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a b s t r a c t

In this paper, we study the steady state of the fluctuations of the surface for a model of
surface growth with relaxation to any of its lower nearest neighbors (SRAM) [F. Family,
J. Phys. A 19, (1986) L441] in scale free networks. It is known that for Euclidean lattices
this model belongs to the same universality class as the model of surface relaxation to
the minimum (SRM). For the SRM model, it was found that for scale free networks with
broadness λ, the steady state of the fluctuations scales with the system size N as a constant
for λ ≥ 3 and has a logarithmic divergence for λ < 3 [A.L. Pastore y Piontti, P.A. Macri, L.A.
Braunstein, Phys. Rev. E 76 (2007) 046117]. Itwas also shown [C.E. La Rocca, L.A. Braunstein,
P.A. Macri, Phys. Rev. E 77 (2008) 046120] that this logarithmic divergence is due to non-
linear terms that arises from the topology of the network. In this paper, we show that the
fluctuations for the SRAMmodel scale as in the SRMmodel. We also derive analytically the
evolution equation for this model for any kind of complex graphs and find that, as in the
SRMmodel, non-linear terms appear due to the heterogeneity and the lack of symmetry of
the network. In spite of that, the two models have the same scaling, but the SRM model is
more efficient to synchronize systems.

© 2008 Elsevier B.V. All rights reserved.

Recently, much effort has been devoted to the study of dynamics in complex networks. This is because many physical
and dynamic processes use complex networks as substrates to propagate, such as epidemic spreading [1], traffic flow [2–4]
and synchronization [5,6]. In particular, synchronization problems in networks are very important in many fields such as
the brain network [7], networks of coupled populations in epidemic outbreaks [8] and the dynamics and fluctuations of task
completion landscapes in causally-constrained queuing networks [9]. Synchronization deals with the optimization of the
fluctuations in the steady state of some scalar field h, that can represent the neuronal population activity in brain networks,
infected population in epidemics and jobs or packets in queuing networks. It is particularity interesting to understand how
to reduce the load excess in communication networks in the steady state. This problem can be mapped into a problem of
non-equilibrium surface growth where h is a random scalar field on the nodes that could represent the total flow on the
network and the load excess could represent the overload of flow that a node should handle. Then, a way to reduce the
load excess is to reduce the fluctuations of that scalar field. Recently, Pastore y Piontti et al. [10] used the model of surface
relaxation to the minimum (SRM), that allows balancing the load, reducing the fluctuations in scale free (SF) networks with
degree distribution given by P(k) ∼ k−λ, (k ≥ kmin) with k the degree of a node, kmin the minimum degree that a node can
have, and λ the broadness of the distribution [11]. Given a scalar field h on the nodes, that in surface problems represents the
interface height at each node, the fluctuations are characterized by the average roughnessW (t) of the interface at time t ,
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given byW ≡ W (t) =
{
1/N

∑N
i=1(hi − 〈h〉)

2
}1/2
, where hi ≡ hi(t) is the height of the node i at time t , 〈h〉 = (1/N)

∑N
i=1 hi,

N is the system size, and {.} denotes average over configurations.
The aim of this paper is to study the steady state ofW ≡ Ws for the model of surface growth with relaxation to any of its

lower nearest neighbors (SRAM) [12]. We find that this model has the same behavior with the system size as the SRMmodel
for every λ, even though the SRM model is more efficient to reduce the fluctuations and to enhance synchronization than
the SRAMmodel, as we show later. Moreover, we derive analytically the general evolution equation for the SRAMmodel for
any kind of random graph.

1. Surface relaxation models

In the SRM model, at each time step a node i is chosen with probability 1/N . If we denote by vi the nearest-neighbor
nodes of i, then

if
{
(1) hi ≤ hj,∀j ∈ vi ⇒ hi = hi + 1
(2) hj < hn∀n 6= j ∈ vi ⇒ hj = hj + 1.

The SRAM model has the same rule (1) as the SRM model, but the second rule is different: the chosen node can relax to
any of its lowerm neighbors with probability 1/m. Then, the rules for the SRAMmodel are

if
{
(1) hi ≤ hj,∀j ∈ vi ⇒ hi = hi + 1, else
(2) ∃m nodes j ∈ vi with hj < hi ⇒ hj = hj + 1 with probability 1/m.

(1)

It is known that in Euclidean lattices of typical linear size L the SRM and the SRAMmodels belong to the same universality
class [12,13], with

W (t) ∼
{
tβ , t < ts,
Lα, t > ts,

where ts is the saturation time which scales as ts ∼ Lz . Here, the exponent β is the growth exponent, α is the roughness
exponent and z is the dynamical exponent that characterizes the growth correlations given by z = α/β . For 1 dimension,
these exponents are β = 1/4, α = 1/2 and z = 2. Moreover, both growth models belong to the same universality class as
the Edward–Wilkinson (EW) equation,

∂h(x, t)
∂t

= ν∇2h(x, t)+ η(x, t),

where ν is the coefficient of surface tension and η(x) is a Gaussian noise with zero mean and covariance given by
{η(x, t)η(x′, t ′)} = 2Dδ(x− x′)δ(t − t ′).

