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a b s t r a c t

Westudy the statistical properties of SIR epidemics in randomnetworks,when an epidemic
is defined as only those SIR propagations that reach or exceed a minimum size sc . Using
percolation theory to calculate the average fractional size 〈MSIR〉 of an epidemic, we find
that the strength of the spanning link percolation cluster P∞ is an upper bound to 〈MSIR〉. For
small values of sc , P∞ is no longer a good approximation, and the average fractional size has
to be computed directly.We find that the choice of sc is generally (but not always) guided by
the network structure and the value of T of the disease in question. If the goal is to always
obtain P∞ as the average epidemic size, one should choose sc to be the typical size of the
largest percolation cluster at the critical percolation threshold for the transmissibility. We
also studyQ , the probability that an SIR propagation reaches the epidemicmass sc , and find
that it is well characterized by percolation theory. We apply our results to real networks
(DIMES and Tracerouter) to measure the consequences of the choice sc on predictions of
average outcome sizes of computer failure epidemics.

© 2008 Elsevier B.V. All rights reserved.

The study of disease spread has seen renewed interest recently [1–3] due to the emergence of new infectious
lethal diseases such as AIDS and SARS [4,5]. New tools, ranging from powerful computer models [6] to new conceptual
developments [1,8–12], have emerged in hopes of understanding and addressing the problem effectively.
Among the new tools that have become available to tackle infectious disease propagation, complex network theory [13,

14] has been of considerable interest [5,2], as a way to address the shortcomings of more classic approaches [4] where
all individuals in the population of interest are assumed to have an equal probability to infect all other individuals
(random-mixing). In contrast to the random-mixing approach, complex networks (heterogeneousmixing) assume that each
individual (represented by a node) has a defined set of contacts (represented by links) to other specific individuals (called
neighbors), and infections can be propagated only through these contacts. This new technical framework has produced novel
insights that are expected to help considerably in the fight against infectious diseases [10,5].
The use of complex network theory requires a few pieces of information in order to be correctly applied. First, it is

important to understand the kindof disease being considered, as thiswill dictate the specifics of thenetworkmodel that need
to be used. For example, the flu virus usually spreads among people that come in contact even briefly, leading to networks
with exponential distributions [7] or fat-tailed distributions of connections with large average degree [6]. On the other
hand, sexually transmitted diseases are better described by more sparse, and fairly heterogeneous contact networks [4].
Thus, these two examples easily illustrate one of the complications of the problem: the structure of the network to be used.
Other aspects involve the life cycle of the pathogen, seasonality, etc. Additionally, social and practical aspects involving
public health policy and strategic planning play important roles in the problem.
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Regarding the issue of network structure, a fewmodels have been proposed as useful substrates for disease propagation.
Among these, truncated scale-free network structures [2] have received considerable interest [9,12]. In these networks, each
node has a probability P(k) to have k links (degree k) connecting to it, with P(k) being characterized by the form

P(k) =
[
k−λ exp(−k/κ)

]
/
[
Liλ(e−1/κ)

]
, (1)

with k ≥ kmin, where kmin is the lowest degree that a node can have and κ is an arbitrary degree cutoff reflecting the
properties of the substrate network for the disease [15]. The reason for including the exponential cutoff is two-fold: first
many real-world graphs appear to show this cutoff; second it makes the distribution normalizable for all λ, and not just
λ ≥ 2 [16].
Another important issue of propagation relates to the type of disease being considered and its dynamics. In this sense, a

general model for a number of diseases (including the ones mentioned at the beginning) is the SIR model, which separates
the population into three groups: susceptible, infected and recovered (or removed), approximating well the characteristics
of many microparasitic diseases [4]. The solution to the SIR model corresponds to the determination of the number of
susceptible, infected, and recovered individuals at a given time. Public health officials are particularly interested in the final
outcome of the disease propagation, measured through the number of individuals SSIR, out of a population of N , that became
infected at any time. Notice that SSIR should not be confused with the number of susceptible individuals [17]. Another useful
way to express the solution of the model is through the average fraction of infected individuals (also known as attack rate)
〈MSIR〉 = 〈SSIR/N〉, where 〈〉 denotes averages over realizations.
A number of details related to SIR determine the methods that correctly yield SSIR [9,12]. One common formulation of

