
May 2018

EPL, 122 (2018) 36003 www.epljournal.org
doi: 10.1209/0295-5075/122/36003

Design of survivable networks in the presence of aging
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Abstract – Networks are designed to satisfy given objectives under specific requirements. While
the static connectivity of networks is normally analyzed and corresponding design principles for
static robustness are proposed, the challenge still remains of how to design survivable networks that
maintain the required level of connectivity during their whole lifespan, against component aging.
We introduce network survivability as a new concept to evaluate the networks overall performance
during their whole lifespan, considering both network connectivity and network duration. We
develop a framework for designing a survivable network by allocating the expected lifetimes of its
components, given a limited budget. Based on percolation theory and simulation, we find that
the maximal network survivability can be achieved with a quantitative balance between network
duration and connectivity. For different survivability requirements, we find that the optimal design
can be separated into two categories: strong dependence of lifetime on node’s degree leads to larger
network lifetime, while weak dependence generates stronger network connectivity. Our findings
could help network design, by providing a quantitative prediction of network survivability based
on network topology.

Copyright c⃝ EPLA, 2018

Introduction. – Robustness [1–8] is a prerequisite con-
dition for system functionality in various types of net-
work system designs, including critical infrastructures
(e.g., power grids [9,10], communication networks [11]
and transportation networks [12,13]) and natural systems
(e.g., biological systems [14,15], ecological systems [16,17]
and social networks [18,19]). Robustness enables a system
to perform fully or at least at an acceptable minimum
function after a failure of a portion of its components,
e.g., due to internal faults and/or external hazards. On
the other hand, the structure of a system evolves during
its life and its components fail due to aging, an effect that
has been rarely considered. Indeed, aging processes occur
in engineering systems [20,21], biological systems [22,23],
and even online social systems [24,25], where users may
finally quit an online community after an active period.

(a)These authors contributed equally to this work.
(b)E-mail: daqingl@buaa.edu.cn (corresponding author)

Static robustness of a network can be defined as its abil-
ity to withstand losses of nodes or links under random
failures or targeted attacks [5–7,26]. Based on percolation
theory, network static robustness can be characterized by a
percolation critical threshold, which is the critical fraction
of failed network elements at which the system collapses.
It has been shown [5–7] that scale-free networks are usu-
ally more robust than Erdős-Rényi (ER) networks with
respect to random failures, but they are more fragile to
targeted attacks. Efforts [27–29] have been made to find
optimal designs of network structures that are robust to
both random failures and targeted attacks. However, the
optimization of robustness by connectivity design is not
sufficient because the connectivity of real networks is not
static and robustness changes also due to the aging process
of the components [30–34]. For example, cellular networks
decline and may collapse due to the aging of several cells
every minute and online social networks suffer from the
daily loss of users.
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Whereas previous studies mostly focus on static net-
work robustness at a given snapshot of its life [5–7,26,34],
the effect of network evolution due to the aging of the
components has rarely been addressed. In this paper, net-
work survivability is proposed as a concept to evaluate the
networks overall performance during their whole lifespan,
thus considering both network connectivity and network
lifetime. Then, the following question becomes fundamen-
tal: given a constrained budget, how can we optimally al-
locate resources of components’ lifetimes in order to design
a survivable network for its whole lifespan?

Network performance in the whole lifespan depends on
the health of the system components, and also the con-
nection between these healthy components. We develop
an objective function W (eq. (1) below) for the optimiza-
tion of network survivability during its whole lifespan. In
our case, we assume to have only the information on the
degrees of the network components in the design stage.
For example, for a Peer-to-Peer (P2P) file sharing net-
work, it is hard to know the whole topology [35], but it
would be easier for a peer to have the information about
its neighbors based on the communication mechanisms.
Reference [36] finds that the nodes residual lifetime cor-
relates with the number of nodes neighbors in a P2P sys-
tems. Thus, in our model, each node in the network
is allocated with a lifetime expectancy, depending on its
number of connected direct links. We, then, show how to
design a survivable network, using both theoretical analy-
sis, and simulations performed on Erdős-Rényi (ER) net-
works with Poisson degree distribution P (k) = e−λλk/k!,
where λ is the expectation of the node’s degree, and on
scale-free (SF) networks which is characterized by a power-
law degree distribution P (k) ∼ k−γ . For this, we consider
two exponents: α, which characterizes the power-law re-
lation between the node expected lifetime and degree,
and β, which measures the users requirement for network
survivability.

