the text). Squares, diamonds, and full circles
represent, respectively, nodes belonging to A, B, and O. (b) Log-
log plot of the switching period TO of the oscillations in the
frequency of the nodes in O vs the frequency difference !�. The
solid line represents a linear fit with slope �1:002� 0:0069.
(c) Solution of Eq. (2) for!1 ¼ 0:5,!2 ¼ 0:25 [representing the
frequencies of the two main clusters in (a)], K ¼ 0:1, ~A ¼ 0:019,
~B ¼ 0:25.

FIG. 3. Effects of coupling strength (a–b) and asymmetry (c).
(a) d ¼ 0:5; (b) d ¼ 0:95. (c) d ¼ 0:1, but 2 (5) links of the
nodes in the interface go to nodes of cluster A (B). As in Fig. 2,
squares, diamonds, and full circles refer, respectively, to nodes
belonging to A, B, and O.

FIG. 4 (color online). (a) Graphical illustration of the con-
structed modular network, where the overlapping region of
two circles (communities) represents the overlapping commun-
ity. (b) C (see text for definition) vs node index in G.
Overlapping nodes 1, 2, 3 (101, 102, 103), labeled, respectively,
with triangle, diamond, and star, have [1,5], [2,4], [3,3] con-
nections with nodes of [B, A] ([A, B]), while 4–100 (104–200)
labeled with squares belong functionally to A (B) and d ¼ 0:15.
(c) Overlapping clusters each consisting of complete graphs of
nodes 1–4 (101–104), labeled with stars, have symmetrical
connections with A and B, while nodes 5–100 (105–200), labeled
with squares, belong functionally to A (B); here d ¼ 0:1.
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To illustrate this idea, we construct a networkGmade of
two large moduli (A and B of 100 nodes each), where the
majority of nodes form random connections (with average
degree 15) with elements of the same community, while
only very few nodes form links with nodes of both com-
munities. Precisely, we denote by kAi (kBi ) the total number
of links these few nodes form with nodes in A (B), and
define the ratio Di ¼ kAi =k

B
i to evaluate the degree of

overlapping of these nodes. For perfect overlap between
the two clusters,Di ¼ 1. Under these conditions, Eq. (1) is
simulated for dp ¼ 0, kpi

¼ 08i, the set f!ig drawn from a

Gaussian distribution with standard deviation 0.1 and mean
value 0.3 (0.6) for nodes belonging to community A (B). To
identify those overlapping nodes, we introduce the quantity

Ci ¼ sgn½ _�iðtÞ � �!�mintfj _�iðtÞ � �!jg, where �! is the
mean of the two averaged frequencies assigned to the
two communities. This allows one to monitor how closely
in time the dynamics of a node approaches �!. When the
node is in the dynamics of the full synchronized interface,
Ci ¼ 0. Therefore, as Di approaches 1, Ci is expected to
approach 0. The results are shown in Fig. 4(b) and 4(c) for
two different arrangements of the overlapping community:
overlapping nodes [Fig. 4(b)] and overlapping clusters
[Fig. 4(c)] which have symmetrical connections to two
clusters. In both cases, two large synchronized clusters
are identified very far from the overlapping synchroniza-
tion, corresponding to those nodes performing distinct
tasks and already classified by the structural partition. At
the same time, the dynamical evolution manifests a group
of nodes whose dynamics is significantly removed from the
two main clusters (thus identifying the overlapping com-
munity). In Fig. 4(b), each overlapping node gives rise to a
different value of Ci corresponding to its specific degree of
overlap with Di. The node with Di ¼ 1 yields Ci ¼ 0. On
the contrary, in Fig. 4(c), all the nodes inside the over-

lapping cluster are identified as a whole and have the same
value of Ci ¼ 0 due to the symmetrical connection.
Finally, we apply the algorithm to the network of friend-

ship relationships between the members of a karate club,
obtained from data collected by anthropologist Wayne
Zachary [8]. The data consist of a graph having 34 nodes
and 78 edges, that has been considered the comparative
reference for most of the classical algorithms for the
detection of separate modular structures [2]. We assign
sets f!ig drawn from uniform distributions centered
around 0.3 (0.7) with width 0.2 to nodes of the first (second)
main community identified by classical studies [2]. Our
algorithm shows not only that the values Ci allows one to
describe perfectly the real split of the club [see Fig. 5(a)],
but also that node 3 (which is ambiguously classified by
different classical algorithms) constitutes the interface be-
tween the communities, and its associated instantaneous
frequency [see Fig. 5(b)] displays the typical oscillating
behavior of the interfaces that was introduced in our study.
The fact that our algorithm gives such extra information on
the structure of the Zachary club confirms that it can be of
practical relevance for applications to other real networks
to obtain novel insight on overlapping communities.
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FIG. 5. (a) C (see text for definition) vs node index in the
Zachary karate club network [8]. The values of Ci are visibly
split into two main groups that identify exactly the split of the
club that was originally observed in [8]. Node 3 (further labeled
with a square) is ambiguously classified by different classical
algorithms [2] and displays a value of Ci consistently different
from that of any other node. (b) Instantaneous frequencies _�iðtÞ
vs time from simulation of Eq. (1) with d ¼ 0:1. The dynamics
of node 3 (open circles) is the only one that reflects the typical
oscillating behavior of the interfaces.
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