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Strengthening or destroying a network is a very important issue in designing resilient networks or in planning
attacks against networks, including planning strategies to immunize a network against diseases, viruses, etc. Here
we develop a method for strengthening or destroying a random network with a minimum cost. We assume a
correlation between the cost required to strengthen or destroy a node and the degree of the node. Accordingly,
we define a cost function c(k), which is the cost of strengthening or destroying a node with degree k. Using
the degrees k in a network and the cost function c(k), we develop a method for defining a list of priorities of
degrees and for choosing the right group of degrees to be strengthened or destroyed that minimizes the total price
of strengthening or destroying the entire network. We find that the list of priorities of degrees is universal and
independent of the network’s degree distribution, for all kinds of random networks. The list of priorities is the
same for both strengthening a network and for destroying a network with minimum cost. However, in spite of
this similarity, there is a difference between their pc, the critical fraction of nodes that has to be functional to
guarantee the existence of a giant component in the network.
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I. INTRODUCTION

Random networks are obtained by randomly linking a set
of nodes by edges. There are many types of random networks,
each of them is generated by a specific method and has a
typical topology. One of the most important characteristics of
networks is the probability distribution of the number of edges
that emanate from a randomly chosen node, called the degree
of the node, and denoted by p(k).

Two kinds of random networks are widely studied: the
Erdős-Rényi network (ER) and scale-free network (SF). In
an ER network, the first model of random networks [1,2], as
the total number of nodes N tends to infinity, the degrees of
the nodes k are distributed according to a Poisson distribution
p(k) = e−λ λk

k! , where λ is the expectation of the node’s degree.
In a SF network, as N tends to infinity, the degrees of the
nodes are distributed according to power-law distribution
p(k) = Ck−γ , where C is a normalization factor. In a SF
network, although most of the degrees are relatively small,
there is a significant probability for the existence of nodes
with high degree, called hubs, as opposed to ER networks.

There are two typical states in random networks. The first
state is when the network is fragmented into many small
components, each of them containing a relatively small number
of nodes. The second state is when a giant component exists
in the network, which is a component that contains a finite
fraction of the entire network’s nodes, i.e., scales as O(N ). The
transition between the two states when the giant component
appears in the network is called percolation transition of the
network.

It was shown [3] that in a random network, generated by
the configuration model, a percolation transition occurs [4,5]
at

κ = 〈k2〉
〈k〉 = 2, (1)

where 〈k〉 and 〈k2〉 are the expectations of the degree and the
square of the degree of a node in the network, respectively. For
κ > 2 the network is in the supercritical region where a giant
component exists, and otherwise if κ < 2 the network is in the
subcritical region and a giant component does not exist.

An important case, that is treated in this paper, is when a
network in the supercritical state is under attack, where nodes
(or edges) are destroyed. As long as the giant component still
exists, the network is considered to be functional. However,
when a critical fraction of nodes (or edges) are destroyed, a
phase transition occurs, the giant component collapses into
many small components, and the network is considered to
be nonfunctional. If we define p to be the probability that a
randomly chosen node in the network is not attacked, then the
fraction of nodes that are not attacked at the threshold between
the supercritical and the subcritical states is called the critical
threshold pc—the probability that a randomly chosen node in
the critical state is functional.

Research has been focused on three types of attacks against
networks: random attack, targeted attack, and localized attack.
In a random attack, the attacker has no information about
the network, its topology, or its characteristics. A fraction of
nodes are chosen randomly to be destroyed [6–8]. On the other
hand, in a targeted attack the attacker has some information
about the topology and the nodes of the network, and by this
determines which nodes to attack and in which order. In a
localized attack, just a certain region in the network is affected.
The attack begins against one node, and then it spreads over
its neighbors and its neighbors of the neighbors, etc., until
a certain fraction, 1 − p, of the network is removed [9].
Using Eq. (1) an expression for pc for random attack was
derived [7]

pc = 1

κ0 − 1
, (2)
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where κ0 is the value of κ before the attack begun. From this
follows that for an ER network under random attack pc = 1/λ.

Furthermore, by this criterion it was shown that for SF
random networks under random attack, for γ > 3, pc equals
a finite nonzero value, but for γ � 3, pc approaches zero as
N approaches infinity [7]. This means that although almost all
the nodes in the network are randomly removed, the network
still possesses a giant component and is regarded as functional.