SIR assumes that on each time step, an infected node has a probability β to infect any of its susceptible neighbors, and once
infected the node recovers in exactly tR time steps. This yields an overall probability T , called the transmissibility, to use
any given network link of a node that becomes infected. For this case, when the networks have very simple structure [18],
〈MSIR〉 can be determined using a mapping to the link percolation model [3,2] of statistical physics [19] (see below). If the
SIR propagation details change, modified forms of percolation may be used [9,12].
From the standpoint of public health policy and strategic planning, an important technical point is how to ‘‘define’’

what is considered to be an epidemic, because such a definition determines the level of reaction that health organizations
(e.g., World Health Organization) will apply in dealing with a particular infectious disease event. In real-world disease
spread situations, as pointed out in several Refs. [2,9,12], epidemiologists are obliged to define a minimum number of
people infected, or threshold sc to distinguish between a so-called outbreak (a small number of individuals where no large
intervention is called for), and an epidemic (a significant number of individuals in the population requiring large scale
intervention). In Refs. [2,9,12], for instance, sc has been used, but its impact on average predictions of SIR has not been
systematically addressed, even though it is representative of the sensitivity, or urgency, that epidemiologists assign to the
disease in question.
In this paper we address the importance of sc for SIR in complex networks. Using link percolation, we first concentrate

on calculating the average fraction 〈MSIR(T , sc)〉 over SIR model realizations for which SSIR ≥ sc . This quantity is important
in the public health community to determine the average expectation value for the epidemic size that can arise given the
particular pathogen and society affected, and the epidemic threshold sc chosen. To calculate SIR through link percolation, we
find that a reweighting procedure is necessary, that has been previously ignored. Once this reweighting is done, 〈MSIR(T , sc)〉
for large sc (see below for a detailed discussion) approaches P∞(T ) ≡ P∞(N, T ), corresponding to the average fractional size
of the largest percolation cluster at T , but for sc smaller than a value that depends on the topology of the network, we find
that 〈MSIR(T , sc)〉 < P∞(T ), for Tc < T < 1, (Tc is the percolation threshold, defined below in detail) indicating that
the percolation result for P∞ is an upper bound. Since the choice of sc determines what is defined to be an epidemic, we
also determine Q ≡ Q (T , sc), the probability that an SIR realization reaches SSIR ≥ sc . Extending our results to situations
such as computer networks, where one should be able to declare an epidemic even if few computers are infected due to the
‘‘similarity’’ of theworld population of computers (i.e. sharing the sameoperating system), and thus have large susceptibility,
we find that similar results apply.
The rest of the article is structured as follows. Section 1 introduces details of the network model and where it applies,

the link percolation method used to solve the SIR model, and the details of the reweighting procedure necessary to obtain
correct averages. Sections 2 and 3 introduce and explain the results of the application of the model to disease propagation
events in simulated networks and real-world examples (computer networks). Finally, Section 4 summarizes the results of
the paper and presents our conclusions.

1. Models and algorithm

To construct networks of size N we use the Molloy–Reed algorithm or Configurational model [20,21], and apply it to
the degree distribution given by Eq. (1). Simulations for this type of network have been performed before in Refs. [2,9] for
N = 104 and 105, λ = 2, kmin = 1, κ = 5, 10, 20 and sc = 100 and 200 [23]. We perform our simulations for many
values of κ but we present our results only for κ = 10. Our main results also hold for other degree distributions. Due to the
fact that the lower degree is kmin = 1 [24] and κ is small, the network is very fragmented and the size of the initial biggest
connected cluster (also know as the giant component abbreviated as GC), labeled here asNGC , is typically 60% of the network
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(for κ = 10). In each realization we build a new network and work only on the GC of the original network because we are
only concerned with the disease spread on connected communities. Isolated clusters cannot propagate a disease.
To simulate SIR,we chose one node at randomon theGC of the substrate network, and infect it. Per time step, this infected