Model. – In practice, the lifetimes of the components,
e.g., electronic components [37,38] are not accurately de-
termined and in reliability analysis it is common to assume
a lifetime exponential distribution with mean value τ [39].
Another realistic lifetime distribution is the Weibull dis-
tribution, which is realistic for many mechanical compo-
nents [40]. In our model, as mentioned earlier, we assume
that the mean value of the node lifetime depends only
on its degree, according to a power-law relation τ = kα,
where α is the exponent to be optimized for network
survivability.

As demonstrated in fig. 1(a), for a given node i with de-
gree ki, we allocate a characteristic lifetime, according to
the relation τi = kα

i . In fig. 1(b) and fig. 1(c), we demon-
strate the aging process showing the evolving snapshots
of the network presented by the fraction of nodes in the
giant component of the network denoted by G, at succes-
sive times. In fig. 1(b), the network has in the beginning a
large connected network component but a short lifetime,

Fig. 1: (Colour online) Evolution of a network (giant compo-
nent, G) with aging time t. (a) Nodes characteristic lifetime
(mean value) is assumed to depend on their degree as τi = kα

i .
(b) Time evolution of a network with large G but short lifetime:
the figure demonstrates the case of α = 0.5. In the figure, the
size of a node (green circle) is proportional to its remaining
lifetime. The shown scale-free (SF) network contains 30 nodes,
and has a power-law exponent γ = 2.5 and average degree 4.
(c) The same SF network but with α = 2.5; in this case, ini-
tially the network has a small G but relatively longer lifetime
compared to (b).

while in fig. 1(c) the network is comparatively smaller than
that in fig. 1(b) but has a longer lifespan.

Determining the optimal α will tell us how to distribute
lifetimes between the nodes of different degrees. Depend-
ing on the application, the objective of network surviv-
ability is to have a large G as long as possible. However,
the large size of G and its long lifetime are in competition
due to the limited total cost. To describe these competing
processes, we define the survivability function W ,

W =
∫

G (t)β dt, (1)

which evaluates the network capacity of maintaining the
connectivity function through the whole lifespan. The
value of W integrates the overall performance of the net-
work in terms of survivability. The exponent β controls
the importance of the size based on the design requirement
for network survivability. For example, β = 0 corresponds
to the case where a maximal duration of the network is
required, regardless of the connectivity performance dur-
ing this lifespan (i.e., having a giant component). When
β = 1, the size of the giant component during the net-
work lifespan is also taken into account. As β increases,
more weight is given to the network giant component size
as design requirement, compared to the network lifetime.
When β approaches large values (β ≫ 1), the design re-
quirement for network survivability is focused on the size
of the giant component. Our aim is then to find the opti-
mal α (for a given β) that maximizes W .
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Survivability of random networks. –
Theory. Theoretical analysis for network survivabil-

ity is obtained by using the generating functions method.
We define f(t|k) to be the conditional density probability
of a node to have a lifetime t, given its degree is k. The
expected lifetime of a node of degree k, that is also the
expectation of f(t|k), is τ(k), which assumed to be pro-
portional to kα. We also assume that the total budget of
lifetime of all components is equal to the network size N .
Thus, τ(k) = Nkα/

∑∞
k=0 kαp(k)N = kα/

∑∞
k=0 kαp(k).

We define q(k, t) as the probability that a randomly cho-
sen node that has a degree k survives at time t. We can
calculate it as follows (take the exponential distribution
for example):

q(k, t) = p(k)
∫ ∞

t
f(t′|k)dt′ = p(k)

∫ ∞

t

1
τ(k)

e−t′/τ(k)dt′.