Under a targeted attack, it was shown that ER networks
behave similarly to their behavior under random attack. That
is because most of the degrees in the network are close to λ.
Thus choosing nodes randomly or targeting nodes with high
degree are not significantly different. In contrast, it was shown
that pc in a SF network under targeted attack can be high [8,10].
This means that removing a small fraction of nodes causes the
network to collapse and the giant component to disappear. This
is explained by the existence of a small fraction of hubs in SF
networks that are critical for the connectivity of the network.
When the hubs are destroyed, the network breaks into small
components.

Although there exists extensive study about attacks against
random networks, most of the studies are based on some ideal
assumptions. First, it is usually assumed that there are no
constraints to be considered by the attacker, like limited budget
to the execution of the attack, limited time to the execution of
the attack, etc. Furthermore, it is assumed that the attack is
implemented ideally, such that in a targeted attack the attacker
has some information about the network, and in a random
attack the attacker knows nothing about the network. Indeed,
there are few studies that consider variations on the ideal
models of attacks against networks [11–14].

Recently, Morone and Makse [15] developed a method for
optimal percolation in random networks. Their method identi-
fies the minimal set of nodes that would break the network into
disconnected small components without a giant component.
Also in Ref. [16] the problem of network dismantling was
studied, where the case of random sparse graphs was mapped to
the network decycling problem, and an efficient algorithm was
presented for finding the minimal set of nodes to be removed
and dismantle the network. But again, these studies do not
take into considerations constraints on which the attacker is
subjected.

In this paper, we present an optimized approach for
strengthening or attacking a network, where we consider
the constraint of minimizing of the cost of strengthening or
destroying (which is equal to immunizing) the network. We
develop an analytical strategy for choosing the right set of
degrees that would strengthen or immunize the network with
minimum cost. Surprisingly, as long as the network is random,
the method and the set of degrees are general and do not depend
on the degree distribution.

II. EFFICIENT DESTRUCTION OF A NETWORK

A. Theory

We begin with a functional network in the supercritical
region. We assume a realistic feature of dependency between
the cost of destroying or immunizing a node and its degree.
Accordingly, we define a cost function c(k) that represents the

cost of destroying or immunizing one node with degree k. Our
goal is to find for every group of nodes with degree k, the
fraction of nodes to be destroyed (or immunized), that will be
denoted by r(k), such that the total cost to destroy (immunize)
the network is minimal.

We define a function P , that is the total cost to fragment
the network, as follows:

P =
∞∑

k=o

p(k)Nc(k)r(k). (3)

Every attack begins when all the nodes are functional. That
means that initially r(k) = 0 for all the degrees k, and
obviously P = 0. During the attack, when nodes with degree
k fail, r(k) increases, as does the cost P . After the destruction
of a sufficient number of nodes, the condition for critical
percolation is achieved, the giant component is fragmented,
and the attack ends. Our goal is to minimize the total cost P

for the entire attack.
Equation (1), which is the condition for percolation transi-

tion, can be written as
∞∑

k=0

(k − 1)
kp(k)q(k)

λ
= 1, (4)

where q(k) is the probability that a randomly chosen node with
degree k is functional, and λ is the original mean degree in the
network. Equation (4) defines the percolation threshold of a
random network when the expectation of the number of edges
that emanate from a populated node, reached by following a
randomly chosen edge, equals 1. Since q(k) = 1 − r(k), we
get

∞∑
k=0

(k − 1)
kp(k)[1 − r(k)]

λ
= 1. (5)

Equation (5) is equivalent to
∞∑

k=0

(k − 1)
kp(k)r(k)

λ
= 〈k2〉

〈k〉 − 2, (6)

where for each k, 0 � r(k) � 1.
According to Eq. (6), we define a parameter a(k) that

represents the contribution to the progress of achieving
the condition for the percolation threshold, when attacking
(immunizing) all the nodes with degree k(r(k) = 1), to be

a(k) ≡ (k − 1)
kp(k)

λ
. (7)

According to Eq. (3), we define a parameter e(k) that
represents the total cost of destroying all the nodes with
degree k,

e(k) ≡ p(k)c(k)N. (8)