node has a probabilityβ to infect its first neighbors. Once a neighbor has been infected, it can infect any of its own susceptible
neighbors, but it cannot be infected again nor infect another already infected or recovered node. All infected nodes recover
after tR time steps of becoming infected [25]. The transmissibility T is the overall probability that a node infects one of its
susceptible neighbors within the time frame t = 1 to tR, given by

∑tR
t=1 β(1−β)

t−1
= 1− (1−β)tR . For every realization of

SIR, the total number of nodes that become infected after the infectious transmission has ended is given by SSIR. The values
of SSIR satisfy a distributionΦ(SSIR).
As mentioned in the introduction, another way to calculate SSIR is through the use of link percolation. This is a process

in which an initial network is modified by removing a fraction 1 − T of its links (we use T as the probability for a link to
be present because of the mapping between link percolation and our SIR model). The effect of the removal is to generate
a multitude of clusters, each being a group of nodes that can be reached from each other by following a sequence of edges
connected to those nodes. Link percolation has a threshold value T = Tc , characterized by the fact that, for T < Tc , the size
of the largest cluster typically scales as logN , and for T > Tc , a large cluster emerges with a size that scales linearly with N ,
alongside a number of small clusters. Thus, a so-called percolation transition occurs at T = Tc that takes the network from
disconnected to connected. In general terms, a similar situation occurs in SIR, where a high likelihood of transmission of
the disease (large T ) between neighbors typically leads to a large epidemic, but if this likelihood is low (small T ), only small
localized outbreaks appear (a detailed description of the relation is developed below).
To perform link percolation, we begin in the GC of the substrate network, and randomly eliminate links with probability

1 − T . Each realization of this process yields multiple connected clusters of various sizes. Realizations are then repeated
multiple times, and a distribution of cluster sizesφ(Sp) emerges. For the quantity P∞(N, T ) (whichwe henceforth abbreviate
as P∞(T )), we average the largest cluster size divided by NGC produced in each realization.
The relation between SIR and link percolation can be concretely explained in the following way: each SIR realization

begins with a randomly chosen node of the GC, and the infection propagates to a set of nodes SSIR that can all be traced
back to the original infection. The links used in this SIR realization, on average, where used with probability T and not used
with probability 1 − T . To draw the correct connection to link percolation, we first must realize that in a given realization
of percolation, only one of the many connected clusters can be chosen to represent the infection of SIR. By analogy with
the classic Leath algorithm [26] of cluster creation in percolation, we can conclude that the clusters are randomly picked,
with probability proportional to their size Sp. Thus, one expects that the average size of SIR realizations is equivalent to a
weighted average of percolation realizations, where the weight is given by Sp.
With the previous arguments in mind, and given the dependence of the problem on both T and sc , we compute

〈MSIR(T , sc)〉 through [27]

〈MSIR(T , sc)〉 =
∑
SSIR≥sc

SSIR
NGC

Φ(SSIR). (2)

In order to compare this to link percolation, we perform a weighted average to obtain 〈Mp(T , sc)〉, given by

〈Mp(T , sc)〉 =

∑
Sp≥sc

(S2p/NGC ) φ(Sp)∑
Sp≥sc

Sp φ(Sp)
. (3)

We expect that both averages converge to the same value when enough realizations are performed. Additionally, as sc is
increased, we expect 〈Mp(T , sc � 1)〉 → P∞(T ) for T > Tc , because a progressively smaller number of small clusters
enters into the averaging, and only the largest clusters are used. This creates an interesting scenario, in which P∞(T ) is
a good approximation of the epidemic size only in the limit of a large threshold sc ≥ S×p (a function of T only, defined
below). However, for smaller sc , which is important in more aggressive diseases, only 〈Mp(T , sc)〉 is the correct average,
which includes both small and large SIR events.