(2)
Next, we add a time parameter, t, to the percolation

generating functions [41], and the generating function of
a node that survives at time t is

F0(x, t) =
∞∑

k=0

q(k, t)xk. (3)

The probability that a randomly chosen edge leads to a
node which survives at time t, is (k + 1)q(k + 1, t)/⟨k⟩,
where ⟨k⟩ is the network mean degree. And the corre-
sponding generating function is

F1 (x, t) =
∞∑

k=0

kq(k, t)
⟨k⟩ xk−1 . (4)

Hence, the generating functions for the component size
that all its nodes survive at time t are

H1 (x, t) = 1 − F1 (1, t) + xF1 [H1 (x, t) , t] ,
H0(x, t) = 1 − F0(1, t) + xF0 [H1 (x, t) , t] .

(5)

The size of the giant component at time t is G(t) =
1 − H0(1, t), since H0(1, t) contains only finite-size compo-
nents that survive in time t. Thus, using eqs. (5) and (3)
we get

G(t) = F0(1, t) − F0 [H1 (1, t) , t] =
∞∑

k=0

q(k, t)
(
1 − u(t)k

)
,

(6)
where u(t) ≡ H1 (1, t). From eqs. (6) and (5) we calculate
the survivability W (eq. (1)), by solving numerically the
following equations:

W =
∫ ∞

t=0

[ ∞∑

k=0

q(k, t)
(
1 − u(t)k

)
]β

dt,

u(t) = 1 −
∞∑

k=0

kq(k, t)
⟨k⟩

[
1 − u(t)k−1

]
.

(7)

Fig. 2: (Colour online) The dependence of survivability W on
α for different networks and component lifetime distributions
(β = 1). (a), (b): the case of exponential lifetime distribution
for component lifetime. (a) Results for W of ER networks with
different average degree k. Open symbols represent the simu-
lation results in networks with N = 104 nodes and averaged
over 500 realizations, while solid lines are obtained from the
theoretical predictions, eqs. (7). Both simulations and theoret-
ical solutions were implemented by a summation of the giant
component size over time in time steps of 0.01 units (the in-
tegral in eqs. (7) was replaced by a summation). Inset: the
relationship between αc and k is shown. The error bars are
the standard deviations for αc, calculated from 10 single real-
izations. (b) Results for SF networks with different power-law
exponents but same average degree (k = 4 or k = 8). The
network contains N = 104 nodes. Inset: the relationship be-
tween αc and γ for scale-free networks. Changing the value
of ⟨k⟩ was implemented by controlling the maximum connec-
tivity and the probability of the minimum connectivity in the
network. (c), (d): Weibull lifetime distribution case with shape
parameter, ks = 0.5, for ER and SF networks, which generates
a broader distribution compared to the exponential distribu-
tion. (e), (f): Weibull lifetime distribution case with shape
parameter ks = 2.0 for ER and SF networks: the lifetime is
narrower than for exponential distribution. The reason for
αc > 1 for small k (in (a), (c) and (e)) is due to the fact
that some isolated clusters exist, where some long-lifetime al-
location investment is wasted. Since high-degree nodes are less
probable to be in small clusters, the network functionality will
gain more when allocating longer lifetimes to them.

Results. All the followings simulations results, were
received by implementing stochastic simulations in a net-
work of N = 104 nodes averaged over 500 realizations.
We begin by analyzing the case where the lifetime of com-
ponents follows an exponential distribution. We consider
firstly the case of β = 1, and study how the exponent α
affects the performance of network survivability W . In
fig. 2(a), we show the survivability W for the ER network
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as a function of α, where (in this figure as well as in the
rest of the figures in this paper), symbols represent the
numerical results and solid lines represent the theoretical
results. W has been calculated by a summation of the
giant component size over time in time steps of 0.01 units
(the integral in eq. (7) was replaced by a summation).
We can see that for an ER network with a given average
degree, W increases gradually as α increases and reaches
the maximum at α = αc. For example, for an ER net-
work with k = 4, αc

∼= 1. After the maximum, investing
more resources on nodes with large degree will lead to the
early failure of nodes with small degree, which will de-
crease the network survivability. Furthermore, fig. 2(a)
shows that ER networks with larger average degrees have
larger giant components, leading to larger network sur-
vivability. Interestingly, as seen in the inset of fig. 2(a),
for β = 1, the optimal α saturates at a constant value
around 1, for average degree above 4. This stable design
configuration is reached due to the competition between
high-degree nodes and low-degree nodes in the network de-
sign. On the one hand, high-degree nodes are more crit-
ical than low-degree nodes for the network integration;
on the other hand, low-degree nodes may play a role of
weak ties connecting different components to form a giant
component [42].