Next, we define an efficiency parameter z(k) to be the ratio
between a(k) and e(k) after neglecting the constants λ and N ,
that is, the ratio between the contribution of all the nodes with
degree k to the destruction of the network and the price for
destroying all the nodes with degree k,

a(k)

e(k)
∝ (k − 1)k

c(k)
≡ z(k). (9)
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Since by definition the relation of the contribution to the
destruction of the network per cost of removing all the nodes
with degree k is maximal when z(k) is maximal, clearly we
prefer to destroy degrees with largest efficiency, that is with
highest values of z(k) (see Appendix A for a detailed proof of
this theory). Accordingly, we define the following method for
destroying (immunizing) a network with minimum cost:

(i) For each degree k calculate z(k).
(ii) Choose degrees to be attacked (immunized) according

to the value of z(k) in descending order.
The process destroying the network should be stopped when

a sufficient amount of chosen degrees are collected, such that
if all these nodes are removed, the condition for percolation
threshold, Eq. (6), would be achieved. The degrees that
were chosen would be fully removed (immunized) (r(k) = 1),
except the last chosen degree that could be attacked partially.
Using Eqs. (6) and (7), the fraction of nodes that would be
removed from the last chosen degree is

r(k) = κ − 2 − ∑
i a(i)

a(k)
, (10)

where the summation is over all the degrees that were fully
removed.

The main point of our method is the behavior of the
function z(k), that gives the priority of each degree k to be
destroyed relative to the other degrees. Analysis of the behavior
of z(k), by identifying first the most preferable degree from
which the choice of degrees starts, is the k of the extremum
maximum point of z(k). This can be implemented by zeroing
the first derivative of z(k) [Eq. (9)] and conditioning the second
derivative of z(k) to be negative. Since we are interested in z(k)
only for the range 2 � k < ∞ (destroying a node with degree 0
or 1 contributes nothing to the destruction of the network), we
find that for a given cost function c(k) with its specific param-
eters and constants, not in all cases there exists an extremum
maximum point within the bounds 2 � k < ∞. In other cases,
there exists only a superior value of z(k) at the bounds or even
outside the bounds of that range, either at k = ∞ or at k � 2.
In these last cases, z(k) at k � 2 is a monotonic increasing
function or a monotonic decreasing function, respectively.

Accordingly, we demonstrate our analysis of the behavior of
z(k) for two functional forms of c(k): (i) the cost function c(k)
is a power law kα and (ii) the cost function c(k) is an exponen-
tial eβk . Since it is reasonable to assume that as the degree of a
node increases the cost required to destroy it rises, we demon-
strate here the behavior of z(k) only when α > 0 and β > 0.

For case (i) it is easy to see that when 0 < α � 2, z(k)
is a monotonic increasing function, and when α � 3, z(k) is
a monotonic decreasing function. In the intermediate range
2 < α < 3, z(k) is an extremum maximum function (see
Appendix B for a detailed computations). Therefore, when 0 <

α � 2 the optimal strategy of attack (removing or immunizing)
should be from the high degrees to low, when α � 3 we
begin with removing the low degrees, and when 2 < α < 3
we remove the intermediate degrees according to descending
order of z(k).

(ii) When the cost function, c(k), is exponential eβk ,
and when β > 0, we find that when β � 1.5, z(k) is a
monotonic decreasing function, and when 0 < β < 1.5, z(k)
is an extremum maximum function (see Appendix C for a
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FIG. 1. Demonstrating the behavior of z(k) when the maximum
degree of the network is 10 [(a), (b)] with power-law cost function and
[(c), (d)] with exponential cost function: (a) An extremum maximum
for z(k) at intermediate values of k (kmax = 5) when α = 2.25 (and
in general for any 2 < α < 3). (b) Monotonic decreasing function
of z(k) for α = 3.2 (and in general for any α � 3). (c) The case of
very small β where z(k) behaves as a monotonic increasing function.
(d) An extremum maximum for z(k) at intermediate values of k

(kmax = 6) when β = 0.4 (and in general for all 0 < β < 1.5). In
all cases, for simplifying the demonstration, the values of z(k) were
normalized by dividing them by the maximum value of the original
series z(k).

detailed computations). Therefore, when β � 1.5 we begin
with removing the low degrees, and when 0 < β < 1.5 we
remove the intermediate degrees according to descending
order of z(k). Although analytically there is no β for which
z(k) is a monotonic increasing function, we analyzed also the
case of β approaching to 0+, where the maximum point at z(k)
tends to k approaching infinity. In this case, and in fact in every
case when β is relative small such that the maximum point at
z(k) is greater than the maximum degree of the network, z(k)
can be considered as a monotonic increasing function.