2. Results on the relative average size of the disease

2.1. Mapping between the average fraction size using SIR simulations and the average fraction size of all percolation cluster

As a first step, we illustrate the equality of 〈MSIR(T , sc)〉 and 〈Mp(T , sc)〉 [9,12] (Fig. 1) by plotting 〈MSIR(T , sc)〉 and
〈Mp(T , sc)〉. The two curves overlap indicating that the mapping between the two quantities is correct. In the remainder
(unless explicitly stated), we perform our simulations using link percolation as opposed to SIR.
Themapping between the steady state of SIR and link percolation is computationally very convenient for several reasons.

First, performing simulations of SIR models is computationally more costlier than link percolation. This is due to the fact
that for SIR, only a single propagation occurs per realization, as opposed tomultiple clusters that appear for link percolation.
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Fig. 1. Comparison between 〈MSIR(T , sc)〉(�), 〈Mp(T , sc)〉 (©), and P∞(T ) of link percolation (full line). Empty symbols correspond to sc = 100, and dotted
symbols to sc = 1. For the transmissibility in the SIR problem, we used β = 0.05 and a set of values of the recovery tR to cover a wide range of T . All the
simulations were performed on the GC of networks with λ = 2, κ = 10, kmin = 1, and averaged over 104 realizations.

Fig. 2. (a) Plot of 〈Mp(T , sc)〉 as a function of T , for sc = 200 (©), sc = 10 (�) and sc = 1 (+). The full line represents P∞(T ). The inset shows the details
of the main plot close to Tc ≈ 0.32, i.e, for T near the percolation threshold. We can observe that the departure between P∞(T ) and 〈MSIR(T , sc)〉 is not
negligible. (b) P∞ − 〈Mp(T , sc)〉 as a function of T , for sc = 1 (�), sc = 10 (∗), sc = 50 (+) and sc = 200(©). In the inset we plot the details of the main
plot around Tc for sc = 10 (dot dashed line), sc = 50 (dashed line) and sc = 200 (full line). We observe that P∞(T ) is an upper bound for 〈Mp(T , sc)〉 [29].
In all the simulations we used N = 105 , λ = 2, κ = 10, kmin = 1 and the averages where done over 103 realizations on the GC of networks of size' 0.6N.

Additionally, SIR propagation has to be performed in a dynamic fashion, which makes it necessary to test over time a given
propagation condition, something that does not occur for link percolation, accelerating further the simulations. Finally, this
mapping is convenient because it gives another conceptual framework in which to understand the relation between these
two problems of disease propagation and percolation models.
A final feature of Fig. 1 is the plot of P∞(T ). This curve displays good agreement with 〈MSIR(T , sc)〉 for the larger sc . We

discuss this issue further in Section 2.2.

2.2. Effects of sc on SIR measures

In Fig. 2(a), we plot 〈Mp(T , sc)〉 to explore the effect of sc on this average. We can see from the plot that only for larger
sc (for our simulation parameters ≈ 200) the curves of P∞(T ) and 〈Mp(T , sc)〉 coincide for 1 ≥ T > Tc (Tc ≈ 0.34 for
N = 105), while for smaller sc values they do not. The need to use large sc to approach P∞(T ) had been realized previously
(for instance Refs. [28,9]), but not commented on in any detail. We can see this behavior more clearly in Fig. 2(b), where we
plot P∞(T ) − 〈Mp(T , sc)〉 for different values of sc and find that P∞(T ) is an upper bound of 〈Mp(T , sc)〉, except for large sc
(see Ref. [29], and recall that by definition 〈Mp(T , sc)〉 ≥ sc , thus care must be taken not to induce pathological situations
by choosing sc larger than expected large SIR events).
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Fig. 3. Distribution of cluster sizes φ(Sp) for T = 0.4 (©) and 0.5 (4, red color online). The distribution has two regions in which there is significant
statistical weight. The first of the two corresponds to the presence of finite clusters, and the second to large spanning clusters. As T increases the second
regionmoves to the right, concentrated around S∞p (T ), and the first region becomes smaller due to the cutoff S