A SF network has a more heterogeneous structure than
an ER network: some nodes could have very large de-
gree (hubs), but most have only a few connected neigh-
bors. To optimize SF network survivability, the balance
between hubs and lower-degree nodes becomes more sensi-
tive. As shown in fig. 2(b), SF networks display a sharper
maximum for W , compared to ER networks. We find
that for SF networks with small power-law exponent γ,
the optimal α is smaller than 1.0 found in ER networks
(see inset of fig. 2(b)). This is because for similar α val-
ues, hubs in SF networks are usually much larger and will
receive much longer lifetime than in ER networks, while
low-degree nodes with shorter lifetime will fail in the early
stages of network evolution. Moreover, αc increases within
a narrow range between 0.5 and 1.0 in SF networks with
increasing power-law exponent γ, and finally approaches 1
(as for ER networks) when γ is close to 4.0. We also find
that αc increases with decreasing average degree.

For Weibull lifetime distributions, at time t the survival
probability for a component follows e−(t/λ)ks , where λ is
the scale parameter, ks is the shape parameter, and the
lifetime expectancy is λΓ(1 + 1/ks) (in our case it is pro-
portional to kα), where Γ is the Γ function. The broad-
ness of the Weibull distribution is controlled by the shape
parameter ks. From fig. 2(c), for ks = 0.5, where the
lifetime distribution is relatively broad, we find that for
β = 1, ER networks achieve optimal survivability for α
larger than 1.0. For SF networks, in fig. 2(d), we also
see that their survivability is also optimized at larger val-
ues of αc. In these cases, in order to achieve the optimal
resources allocation for network survivability, nodes with
high degrees deserve more allocated resources. In fig. 2(d),

Fig. 3: (Colour online) The dependence of αc on β. For the case
of exponential lifetime distribution. (a) Simulation (symbols)
and theoretical (lines) results for ER networks with different
values of average degree k and the network size is 104; inset: for
β = 2, the relationship between αc and k is shown. (b) Sim-
ulation (symbols) and theoretical (lines) results for different
SF networks. The SF network contains 104 nodes; inset: for
β = 2, the relationship between αc and k for SF networks with
γ = 2.5 is shown. We compare the effects of different compo-
nent lifetime distributions on the values of αc: (c) ER network,
k = 4, and (d) SF network, γ = 2.2, k = 8.

we also find that the peak of network survivability for SF
networks is sharper than for ER networks (fig. 2(c)).

For ks = 2, where the lifetime distribution is narrower,
we find that the optimal survivability for ER and SF net-
works is obtained at smaller values of αc, as shown in
fig. 2(e) and fig. 2(f), suggesting that networks resources
should be shared more equally to optimize survivability.

Next, we study how the users’ requirements, represented
by β, influence the optimal design αc. In fig. 3 we plot
graphs of αc vs. β. We find in fig. 3(a) and fig. 3(b)
that the optimal αc decreases with increasing β for both
ER and SF networks. When we put more weight on the
network connectivity by increasing β, resources should be
more uniformly invested among nodes of different degrees,
which is represented by lower αc. Indeed, when we are in-
terested in only the network connectivity at large values of
β, we obtain very small values for αc (see fig. 3), approach-
ing the design result for a static network, neglecting the
effect of aging. Meanwhile, when the network lifetime is
also considered important with decreasing β, large-degree
nodes need to function in order to bridge different com-
ponents in the giant component. Therefore, αc increases
continuously with decreasing β. Interestingly, we find that
in both ER and SF networks the optimal αc is close to 1
for β close to 1.0 for different combinations of network
parameters.