Examples for the behavior of z(k) for power-law and
exponential cost functions in the various regions discussed
above are illustrated in Fig. 1.

As shown in Fig. 1 in accordance with Eq. (9), z(k) = 0
when k is 0 or 1, that means that nodes with degrees 0 or 1
have the lowest preference to be destroyed (and in fact they
should not be destroyed), which is in accordance to the fact that
destroying nodes with degrees 0 or 1 contributes nothing to
the destruction of the giant component and the entire network.

B. Results

The first demonstration of the validity of the theory, in
the case of an attack (or immunization) of ER network, is
illustrated in Fig. 2. In Figs. 2(a) and 2(b), the cost function is
power law. The graphs present the size of the giant component
G versus the normalized accumulated cost P/Pmin, where Pmin

is the minimal cost of the four strategies discussed below.
In Figs. 2(c) and 2(d), the cost function is exponential. The
graphs present the size of the giant component G versus
the accumulated cost P on a logarithmic scale (because of
the large values of P ). In each of the Figs. 2(a)–2(d), there are
four graphs that illustrate four different attack strategies against
the network by a removal of a specific group of degrees. Each
choice of the specific degrees for each group is implemented
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FIG. 2. [(a), (b)] Behavior of the size of the giant component vs the normalized accumulated cost: Cost function is power law c(k) = kα .
Open symbols represent simulations results of ER networks having N = 103 nodes: (a) Average degree λ = 4 and α = 3.2. (b) Average degree
λ = 8 and α = 1. A normalization of the cost values P on the x axis was implemented by dividing by the minimum total cost Pmin of the
four curves (strategies). [(c), (d)] Behavior of the size of the giant component vs the cost: Cost function is exponential c(k) = eβk . (c) Average
degree λ = 4 and β = 0.2. (d) Average degree λ = 8 and β = 2.5. Averages are taken over 50 realizations. The α’s and β’s values were taken
as an examples to ranges that state different orders of degrees to be destroyed: descending order from high degrees and ascending order from
low degrees and the intermediate degrees. In the right-hand side of the graphs, the four bars demonstrate the fraction of the removed nodes
from each degree in each graph. Each bar is shown by a symbol respective to the symbol of the graph that it represents. Inset in panels (c) and
(d): Closeup of the region where there are several curves that intersect the x axis very closely. In accordance with our prediction, the curves
that represent our method (rectangles) intersect the x axis at the lowest point compared to the other curves.

step by step according to a specific strategy of priorities and is
ended when a sufficient combination of degrees are collected
such that if all these nodes are removed the condition for
percolation threshold would be achieved. The strategies are as
follows: Rectangles, in accordance with our optimal method,
i.e., according to descending order of the values of z(k) in
Eq. (9); circles, in descending order from high degrees, except
removing the most highest degrees that include 5% of the
nodes of the network (because of the high cost of removing
very high degrees); diamonds, in ascending order from low
degrees, except removing the most lowest degrees that include
5% of the nodes of the network (because of the negligible
contribution to the destruction of the network when removing
very low degrees); and downward triangles, an inverse order
to the order presented by our method.

The beginning point of each graph is its intersection with
the y axis, that represents the initial state before the attack
where the size of the giant component is maximal and the
accumulated cost is 0. The adjacent point to the beginning
point represents the first stage of the attack, where a removal
of all the nodes with the most preferred degree is implemented.
That causes the size of the giant component to decrease and
the accumulated cost to increase. The next adjacent point in
the graph represents the second stage of the attack where all
the nodes with the next preferred degree are removed, and the
size of the giant component once again decreases and the cost
once again increases, and so on. The end of the attack is when

a sufficient amount of nodes are removed that causes the giant
component to be fully fragmented, which is represented by the
intersection of the graph with the x axis where the size of the
giant component is 0. The value of the x coordinate in this point
represents the total cost required in order to destroy the entire
network. We can see in Figs. 2(a)–2(d) that among the four
curves, the minimum cost of destroying the network is in the
choice that is shown by rectangles, that represents the choice
of degrees according to our theory, Eq. (9). Note the interesting
case in Fig. 2(c) when it is preferable to destroy the interme-
diate degrees, as predicted by the theory when 0 < β < 1.5.