×
p (T )moving to the left. This also signals the

decay of statistical weight of the first region and increase of the second. For T = 1, all theweight is concentrated on the second region. In all the simulations
we used N = 105 , λ = 2, κ = 10, kmin = 1 and the averages where done over 104 realizations on the GC of networks of size' 0.6N..

In order to understand these results systematically, we plot the distribution φ(Sp) for two values of T (Fig. 3). From
percolation theory it is known that, for T close and above Tc , φ(Sp) ∼ AS−τp exp(−Sp/S

×
p ) + F(Sp − S

∞
p ), where τ has the

mean field value 5/2. In the last expression, S×p is a characteristic maximum finite cluster size which scales as |T − Tc |
−σ

(σ = 1/2), A is a measure of the relative statistical weight between the two terms, F is a narrow function of its argument,
and S∞p = S

∞
p (T ) ≡ 〈NGC 〉P∞(T ). The value of A can be estimated from the fact that, for a system size 〈NGC 〉, the first term

of φ(Sp) accounts for the finite clusters present, and the integral of Spφ(Sp)must be equal to the mass of the finite clusters.
Therefore

[〈NGC 〉 − S∞p (T )] ∼ A
∫
〈NGC 〉

1
S−τ+1p exp(−Sp/S×p )dSp

⇒ A ∼
(τ − 2)(〈NGC 〉 − S∞p (T ))

1− (S×p )−τ+2
. (4)

Since the rest of the mass of the network is contained in a single spanning cluster, then the relative statistical weight of
the first to second term of φ(Sp) is A : 1, justifying the choice of the integral of F to be 1. The overall normalization can be
obtained from the fact that

∫
〈NGC 〉
1 SpΦ(Sp)dSp = 〈NGC 〉. The effects shown here hold also for other networks including real

networks as shown below.
In general, since φ(Sp) = φ(Sp, T ), any choice of sc affects the value of 〈Mp(sc, T )〉 differently for different T . The choice

sc = S×p (T = Tc) is generally convenient for any T ≥ Tc (although not perfect, as explained below) if the goal is to
have 〈Mp(sc, T )〉 → P∞(T ), which reflects an averaging only over large SIR events. In case the disease in question has
T considerably larger than Tc , φ(Sp) is virtually bimodal, with a region of extremely low probability between S×p (T ) and
S∞p (T ) inside of which changing sc has virtually no consequences. If sc < S

×
p (T ), 〈Mp(T , sc)〉 becomes the average of this

bimodal, but for S×p (T ) < sc < S
∞
p (T ), 〈Mp(sc, T )〉 is dominated by the second part of the distribution producing a value

that reflects typical large SIR events only. Since the average of a bimodal lacks descriptive power, this analysis suggests
that for large T , S×p (T ) < sc < S∞p (T ) is a good choice. On the other hand, in the case of T & Tc , φ(Sp) is a truncated
power-law and changes in sc induce changes in 〈Mp(T , sc)〉 continuously, thus making the choice of sc less obvious. If the
concern regarding a particular disease is to activate epidemiological interventions quickly, a small value of sc should be
chosen related to practical considerations such as readiness of the public health sector; if, however, the guiding principle is
to analyze the statistical features of large events, sc close to, or slightly larger than, S×p (T ) (sc & S

×
p (T )) guarantees averaging

only over those. It is important to keep in mind that the statistical weight of events of size S∞p (T ) becomes negligible as
T → Tc , making sc & S×p (T ) a choice that forces 〈Mp(T , sc)〉 to become dominated by vanishingly improbable events. Finally,
choosing sc & S∞p (T ) is, at best, an unsafe choice for transmissibility T or belowbecause it forces 〈Mp(T , sc)〉 ≥ S