Here, D is the diffusion coefficient and is taken as a constant. The fact that these models are represented by the same
phenomenological equation is due to the symmetry of those models on the underlying Euclidean substrate [14]. The
extension of the EW equation to any unweighted graph with N nodes is described by

∂hi(t)
∂t
= ν

N∑
j=1

Aij(hj(t)− hi(t))+ ηi(t), (2)

where i and j are nodes of the graph, {Aij} is the adjacency matrix (Aij = 1 if i and j are connected and zero otherwise), ν
represents the same as in Euclidean lattices and ηi(t) is a white Gaussian noise with zero mean and covariance given by

{ηi(t)ηj(t ′)} = 2D δijδ(t − t ′),
being D the same as in Euclidean lattices.
In Ref. [10] it was found that the saturation regime ofWs in SF networks scales with N as

Ws ∼
{
const. for λ ≥ 3,
lnN for 2 < λ < 3. (3)

It was also shown that the EW equation given by Eq. (2) predicts that in the thermodynamic limitWs ∼ 1/〈k〉 for any
random graph [6]. Then, the unweighted EW equation in random graphs cannot describe the SRMmodel. La Rocca et al. [15],
using a temporal continuous approach, derived the evolution equation that describes the SRM model. They found that the
logarithmic divergence for λ < 3 cannot be explained by the unweighted EW equation [see Eq. (2)] in graphs. The equation
derived in Ref. [15] contains non-linear terms andweights that appear as a consequence of the heterogeneous topology that
a SF has for λ < 3, even though the network is unweighted. The heterogeneity breaks the symmetry h→−h of Eq. (2). For
λ ≥ 3 the heterogeneity is not strong enough and the non-linear terms are negligible for the system sizes studied there,
and the behavior of the fluctuations becomes well described by a weighted EW equation. It is not unexpected that transport
processes in random heterogeneous graphs behave differently than in Euclidean lattices due to the fact that the nodes with
high degrees (hubs) play a major role in transport. For example, reaction-diffusion processes behave very differently in
homogeneous lattices than in SF networks with 2 < λ < 3 due to the presence of hubs which control the behavior for long
times [16,17]. The hubs are responsible of a superdiffusive regime because they diminish the distances.



C.E. La Rocca et al. / Physica A 388 (2009) 233–239 235

Fig. 1. W 2 as a function of t for the SRAM model: (a) λ = 3.5 for N = 64 (©), 128 (�), 256 (♦), 512 (M), 1024 (O), 1536 (?) and 2048 (X). (b) λ = 2.5 for
N = 1024 (©), 1280 (�), 1536 (♦), 1792 (M), and 2048 (O). In the inset figures we plotWs as a function of N in symbols. The inset figure of (b) is in log-linear
scale and the dashed line represents the logarithmic fitting ofWs with N .

2. Saturation results for the SRAMmodel

Weconstruct our networks using theMolloy-Reed (MR) algorithm [18], with kmin = 3 in order to ensure that the network
is fully connected. The initial conditions for the scalar field {h} were drawn from a random uniform distribution between
[0, 1]. In Fig. 1, we plotW 2 as a function of t for λ = 3.5 and 2.5 and different values of N . In the insets of Fig. 1 we plotWs as
a function of N . We can see that for λ = 3.5,Ws increases, but asymptotically goes to a constant and all the N dependence
is due to finite-size effects as in the SRM model [10]. However, for λ = 2.5 we find thatWs ∼ lnN , as in the SRM model.
This is shown in the inset of Fig. 1(b) in log-linear scale. Then,Ws for both models scales in the same way for SF networks,
with a logarithmic divergence for λ < 3 and as a constant for λ ≥ 3.

3. Analytical evolution equation

Next, we derive analytically the evolution equation for {h} of the SRAMmodel for any kind of random graphs.
The procedure chosen here is the same as the one used in Ref. [15] and is based on a coarse-grained (CG) version of

the discrete Langevin equations obtained from a Kramers–Moyal expansion of the master equation [19,13,20]. The discrete
Langevin equation for the evolution of the height in any growth model is given by [13,20]

∂hi
∂t
=
1
τ
Gi + ηi, (4)

where Gi represents the deterministic growth rules that cause the evolution of the node i, τ = Nδt is themean time to grow
a layer of the interface, and ηi is a Gaussian noise with zero mean and covariance given by [13,20]