An important property of Eq. (9) is the independence of z(k)
on p(k). This means that our method is universal, independent
of the degree distribution of the special network we deal with.
The only possible difference between various networks could
be the stopping point of the chosen to be removed degrees.
Accordingly, Fig. 3 illustrates results of simulations on SF
networks. As can be seen, our optimal method establishes
again a minimum cost of destroying the SF network, similar
to the case of ER network.

III. EFFICIENT STRENGTHENING OF NETWORK

Strengthening a network in our method is the mirror image
of the network’s destruction model that presented above. We
assume a network in which we are allowed to strengthen some
of its nodes, such that at the beginning of an attack against
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FIG. 3. Behavior of the size of the giant component in SF networks: Open symbols represent simulations results of SF networks having
N = 103 nodes. The exponent γ in the distribution p(k) = Ck−γ is 2.8. [(a), (b)] Cost function c(k) is power law with (a) α = 1.0, (b) α = 3.2.
[(c), (d)] Cost function c(k) is exponential with (c) β = 0.01, (d) β = 2.5. In each of the graphs the order of choosing the degrees to be removed
is identical to the graphs in Fig. 2, except the curves that are signed by circles where only 1% (and not 5% as in Fig. 2) of the nodes with the
highest degrees are not removed. For the convenience, the bars in the right side of each figure were truncated arbitrarily above k = 20, but in
fact they include also the hubs with degrees up to about k = 40. Inset in (b): Closeup of the region where there are two curves that intersect
the x axis very closely. In accordance with our prediction, the curve that represents our method (rectangles) intersects the x axis at the lowest
point compared to the other curves.

the network, all the nodes collapse except the nodes that were
strengthened before. The strength of a node is measured by its
survival time after an attack begun, the lifetime of the node. We
define a cost function c(k) that is the cost of strengthening a
node with degree k by a lifetime of one unit of time. We classify
the nodes by its degrees. Our goal is to find for every group of
nodes with degree k, the fraction of nodes to be strengthened
by lifetime of one unit of time, denoted by q(k), such that the
total cost of strengthening the entire network, which means to
guarantee the existence of a giant component in the network,
by lifetime of one unit of time is minimum.

We define a function P that is the total cost of strengthening
the entire network by lifetime of one unit as follows:

P =
∞∑

k=o

p(k)Nc(k)q(k). (11)

The condition for percolation and the existence of a giant
component is [see above Eqs. (1) and (4)]

∞∑
k=0

(k − 1)
kp(k)q(k)

λ
= 1, (12)

where for each k, 0 � q(k) � 1. Note the similarity of
Eqs. (11) and (12), as well as the next equations to the analo-
gous equations in the case of efficient destruction, but here we
use q(k) as opposed to r(k) that we used in the previous case.

Very similar to the model of efficient destruction of network,
by Eq. (12) we define a(k) as the contribution to the existence
of a giant component of all the nodes with degree k if all of
them would be allocated by one unit of lifetime [q(k) = 1]

a(k) ≡ (k − 1)
kp(k)

λ
. (13)

By Eq. (11) we define e(k) as the total cost of allocating all
the nodes with degree k by one unit of lifetime

e(k) ≡ p(k)c(k)N. (14)

z(k) is again the ratio between a(k) and e(k) when neglecting
the constants λ and N , that is the ratio between the contribution
of all the nodes with degree k to the existence of the giant
component and the cost of allocating all the nodes with degree
k by one unit of lifetime is

a(k)

e(k)
∝ (k − 1)k

c(k)
≡ z(k). (15)

Note the identity of z(k) in Eq. (9) of the model of efficient
destruction of the network and Eq. (15) of the model of efficient
strengthening a network. Like in the model of destruction
of a network, we prefer to allocate lifetime to degrees with
high value of z(k). We define an analogous method to that of
efficient destroying of network, how to strengthen a network
with minimum cost, as follows:

(i) For each degree k calculate z(k).
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(ii) Choose groups of degrees to be allocated by one unit of
lifetime according to the value of z(k) in descending order.

