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We study the stability of network communication after removal of a fraction q � 1� p of links under
the assumption that communication is effective only if the shortest path between nodes i and j after re-
moval is shorter than a‘ij�a � 1� where ‘ij is the shortest path before removal. For a large class of net-
works, we find analytically and numerically a new percolation transition at ~pc � ��0 � 1��1�a�=a, where
�0 � hk

2i=hki and k is the node degree. Above ~pc, order N nodes can communicate within the limited path
length a‘ij, while below ~pc, N� (� < 1) nodes can communicate. We expect our results to influence
network design, routing algorithms, and immunization strategies, where short paths are most relevant.
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The study of complex networks has emerged as an
important tool to better understand many social, techno-
logical, and biological real-world systems ranging from
communication networks like the Internet to cellular net-
works [1]. In many cases, networks are the medium
through which information is transported, i.e., in social
networks the propagation of epidemics, rumors, etc., and
in the Internet the propagation of data packets [2–6].

An important question regarding networks is their stabil-
ity, i.e., under what conditions the network breaks down
[7–10]. In communications, a network breakdown means
information cannot be transmitted to most nodes, and in
epidemiology, that an epidemic has stopped.

The main approach for studying network stability is
percolation theory [11]. In percolation, a fraction q � 1�
p of the N network nodes (or L links) is removed until a
critical value pc is reached [12]. For p < pc the network
collapses into small clusters, while for p > pc, a spanning
cluster of order N nodes appears [8,9,11,13,14]. However,
even though in the original network nodes are connected
through short paths, decreasing values of p imply increas-
ing values of the typical distance between nodes, even far
above pc. In the insets of Fig. 1, we present an illustration
of such an effect for Erdős-Rényi and the EpiSimS [15]
networks, where one can clearly observe that as p de-
creases, the length increases monotonically until reaching
its maximum at pc [16]. Such path length changes can have
devastating effects on a number of real-works networks,
where even a slight increase in path length leads to a loss of
network function. For example, in communication, long
paths are usually inefficient, and in epidemics, disease
spreading often decays in time due to effects such as
seasonality or pathogen mutation, so for long paths the
epidemic may die out before total network infection. In
these cases, the interesting question changes from ‘‘when
does the network break down?’’ as in usual percolation, to
‘‘when does the network become inefficient?’’

Therefore, to correctly consider network stability in the
face of functional limits on path length, we propose a new

percolation model which we call limited path percolation
(LPP). In this model, failures on the links are represented
by the removal of a fraction 1� p of the network links. For
any two nodes i and j to be considered connected after
removal, we require that the new shortest path between
them is shorter than a‘ij (a � 1), where ‘ij is the shortest
path before removal. We then ask, given our new limited
path constraint, what is the value p at which a spanning
communicating cluster appears? The communicating clus-
ter is defined by the number of nodes Sa a randomly chosen
node can communicate with given the limited length re-
striction [17], and it is considered spanning in LPP when it
scales as N. We find a new phase transition, dependent on
a, at ~pc � ~pc�a�, where pc < ~pc < 1. For pc < p < ~pc,
the LPP communicating cluster is only a zero fraction
(fractal) of the network, which scales as N� (� < 1). For
p > ~pc, LPP produces a spanning communicating cluster.
Figure 1 illustrates the effect of imposing length restric-
tions on the connectivity, where the location of the tran-
sition for Sa moves to increasing values of p as a
decreases.

For simplicity, we start our analysis with Erdős-Rényi
(ER) networks and argue that the theory is valid in general
for random networks. We begin with random removal and
later extend our considerations to targeted removal on
highly connected nodes and find that similar phenomena
appear. We support our theory with simulations.

An Erdős-Rényi network [13,14] ofN nodes is a random
network with pairs of nodes connected with probability �.
The degree distribution ��k� is Poisson with the form
��k� � hkike�hki=k!, where k, the degree, is the number
of links attached to a node, and hki �

P
1
k�1 k��k� is the

average degree of the network. The typical distance be-
tween nodes is logN= loghki.

To evaluate Sa, we note that after the removal of fraction
q of the links, the communicating cluster can be considered
treelike since, up to orderN, loops are negligible [8]. Thus,
Sa, for N � 1, can be approximated by
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 Sa � c�p�	phki

a�logN= loghki� � c�p�N� �ER�; (1)

where � � a�1� j logpj= loghki� � 1, phki is the average
degree after removal, c�p��co	phki�1
=	phki�1
 [18],
and a logN= loghki is the new tree depth imposed by the
limited path length restriction. The exponent � �
��a; p; hki� is an increasing function of a; i.e., for larger
a values longer paths are valid and therefore more nodes
are included in the communicating cluster, leading to
larger � values. The exponent � is bounded below by 0
and above by 1, since the number of nodes available cannot
exceed N. Setting � � 1 and solving for p in Eq. (1) we
obtain the transition threshold