∞
p (T ), which

is meaningless (see, for instance inset of Fig. 2(b), where 〈Mp(T , sc)〉 > P∞(T ) for Tc & T ). In essence, our analysis suggests
that sc close to and above S×p (T ) is generally a good choice, unless special considerations are present due to a particularly
dangerous disease which, in addition, satisfies T & Tc .
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Fig. 4. Plot of Q for: SIR as a measure of the number of times an SSIR ≥ sc divided by the number of realizations (full line). Link percolation over all clusters
as in Eq. (6) (©). We observe that both the curves are in good agreement. For small sc , Q has a power-law decaying behavior with exponent τ − 2 = 1/2.
The arrow represents approximately S∞p /〈NGC 〉 ≈ 0.12 as predicted by the theoretical scaling.

The choice of sc has an extra consequence,which is to change the likelihood that a givenpathogenpropagation bedeclared
as an epidemic. This probability is relevant from the standpoint of readiness, because lower sc implies that it is more likely to
consider almost any disease propagation as reaching the epidemic state. Thus, we define Q which represents the probability
that an SIR with transmissibility T has size SSIR ≥ sc . This quantity can be computed directly as the number of times SSIR ≥ sc
divided by the total number of realizations (see Fig. 4). Analytically, Q can be related toΦ(SSIR) through

Q =

∑
SSIR≥sc

Φ(SSIR)∑
SSIR≥1

Φ(SSIR)
=

∑
SSIR≥sc

Φ(SSIR) (5)

where the last equality is a consequence of normalization. In order to calculate Q from the percolation results, we keep in
mind the reweighting applied to Eq. (3). Then, Q is given by

Q =

∑
Sp≥sc

Sp φ(Sp)∑
Sp≥1
Sp φ(Sp)

(6)

where
∑
Sp≥1 Spφ(Sp) = 〈NGC 〉. In Fig. 4, we plot Q for SIR for T = 0.4, (T & Tc), using direct computation and compare it

with the results obtained using Eq. (6). We can see that the agreement is excellent.
To calculate Q , we use φ(Sp) and Eq. (5), and assume the continuum limit over Sp, giving

Q ∼
∫
〈NGC 〉

sc

Spφ(Sp)
〈NGC 〉

dSp

∼

∫
〈NGC 〉

sc

[AS−τ+1p exp(−Sp/S×p )+ SpF(Sp − S
∞
p )]

〈NGC 〉
dSp

∼


A
s−τ+2c − (S×p )

−τ+2

〈NGC 〉(τ − 2)
+
S∞p
〈NGC 〉

[sc ≤ S×p ]

S∞p
〈NGC 〉

[S×p � sc ≤ S
∞

p ]

0 [S∞p < sc],

(7)

where we approximated the first term of the integral by truncating the integration at S×p (T ), and simplifying F to a delta
function (of integral 1, which relates to the value of A). Several Q regimes can be identified: (i) for sc � S×p , the contribution
of (S×p )

−τ+2 is negligible and therefore Q ∼ s−τ+2c ; (ii) for sc ∼ S×p , Q becomes dominated by a competition between the
two terms of the integral and no clear scaling rules apply; (iii) for S×p � sc < S

∞
p , Q ∼ S

∞
p , and; (iv) for sc > S

∞
p , Q → 0.

From Fig. 4 we can identify those four regimes. In the figure the arrow represents approximately S∞p /〈NGC 〉 ≈ 0.12 from the
simulation. The agreement between the theoretical scaling (see Eq. (7)) and the simulation is excellent.
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Fig. 5. Plot of 〈Mp(T , sc)〉 as a function of T , for the Tracerouter network that has N = 222 934, Links = 279 510, P(k) ∼ k−λ with λ = 2.1, with sc = 1
(◦), sc = 2 (+) and sc = 100 (�). The full line represents P∞(T ).