The choice of degrees would be ended when a sufficient
amount of degrees was chosen, such that if all of them would be
allocated by one unit of lifetime the condition to percolation’s
threshold would be achieved, and a giant component with one
unit of lifetime will appear in the network.

Despite the identity of z(k) in Eq. (9) of efficient destruction
of network and Eq. (15) of efficient strengthening of network,
there is still a difference between the two cases regarding the
critical threshold pc, the fraction of nodes that have to be
functional to guarantee the existence of giant component in
the network. Each of the two models is the mirror image of
the other one. In the model of destruction of a network, we
begin when all the nodes of the network are functional, and
then we destroy some nodes until we reach the percolation’s
threshold. In contrast, in the model of strengthening a network,
we begin when all the nodes are not functional, and then
we strengthen some nodes until we reach the percolation’s
threshold from the opposite direction. In the strengthening
model, we strengthen some degrees to construct from it the
giant component, while in the destroying model, we destroy
exactly these degrees and construct the giant component
from the other degrees. It is reasonable that in general when
constructing a giant component from two different groups of
degrees, pc is different.

IV. SUMMARY

In this work, we developed a method for choosing the right
group of nodes to be destroyed (immunized) or strengthened
for minimizing the total price of destroying (immunizing)
or strengthening a general random network. According to
the value of a parameter z(k) [Eq. (9)], that we derived
analytically, when calculated for each degree k, we define a list
of priorities of degrees to be destroyed or strengthened, such
that the cost for destroying or strengthening the entire network
is minimal. Surprisingly, we find analytically that z(k) is
independent of the degree distribution p(k), and therefore our
method is general and useful for all kinds of random networks
independent of the degree distribution of the network.
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APPENDIX A: AN ANALYTIC PROOF OF THE THEORY

We begin with the condition to percolation in a random
network, that is,

∞∑
k=0

(k − 1)
kp(k)q(k)

λ
� 1. (A1)

Substituting into it q(k) = 1 − r(k) and p(k) = Nk

N
, where Nk

is the expected number of nodes with degree k, we get
∞∑

k=0

(k − 1)kNkr(k) � λN(κ − 2), (A2)

where κ = 〈k2〉
〈k〉 . If we consider only one node with degree

k from all the Nk nodes, we can see from Eq. (A2) that its
contribution to the percolation in the network is r(k)(k − 1)k.

Accordingly, we can replace the summation in Eq. (A2)
to be not over the degrees of the nodes, but over the nodes
themselves, and get∑

v∈V

r(k)(k − 1)k � λN(κ − 2), (A3)

where v is a specific node in the network and V is the set of
all the nodes in the network. The summation is calculated over
all the nodes, and for each one of them with accordance to its
degree k.

In our theory, r(k) was determined according to the value of
z(k) [Eq. (9)]. We choose degrees to be attacked (immunized)
according to the value of z(k) in descending order, and
stopping the process when a sufficient combination of degrees
are collected, such that if all these nodes are removed,
the condition for percolation threshold would be achieved.
Accordingly, all the degrees that were chosen are fully removed
which for them r(k) = 1, except the last degree that was chosen
that usually is partially removed where 0 < r(k) � 1. We can
define a constant M to be a threshold for z(k), such that the set
of nodes which for them z(k) > M are fully removed, the set
of nodes for which z(k) = M are partially removed, and the
set of nodes for which z(k) < M are not chosen to be removed.
Therefore, we can write the function r(k) using the constant
M as follows:

r(k) =
⎧⎨
⎩

1 z(k) > M

α z(k) = M,

0 z(k) < M

(A4)

where 0 < α � 1. To determine the specific value of M , we
consider that in our theory we stop the process of removing
nodes exactly when a percolation occurs and at the percolation
threshold. Mathematically, that means that in the condition to
percolation Eq. (A3), among all the possibilities where the
left-hand side is greater or equals to the right-hand side, we
choose a specific state where the two sides are equal. Therefore,
the value of M has to be determined such that r(k) fulfills the
following: ∑

v∈V

r(k)(k − 1)k = λN(κ − 2). (A5)