Moreover, we find that different lifetime distributions
of components have significant effects on the value of αc

for the same network (fig. 3(c) and fig. 3(d)): when β is
small, narrow lifetime distribution (e.g., ks = 2.0) leads
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Fig. 4: (Colour online) Survivability of real-world systems
with components lifetime following an exponential distribution.
Open symbols show simulation results and solid lines represent
theoretical results: (a) Cellular Network (Salmonella typhi)
with γ = 2.25 and k = 4.94; (b) Internet (AS-733, January 02,
2000) Network with γ = 2.13 and k = 3.88. (c), (d): simula-
tions (symbols) and theoretical (lines) results for the fraction
of nodes within the giant cluster as a function of time t in
the Cellular Network and Internet Network, respectively; in-
set: simulation results for temporal survivability of real-world
systems, W , as a function of time t: W (t) =

P
Gβ∆t, integral

values of Gβ∆t up to t as a function of t. Here we show results
for β = 1.

to a larger value of αc compared with broad lifetime dis-
tribution (e.g., ks = 0.5). However, when β increases to a
certain value, the situation is reversed, the value of αc be-
comes smaller for narrow lifetime distribution but higher
for broad lifetime distribution.

Survivability of real complex systems. – To test
the significance of our framework for real-world systems,
we analyze the survivability of several real complex sys-
tems, when subject to allocation of resources according to
the degrees of nodes. We calculate their survivability W
as a function of α and compare them with our correspond-
ing theoretical results. As shown in fig. 4(a) and fig. 4(b),
we illustrate the simulation and theoretical results for the
survivability of Cellular Network-TY [43] and Internet AS-
733 [44,45], where the connectivity follows a power-law
distribution. We find that their survivability for different
β can be well predicted (in particular the values of αc) by
theoretical results, which indicate that survivable systems
can be designed without details of network topology, but
just by knowing the degrees of network components and
determining their lifetime distribution. Figure 4(c) and
fig. 4(d) show how the above two real systems collapse
as time evolves, both in the theoretical and simulation
analysis. Note that there are slight differences between
theoretical and simulation results for real-systems surviv-
ability because nodes in real complex systems have prop-
erties such as clustering and degree-degree correlations,
but our theory assumes that the network is completely

Fig. 5: (Colour online) The dependence of survivability W on
β for different networks and component lifetime distributions.
We calculate survivability for two network models (ER network
and SF network), and two real networks (Internet AS-733 and
Cellular Network (Salmonella typhi)). In (a) and (c) (α = 0.5
and α = 1.0, respectively), the lifetime of network components
follows the exponential distribution. In (b) and (d) (α = 0.5
and α = 1.0, respectively), the lifetime of network components
follows the Weibull distribution (ks = 0.5).

random without correlations. As the average degree and
degree heterogeneity in real systems are usually very large,
for the exponential lifetime distribution case and β = 1 we
find that the values of αc for some real systems are even
close to 0.5, which is similar to SF networks with small
power-law exponent and large average degree.

In fig. 5, we also present how network survivability
changes with users’ requirements, both for network models
and real networks. We find that when β increases, the net-
work survivability decreases. Moreover, fig. 5 shows that
a network with broader heterogeneous degree distribution
(for example, Internet AS-733 and SF network), will have
larger network survivability when users are more inter-
ested in the network lifetime. But when network connec-
tivity is preferred, the network with homogeneous degree
distribution (e.g., ER network) will gain higher network
survivability.

Discussion. – In this work we proposed a new realistic
concept for the robustness of a random network, by con-
sidering the functionality of the network during its whole
lifespan, instead of the traditional approaches valid only
for networks at a given snapshot. Here the robustness is
calculated in the presence of components aging by a sur-
vivability function W , eq. (1), which considers the way
lifetime is distributed to different components (parame-
ter α) and the functionality (parameter β) of the network
during its lifetime. Our main finding is that for large β
(high connectivity) αc —the α value that maximizes W—
tends to 0 and a uniform lifetime division between the
nodes is required. As β decreases (which requires large
survival time) αc increases, i.e., there is a preference of
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lifetime allocation to high degree nodes. These findings
could be useful for recognizing the actual users’ require-
ments and correspondingly improving the network surviv-
ability in the design stage.
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