3. Application to Tracerouter and DIMES networks

The results we have presented for our model of human infectious disease propagation is applicable to other problems in
the real world. This can be well illustrated for computer networks in which information is being broadcasted.
One of the networks that describes the functional connectivity of the Internet is the Tracerouter network, where the

nodes are the routers and the links are the connections between them that transport IP packets. The network, as measured
in Ref. [30], has N = 222 934 nodes and L = 279 510 links. This network can be represented by a Scale-Free network with
λ = 2.1 [30]. In order to obtain information of the Internet connectivity, a software probe is used called a Tracerouter
tool, that sends IP packets on the Internet eliciting a reply from the targeted host. By citing the information of the packets’
path to the various destinations, a network of router adjacencies is built [31]. Here, the SIR process can be understood as a
router that has a random failure (Infected), that can produce failures on neighbor nodes that are functional (Susceptible),
and these new nodes become infected. Thus, after certain time of router failure the protocol disconnects the router from
the network (Removed). The DIMES network [32] uses the same algorithm of searching as the Tracerouter network, the
nodes are Autonomous Systems (AS) and the links are the connections between AS. The network has N = 20 556 nodes and
L = 62 920 links. The description of the SIR process over DIMES is the same as the one explained before for the Tracerouter
network.
In Figs. 5 and 6we plot P∞(T ) and 〈Mp(T , sc)〉 for different values of sc as a function of T . For sc = 500, for Tracerouter and

sc = 100 for DIMES network we can map this problem to P∞(T ) of link percolation. We can see that the problemmaps into
〈Mp(T , sc)〉 for any size of sc . We compute Q for both networks, those results are plotted in Fig. 7(a) and (b) for Tracerouter
and DIMES networks, respectively. For DIMES, Tc → 0, and thus first region cannot be seen [19]. On the other hand, if Tc is
finite as in Tracerouter, Q has the four regions described for model networks (see Eq. (7)).

4. Summary

We have shown that the choice of sc , the minimum SIR propagation size necessary to declare an epidemic, has
important consequences on epidemiological predictions. Using percolation theory to calculate the average fractional
size 〈MSIR(T , sc)〉 = 〈Mp(T , sc)〉 of an epidemic, we find that the strength of the spanning link percolation cluster
P∞(T ) is an upper bound to 〈MSIR(T , sc)〉, provided sc does not exceed S∞p (T ), the typical size of finite clusters of link
percolation, where pathological results can appear. When sc is between S×p (T ) and S

∞
p (T ), P∞(T ) is a good approximation

to 〈MSIR(T , sc)〉. For small values of sc , P∞ is no longer a good approximation, and the average fractional size has to
be computed directly. Our analysis suggests that for a given disease (of known T ) and social network, sc & S×p (T ) is
generally a good choice, unless T & Tc and the disease requires special considerations by authorities. When, the goal
is to have 〈Mp(sc, T )〉 → P∞(T ), which reflects an averaging only over large SIR events, a convenient choice of sc is
sc = S×p (T = Tc). We also study Q , the probability that an SIR propagation reaches the epidemic mass sc , which
has several interesting regimes including one that scales as s−τ+2c . We apply our results to real networks (DIMES and
Tracerouter) to measure the consequences of the choice sc on predictions of average outcome sizes of computer failure
epidemics.
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Fig. 6. Plot of 〈Mp(T , sc)〉 as a function of T , for the DIMES network that has Scale-Free distribution with λ ≈ 2.15, N = 20 556, links= 62 920, for sc = 1
(◦), sc = 10 (+) and sc = 500 (�). The full line represents P∞(T ).

Fig. 7. Q as a function of sc for: (a) Tracerouter network, with T = 0.25 (©). (b) DIMES network, with T = 0.02 (©), the exponent of the decreasing
power-law is around 0.62, indicating that for this network τ ∼ 2.62.
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