In the same manner that we replace the summation over
degrees in Eq. (A2) by a summation over nodes in Eq. (A3),
we can replace the summation over degrees in the function of
the total cost to fragment the network Eq. (3) by a summation
over nodes, and rewrite that function as follows:

P =
∑
v∈V

r(k)c(k). (A6)

Our theory argues that choosing nodes to be removed
according to r(k) Eq. (A4), where M is determined according
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to the condition Eq. (A5), minimizes the cost function
Eq. (A6).

We prove it as follows: Assume an alternative way to r(k) of
choosing nodes to be removed, that will be named rA(k). The
condition to percolation and fragmenting the network should
be fulfilled also by removing nodes according to that function,
such that the following condition is fulfilled:∑

v∈V

rA(k)(k − 1)k � λN(κ − 2). (A7)

We argue that the following inequality is true:

[rA(k) − r(k)][k(k − 1) − Mc(k)] � 0. (A8)

We test its validity for three exhaustive options:
(i) k(k − 1) > Mc(k), which is equivalent to z(k) > M;

the expression within the right parentheses in Eq. (A8) is
positive. When z(k) > M , r(k) = 1 and rA(k) � 1. Therefore,
the expression within the left parentheses is negative or equals
0. Thus, the multiplication of the two parentheses in Eq. (A8)
is negative or equals to 0, as we argued.

(ii) k(k − 1) = Mc(k), which is equivalent to z(k) = M;
the expression within the right parentheses in Eq. (A8) equals
0. Therefore, Eq. (A8) equals 0.

(iii) k(k − 1) < Mc(k), which is equivalent to z(k) < M;
the expression within the right parentheses in Eq. (A8) is
negative. When z(k) < M , r(k) = 0 and rA(k) � 0. Therefore,
the expression within the left parentheses is positive or equals
to 0. Thus, the multiplication of the two parentheses in Eq. (A8)
is negative or equals to 0.

We rearrange Eq. (A8), add to it a summation over all the
nodes in the network, and get∑

v∈V

[rA(k) − r(k)]k(k − 1) �
∑
v∈V

M[rA(k) − r(k)]c(k).

(A9)

By Eqs. (A5) and (A7), we can see that the left-hand side
of Eq. (A9) is greater or equals to 0. Therefore, we get for the
right-hand side of that equation∑

v∈V

M[rA(k) − r(k)]c(k) � 0. (A10)

Thus we get ∑
v∈V

rA(k)c(k) �
∑
v∈V

r(k)c(k). (A11)

By Eq. (A6), the former equation is equivalent to the following:

PA(k) � P (k), (A12)

where PA(k) is the total price of destroying the network when
choosing the nodes to be removed according to rA(k), and P (k)
is the total price of destroying the network when choosing the
nodes according to r(k) as suggested by our theory. Therefore,
Eq. (A12) shows that the total price of destroying the network
according to r(k) as suggested by our theory, is not greater than
the total price of destroying the network when choosing the
nodes according to any other alternative rA(k). Thus, we prove
that choosing nodes to be removed according to our theory
minimizes the total price of destroying the network.

APPENDIX B: ANALYSIS OF z(k) WITH POWER-LAW
COST FUNCTION

We begin with Eq. (9) and substitute into it c(k) = kα . We
receive

z(k) = k1−α(k − 1). (B1)

We differentiate it with respect to k, and receive

dz(k)

dk
= k−α[(2 − α)k − (1 − α)]. (B2)

By zeroing this equation, we receive an extremum point, k =
1−α
2−α

, that would be denoted by kext. We differentiate again and
receive

d2z(k)

dk2
= (α − 1)k−α−1[(α − 2)k − α]. (B3)

Substituting kext into Eq. (B3), we receive

d2z(k)

dk2
= (2 − α)

(
2 − α

1 − α

)α

. (B4)