{ηi(t)ηj(t ′)} =
1
τ
Giδijδ(t − t ′). (5)

If kγ represents the degree of node γ , we can write Gi more explicitly as

Gi = ωi +
N∑
j=1

Aij(ω1j + ω
2
j + · · · + ω

kj
j ), (6)

whereωi is the growth contribution by deposition on the node i andωmj is the growth contribution to the node i by relaxation
from its neighbor jwith probability 1/m, beingm the number of neighbors of the node jwith smaller heights than the node
j. Then,

ωi =
∏
j∈vi

[
1−Θ(hi − hj)

]
,

ω1j =
[
1−Θ(hi − hj)

] ∏
n∈vj,n6=i

[
1−Θ(hj − hn)

]
,

ω2j =
[
1−Θ(hi − hj)

] ∏
n∈vj,n6=i,m

[
1−Θ(hj − hn)

] 1
2

[
1−Θ(hm − hj)

]
,
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Fig. 2. Schematic plot of the growing rules for the SRAM model in one-dimensional Euclidean lattice. The solid arrows indicate the contributions to the
growth of site i due to deposition (1) and diffusion from the nearest neighbors (2) and (3). Notice that in the case (3) site i growths with probability 1/2.

ω3j =
[
1−Θ(hi − hj)

] ∏
n∈vj,n6=i,m,`

[
1−Θ(hj − hn)

] 1
3

[
1−Θ(hm − hj)

] [
1−Θ(h` − hj)

]
,

...

ω
kj
j =

[
1−Θ(hi − hj)

] ∏
n∈vj,n6=i

[
1−Θ(hn − hj)

] 1
kj
.

Here, Θ is the Heaviside function given by Θ(x) = 1 if x ≥ 0 and zero otherwise, with x = ht − hs ≡ 1h. Without loss of
generality, we take τ = 1 and assume that the initial configuration of {hi} is random. A schematic plot of the growing rules
are shown in Fig. 2 where the rule (1) represent ωi, (2) represent ω1j and (3) represent ω

2
j .

In the CG version x → 0; thus after expanding an analytical representation of Θ(x) in Taylor series around x = 0 to
second order in x, we obtain

Gi = aki +
N∑
j=1

Cij + c1aki−1
N∑
j=1

Aij(hj − hi)+
c1
a

N∑
j=1

Cij(hj − hi)+
c1
a

N∑
j=1

Tij
N∑

n=1,n6=i

Ajn(hn − hj)

−
c2
a

N∑
j=1

Cij(hj − hi)2 − aki−1
[
c2 +

c21
2a

] N∑
j=1

Aij(hj − hi)2 +
N∑
j=1

[
c21
2a2
Qij −

c2
a
Cij

][ N∑
n=1,n6=i

Ajn(hn − hj)2
]

+
aki−2c21
2

[
N∑
j=1

Aij(hj − hi)

]2
+
c21
a2

N∑
j=1

Tij(hj − hi)

[
N∑

n=1,n6=i

Ajn(hn − hj)

]

−
c21
2a2

N∑
j=1

Qij

[
N∑

n=1,n6=i

Ajn(hn − hj)

]2
, (7)

where a = (1− c0), c0, c1 and c2 are the first three coefficients of the expansion of theΘ(x) and

Cij = Aij

[
2kj − 1
kj

]
akj ,

Tij = Aij

[
2kj − kj − 1
kj(kj − 1)

]
akj ,

Qij = Aij

[
2(1− 2kj)+ k2j + kj
(kj − 2)(kj − 1)kj

]
akj ,

are different ‘‘weights’’ on the link ij introduced by the dynamics.
In our equation, the non-linear terms in the difference of heights arise as a consequence of the lack of a geometrical

direction and the heterogeneity of the underlying network. This result is very similar to the one found for the SRMmodel in
SF unweighted networks [15], where the non-linear terms appear due to the heterogeneity of the network.
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Fig. 3. W 2 as a function of t for the integration of the evolution equation using the linear terms and the first non-linear term in Eq. (7): (a) λ = 3.5 for
N = 64 (©), 128 (�), 256 (♦), 512 (M), 1024 (O) and 1536 (?). (b) λ = 2.5 for N = 192 (©), 256 (�), 384 (♦), 512 (M), and 768 (O). In the inset figure we
plotWs as a function of N in symbols. The inset figure of (b) is in log-linear scale and the dashed line represents the fitting withWs ∼ lnN .

For the noise correlation [see Eq. (5)], up to zero order in1h [13,20] we obtain {ηi(t)ηj(t ′)} = 2D(ki)δijδ(t − t ′)with

D(ki) =
1
2

[
aki +

N∑
j=1

Cij

]
. (8)

Notice that all the coefficients of the equation depend on the connectivity of node i, i.e., on the topology of the underlying
network. This dependence on the topology is expressed as weights on the links of the unweighted underlying network that
appears only due to the dynamics on the heterogeneous network.