 ~pc�a� � hki�1�a�=a �ER�: (2)

Figure 2 shows the LPP phase diagram. For pc � p �
~pc�a�, the communicating cluster is a fractal of size N�,
where � continuously increases with p. The threshold
~pc�a� decreases from 1 at a � 1 to pc at a! 1. Note
that for a! 1, when no path length restriction is imposed,
we recover the usual percolation threshold ~pc�a! 1� �
pc � 1=hki [13]. For p > ~pc�a�, a spanning communicat-
ing cluster exists with path lengths ‘0ij � a‘ij. Using the
function 1� ~pc�a� we are able to calculate, for a given
value of a, the percentage of links that can be removed
before nodes i and j cannot communicate through paths
shorter than a‘ij. Equations (1) and (2) are supported by
the simulations presented in Fig. 3(a) [17,19]. For a sum-
mary of the results, see Table I.

Our results for the different regimes of Sa can be sum-
marized by the scaling relation for p > pc

 Sa � c�p�N�f
�
P1N

c�p�N�

�
�ER�; (3)

where P1 is the probability of an arbitrary node to belong
to the usual percolation spanning cluster [11]. The function
f�x� scales as x when x 1 and approaches a constant as
x� 1. In Fig. 4(a), we present simulation results for

several a and p values for ER networks, supporting the
scaling form of Eq. (3).

The theory for LPP can be extended to all random net-
works with typical distance between nodes of order logN
by substituting hki with the generalized form ��0 � 1�,
known as the branching factor, defined by �0 � 1 � hk2i

hki �

1 [8]. Replacing hki with ��0 � 1� in Eq. (1) we obtain the
general equation for the communicating cluster size
 

Sa � c�p���� 1�a	logN= log��0�1�
 � c�p�N�;

� � a
log��� 1�

log��0 � 1�
;

(4)

where �0 � 1 is the branching factor of the original net-
work and �� 1 the branching factor after removal, which
depends on p. When a random fraction of the network is
removed, �� 1 � p��0 � 1� [8]. Specifically for ER net-
works, �� 1 � phki and �0 � 1 � hki, reducing Eq. (4)
to Eq. (1). In the general case of random networks, the LPP
transition is found by imposing � � 1, which yields

 ~pc�a� � ��0 � 1��1�a�=a: (5)

The scaling of Sa is the same as Eq. (3) with � from Eq. (4).
Our general theory for LPP can be illustrated on scale-

free (SF) networks. Scale-free networks have generated
much interest due to their relation to many real-world
networks, such as the Internet, WWW, social networks,
cellular networks, and world-airline network [1,22–25].
Scale-free networks are characterized by a power-law de-
gree distribution ��k� � k�� (m � k � K), where K �
mN1=���1� [8]. The power-law distribution allows a net-
work to have a few nodes with a large number of links
(‘‘hubs’’) which usually play a critical role in network
function. Calculating �0 for SF networks one obtains �0 �

�2��3���
K3���m3��

K2���m2�� [8]. For � > 3, Eq. (4) is valid and thus LPP

FIG. 2. (a) Phase diagram for Erdős-Rényi networks of LPP
with respect to a and p, demonstrating the linear and power-law
(fractal) phases for Sa � N�. (b) Similar phase diagram for
scale-free networks with � > 3. The two transition lines repre-
sent networks with the same �. Note the slow decrease of the
transition line for targeted removal compared to the transition
line for random removal. The region between the two lines has a
power-law (fractal) phase for targeted removal and a linear phase
for random removal. In both (a), (b) the regular percolation
threshold is given by the limit a! 1, i.e., pc � hki�1 for ER
and pc � ��0 � 1��1 for SF with � > 3.
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FIG. 1 (color online). The size of the communicating cluster
Sa as a function of p when the length restriction for connectivity
is imposed, with a � 1:2, 1.5, 2, 1. As a decreases, the value of
p for which Sa begins to grow substantially increases. The insets
correspond to h‘i vs p, where h‘i is the average distance between
network nodes. h‘i reaches a maximum at the usual percolation
threshold pc, and we limit the considerations in this Letter to the
range p � pc. (a) Corresponds to Erdős-Rényi networks and
(b) to the EpiSimS network [15].
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is similar to ER networks, except that it depends on �0 � 1
instead of hki. The phase diagram of SF networks is shown
in Fig. 2(b). The results of the simulations supporting the
theoretical value of �, Eq. (4), are shown in Fig. 3(b), and
for the scaling form of Sa are presented in Fig. 4(b).