For every α > 2, the second derivative in Eq. (B4) is always
negative, and thus z(k) has a maximum point at kext. Note that
kext = 2 for α = 3, and as α increases kext decreases until it
equals 1 when α tends to infinity. Since our interest in z(k)
is only at k � 2 (nodes with degrees 0 or 1 do not affect
the destruction or the strengthening of the giant component),
we conclude that as α � 3, z(k) is a decreasing function for
k � 2. When α < 3, kext becomes greater than 2, until kext

tends to infinity when α tends to 2+. Thus, we conclude that for
2 < α < 3, z(k) is an extremum maximum function. Despite
that, note that when kext is greater than the maximum degree
of the network we analyze, z(k) in fact becomes, for the sake
of our problem, a monotonic increasing function, especially as
α tends to 2+ when kext tends to infinity.

In contrast, when α < 1, the second derivative in Eq. (B4)
is always positive, and thus z(k) has a minimum point in kext.
Recall that we are interested only in α > 0 (the cost function
kα is an increasing function with k) and that kext tends to 0.5
as α tends to 0+ and tends to 0 as α tends to 1−. Also, when
α < 1, there is no discontinuity in z(k) [Eq. (9)] at k = 0. Thus,
we conclude that as 0 < α < 1, z(k) is a monotonic increasing
function for all k � 2.

In the range 1 � α � 2, the analysis of an extremum point
in z(k) according to Eq. (B4) is problematic, since we obtain
complex numbers. However, we can do the analysis by using
the fact that this range is the only one where both (2 − α) and
−(1 − α) in the first derivative of z(k) [Eq. (B2)] are positive.
Thus, in this range for all k � 0, and especially for every k � 2,
z(k) always increases. We conclude that for 1 � α � 2, z(k)
is a monotonic increasing function for k � 2.

In summary, the analysis of z(k) with power-law cost
function gives the following results at k � 2:

(1) When 0 < α � 2, z(k) is a monotonic increasing
function.

(2) When 2 < α < 3, z(k) is an extremum maximum
function.

(3) When α � 3, z(k) is a monotonic decreasing function.
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APPENDIX C: ANALYSIS OF z(k) WITH AN
EXPONENTIAL COST FUNCTION

We begin with Eq. (9) and substitute into it c(k) = eβk . We
receive

z(k) = e−βkk(k − 1). (C1)

Differentiating it with respect to k, we receive

dz(k)

dk
= e−βk(−βk2 + βk + 2k − 1). (C2)

By zeroing this equation, we receive two extremum points:

k1 = β + 2 +
√

β2 + 4

2β
, k2 = β + 2 −

√
β2 + 4

2β
.

(C3)

Recall that β > 0 (the cost function eβk is an increasing
function with k). Analyzing k2, we observe that it tends to
0.5 as β tends to 0+, and tends to 0 as β tends to ∞. Analyzing
k1 we observe that it tends to ∞ as β tends to 0+ and tends
to 1 as β tends to ∞. Note that k1 > k2 for every β. Since we
are interested in z(k) only for k � 2 and since the maximum
of k2 is 0.5 less than 2, then z(k) for k � 2 is affected only by

k1. Thus, we neglect k2 and consider only k1, that would be
denoted by kext. We differentiate z(k) again and calculate the
second derivative with k = kext. We receive

d2z(k)

dk2
= −

√
β2 + 4, (C4)

which is negative for every β, and thus z(k) has a maximum
point in kext for every β. From Eq. (C3) it is easy to see
that kext = 2 when β = 1.5. As β increases above 1.5, kext

decreases until kext tends to 1 as β tends to infinity. On the
other hand, as β decreases below 1.5, kext increases until kext

tends to infinity as β tends to 0. Recall that we only consider
z(k) at k � 2, and thus we conclude that as β � 1.5, z(k) is a
monotonic decreasing function at k � 2. On the other hand, as
0 < β < 1.5, z(k) is an extremum maximum function at the
range k � 2. However, when kext is greater than the maximum
degree of the network we analyze, z(k) in fact becomes a
monotonic increasing function. That is especially valid as β

tends to 0+, where kext tends to infinity.
In summary, the analysis of z(k) with exponential cost

function gives the following results for k � 2:
(1) When 0 < β < 1.5, z(k) is an extremum maximum

function.
(2) When β � 1.5, z(k) is a monotonic decreasing function.
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