4. Numerical results of the analytical evolution equation

We numerically integrate our evolution equation for SF networks taking into account the linear terms and the first non-
linear term of Eq. (7). This is because when non-linear terms are considered, the numerical integration algorithms we use
has numerical instabilities. This is still an open problem to be solved in the future. For all our integrations we used the Euler
method with the representation of the Heaviside function given by Θ(x) = {1 + tanh[U(x + z)]}/2, where U is the width
and z = 1/2 [20], and random initial conditions. With our choice of the representation of the Heaviside function, we obtain:
c0 = [1+ tanh(U/2)]/2, c1 = [1− tanh2(U/2)] U/2, and c2 = [− tanh(U/2)+ tanh3(U/2)] U2/2.
In Fig. 3, we plotW 2 as a function of t , obtained from the integration of Eq. (4) with Eq. (7) and D(ki) given by Eq. (8) for

λ = 3.5 and 2.5 and different values of N , with kmin = 3. For the time step integration we chose1t � 1/kmax according to
Ref. [21], where kmax ∼ N1/(λ−1) is the degree cutoff for the MR construction. In the inset figures we plotWs as a function
of N . We can see that for λ = 3.5,Ws increases, but asymptotically goes to a constant and all the N dependence is due to
finite-size effects. However, for λ = 2.5 we found a logarithmic divergence ofWs with N , as shown in the inset of Fig. 3(b)
in log-linear scale. The fit ofWs with a logarithmic function for λ = 2.5 shows the agreement between our results and those
obtained for the SRAMmodel in SF networks for λ < 3. Then, our equation reproduces correctly the behavior ofWs for the
model for any λ > 2. Note that for λ ≥ 3 and the system sizes studied here, the non-linear terms do not contribute and the
process can be described by a weighted EW equation.

5. Discussions

The behavior of the SRAMand SRMmodels in the steady state are the same andboth evolution equations are in agreement
with the fact that all the coefficients depend on the connectivity of a node, i.e., on the topology of the underlying network,
and the weights appear only due to the dynamics on the heterogeneous network. Another similarity between both models
is that for λ ≥ 3 the non-linear terms do not play any role for the systems size studied here, then both process are well
described by a weighted EW equation. However, the equations for both models are different [15] and the main difference
appears in the weights that produce different values ofWs among them. For the synchronization problem, the SRMmodel is
more efficient than the SRAMmodel, as can be understood from a lowerWs shown in Fig. 4 where we plotW 2 as a function
of t in log–log scale for the SRM and SRAM models for N = 1024 for (a) λ = 3.5 and (b) λ = 2.5. We can see that the SRM
model reaches the saturation regime faster than the SRAMmodel andWs for the first one ismuch lower thanWs of the latter.
This means that for the same system size, the process that will be better for synchronizing is the SRM, since it has fewer
fluctuations on its scalar fields. These observations can be explained as follow: in both models, the nodes with low degree
control the process all the time because they are more abundant and make a major contribution to the growth of the hubs.
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Fig. 4. W 2 as a function of t in log–log scale for the SRM (©) and SRAM (�) models for N = 1024 for: (a) λ = 3.5 and (b) λ = 2.5.

Then, we expect that the growing contribution of the hubs will be by relaxation from their neighbors with lower degree
because our networks are disassortative for λ < 3 (due to the MR construction) [22]. This is because in the SRM model at
the initial stages the hubs grow faster than in the SRAMmodel. As the hubs aremore important in the SRMmodel than in the
SRAM model, the height-height correlation length should growth faster allowing it to reach the saturation regime earlier.
Note that in the SRMmodel the nodes relax always to the minimum, while in the SRAMmodel the relaxation takes place at
any randomly chosen neighbor with smaller height (not necessarily the minimum) than the chosen node. Then, if we have
to chose one of these models as a synchronization process, it is more efficient to use the SRMmodel.

6. Conclusions

In summary, we studied the SRAM model in SF unweighted networks and found that for λ ≥ 3,Ws scales as a constant
and the N dependence is due to finite-size effects, while for λ < 3 there is a logarithmic divergence with N , the same as in
the SRM model. Then, the SRAM and SRM models still scale in the same way for SF networks. We derived analytically the
evolution equation for the SRAM model for any network and find that even when the underlying network is unweighted,
the dynamic introduces weights on the links that depend on the topology of the network. This equation contains non-linear
terms and considering the linear and only the first non-linear term in the integration of the evolution equation, we recover
the scaling ofWs with N for any λ > 2. And last, but not least, we found that even though the two models have the same
scaling, for synchronization problems the SRM model is more efficient because it reaches the steady state faster than the
SRAMmodel and its fluctuations are much lower.
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