For 2< �< 3, the typical distance scales as ‘ �
2 loglogN=j log��� 2�j [26,27]. For this regime, our scal-
ing approach to calculate Sa is no longer valid since the
tree approximation breaks down. However, the LPP tran-
sition still exists when a‘ij � ‘0ij, where ‘0ij is the distance
after removal, with typical value ‘0 � 2 loglogP1N=
j log��� 2�j [28]. Solving a‘ij � ‘0ij for N ! 1 yields

 a�
‘0ij
‘ij
�

loglogP1N
loglogN

! 1; 	SF�r�; 2<�< 3
: (6)

This implies that ~pc ! 0 and thus, for any finite p, Sa is
always of order N. The results of the simulations presented
in Fig. 3(c) support our prediction.

Up to this point, we have only considered random re-
moval of links. Another kind of removal is targeted re-
moval where the nodes with the largest degree are removed
first [8]. This kind of removal is common in many real-
world scenarios such as denial of service attacks on WWW
and delays in airline hubs.

In scale-free networks, targeted removal of a fraction q
of the nodes with largest degree can be treated as random
removal of q0 � q�2���=�1��� of the network links [8]. After
removal, the maximum degree is K0 � mq1=�1���. For � >
3, making the substitutions q! q0 and K ! K0 in Eq. (4)
we obtain the equation for ~pc [21] and the scaling form for
Sa (see Table I). The change to q0 and K0 reflects the fast
collapse of the network and the rapid change in the typical
network length. The transition line ~pc�a� in targeted re-
moval decreases significantly more slowly compared to
random removal as seen in Fig. 2(b).

In targeted removal for 2< �< 3, removing even a
small fraction of the hubs produces a change in the distance
from 2 loglogN=j log��� 2�j to logP1N= log��� 1�

[26,27]. After removal, Sa can be calculated using the
tree approximation yielding
 

Sa � ��� 1�2a	loglogN=j log���2�j


� �logN�2a	log���1�=j log���2�j
 	SF�t�; 2< �< 3
: (7)

In this case, the phase transition to a spanning communi-
cating cluster cannot be achieved for any finite value of a
and p < 1, as seen from Eq. (7). Simulation results sup-
porting Eq. (7) are shown in Fig. 4(d). Comparing random
to targeted removal for 2< �< 3 for LPP yield entirely
opposite results. In random removal, orderN nodes are still
connected through the original paths. On the other hand, in
targeted removal for any finite a, the network collapses
into logarithmically small clusters.

In summary, our results suggest that usual percolation
theory cannot correctly describe connectivity when only a
limited set of path lengths are useful. In usual percolation,
order N network nodes are connected when p > pc.
However, in LPP, when pc < p < ~pc, the size of Sa cor-
responds to a zero fraction of the original network.
Therefore, a much smaller failure of the network can
lead to an effective network breakdown. As an illustration,
consider an ER network with hki � 3 and limit the distance
between nodes to a � 1:5 times the original length. Then,
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FIG. 3. Simulation results (symbols) for Sa vs N for various network types under random or targeted removal and various a and p
values (indicated in plot legends), compared to the theoretically predicted power laws (solid lines), with � calculated from Table I.
Network sizes are typically between 1600 and 204 800. In all plots the simulation results agree with theoretical predictions. (a) ER
networks (random) with hki � 3 for fixed p � 0:7 and different a values. Inset shows the same networks with fixed a � 1:1 and
p � 0:5 (�), 0.6 (�), and 0.7 (�). (b) SF networks (random) with � � 3:5, m � 2, p � 0:7, and different a values. Inset shows the
same networks with fixed a � 1:1 and p � 0:5 (�), 0.6 (�), 0. 7 (�), and 0.8 (4). (c) SF networks (random), � � 2:2, 2.3, and 2.4,
m � 3, p � 0:4, and a � 1. (d) SF networks (targeted) with � � 3:5, m � 3, fixed p � 0:92, and different a values. Inset shows the
same networks with fixed a � 1:2 and p � 0:92 (�) and 0.94 (�).

TABLE I. The functions ~pc, Sa, and � for several kinds of
network structures under random (r) and targeted (t) removal.
The scaling of Sa is given for p < ~pc except for scale-free
networks with 2< �< 3 under random removal where ~pc � 0.

Structure ~pc Sa �

ER hki�1�a�=a N� a� aj logpj
loghki

SF (r)
2< �< 3 0 N� 1 (p > ~pc)

� > 3 ��0 � 1��1�a�=a N� a� aj logpj
log��0�1�

SF (t)
2< �< 3 1 �logN�� 2a log���1�

j log���2�j

� > 3 ~pc�a; �; �0� [21] N� a log���1�
log��0�1�
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LPP predicts that the removal of q � 0:31 of the network
links is enough to break down the network, compared to
q � 0:67 in regular percolation. In the context of infectious
diseases, if a virus typically survives up to 1:5 logN steps,
LPP predicts that the immunization threshold is signifi-
cantly smaller, 0.31 compared to 0.67. The above consid-
erations indicate that our results are important for network
design, routing protocols, and immunization strategies.
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[13], is regarded here as p � 1.
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