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Abstract

We simulate a model that captures all the features of the silver electrodeposition experiment in a rectangular cell. We

study the bulk of the aggregates on the basis of a treeing process (M. Matsushita, P. Meakin, Cluster size distribution of

self-affine fractals, Phys. Rev. A 37 (1988) 3645; F. Romá, C.M. Horowitz, E.V. Albano, Numerical study of the

development of bulk scale-free structures upon growth of self-affine aggregates, Phys. Rev. E 66 (2002) 066115). The model

proposed is a diffusion limited process in 1þ 1 dimension, where one dimension is the linear size L and the other the

height. In our model the particles are dropped from the top of a rectangular lattice and are allowed to diffuse. The

diffusion upwards is forbidden, whereas in the other directions the particles are allowed to diffuse with probability 1� p to

the lateral nearest neighbors positions and with probability p downwards. Here p takes into account the strength of the

electric field. When a newly deposit particle has a nearest neighbor which belongs to only one tree, it sticks to that tree. If

the particle has more than one nearest neighbor that belongs to different trees one of them is selected at random and the

particle sticks to the chosen tree. We compute the r.m.s height hs, the r.m.s width ws and the size distribution of the trees Ns

as function of the mass s of the ‘‘frozen’’ trees for different values of p. We found that the scaling behavior with s of hs and

Ns depends on p, while ws does not depend on p. In the limit p! 1, the values obtained for the exponents, that

characterize the scaling behavior of the magnitudes studied here, are close between the error bars, with the one found in the

experiment of silver electrodeposition (C.M. Horowitz, M.A. Pasquale, E.V. Albano, A.J. Arvia, Experimental evidence of

the development of scale invariance in the internal structure of self-affine aggregates, Phys. Rev. B 70 (2004) 033406 ; E.V.

Albano, R.C. Salvarezza, L.Vázquez, A.J. Arvia, Validity of the Kardar–Parisi–Zhang equation in the asymptotic limit of

metal electrodeposition, Phys. Rev. B 59 (1999) 7354), that was suggested to belong to the Kardar–Parisi–Zhang (KPZ).

For finite p, the results suggest that our model may belong to another universality class. We also studied the finite size

effect in the values obtained for the exponents and found that the p dependence is not due to finite size effects.
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1. Introduction

The study of evolving interfaces or surfaces has recently attracted attention due to their potential
technological applications. These interfaces can be found in many physical, chemical and biological processes.
Examples include film growth either by vapor deposition or chemical deposition [1], bacterial colony growth
[2] and propagation of forest fire [2]. The interface of these systems exhibits self-affine properties over a large
range of spatial and temporal scales. Therefore, almost all the studies focuses on the scaling properties of the
interface that are mainly characterized by the scaling behavior with the linear size L and the time t of the
roughness W ðL; tÞ, defined as the r.m.s (mean square root) at a given time t of the height fluctuations,

W ðL; tÞ ¼ ðhh2
ðtÞi � hhi2Þ1=2,

where hðtÞ is the height of the interface at time t, and h� � �i denotes averages over configurations and over the d-
dimensional surface of typical size L. The r.m.s. roughness W of an interface is characterized by the
Family–Vicsek scaling [3] with respect to t and L given by

W ðL; tÞ�Laf ðt=LzÞ,

where z ¼ a=b is known as the dynamic exponent, b and a are the growth and roughness exponent,
respectively. The scaling function f ðuÞ�ub for u51 and f ðuÞ� constant for ub1.

The study of the properties of the interfaces has been widely studied, in contrast there are only few studies
on the bulk properties of the growing system [1,4]. It was shown that the measurement of the bulk properties
of the process of growing is a useful experimental technique for the evaluation of the self-affine properties of
some aggregates. Experimental evidence on electrochemically formed [1,5], shows that an alternative approach
for the characterization of the system into universality classes can be achieved analyzing the growing branched
patterns of frozen structures, that arise due to competitive processes among neighbor growing structures.
These branched structures or ‘‘trees’’ can be characterized by their r.m.s height hs and r.m.s width os that
exhibit scaling invariance with the mass s characterized by exponents that, within the error bars, are close to
those predicted by the Kardar–Parisi–Zhang equation in d þ 1 dimension, where d is the euclidean dimension
of the surface of linear size and the other is the height of the interface. For 1þ 1d, b ¼ 1=3 and z ¼ 3

2
.

Also numerical evidence, presented by Romá et al. [4], on the ballistic deposition (BD) model shows that the
bulk of the aggregates formed can be broken into a set of infinite scale invariant structures called ‘‘trees’’.
These trees present spatial and temporal scale invariance and its exponents can be related to the classical
exponents of the KPZ universality class. The exponents obtained were compared to the ones obtained in the
experiment of the electrochemically formed presented in Refs. [1,5], where the intensity of the electrical field
and the electromigration does not play any role. The results suggest that the experiment fall into the KPZ
universality class.

In this paper, we present a model for the electrochemically aggregate where the electromigration and the
intensity of the electrical field is taken into account. We analyze the bulk’s properties of the growing patterns
on the basis of a treeing process; i.e any growing can be thought as the superposition of individual trees.
2. Treeing and self-affinity

Suppose an aggregate that grows over a d-dimensional substrate. The aggregate is formed by trees that
compete between them to grow and give rise to the total pattern. The structural properties of the individual
trees and the entire aggregate are determined by the growing mechanism. The scaling behavior of hs and ws

with s of the trees is given by [6]

hs�snk ; ð1Þ

os�sn? ; ð2Þ

where nk and n? are the correlation lengths exponents parallel and perpendicular to the main growth direction
of the aggregate respectively [6]. When nk ¼ n? the aggregates are self-similar but when they are different the
aggregates are self-affine. If Ns is the number of trees with s particles, the number of particles per unit of
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volume is given by

N ¼
X

s

sNs

Ld
¼
X

s

sns, (3)

where ns is the tree size distribution that scales with s as

ns�s�tf
ss

N

� �
, (4)

where f ðuÞ is a scaling function that dominates the scaling behavior for big values of s.
Substituting Eq. (4) into Eq. (3) and taking the main term of the sum, the scaling relation between the

exponents s ¼ 2� t is obtained. Using the fact that s ¼ nkðD� dÞ [6] for self-affine aggregates with geometric
dimension D, t is given by

t ¼ 2� nkðD� dÞ. (5)

This equation relates the exponent t of the size distribution of the trees with the exponent nk, the geometric
dimension D and the spatial dimension d. For the experimental conditions of Ref [3], D ¼ 2 and d ¼ 1 then

t ¼ 2� nk. (6)

Taking into account that the bulk of a tree V s scale with s as Vs�hs od
s�sp [See Eqs.(1) and (2)],

p ¼ nk þ dn?, (7)

when p ¼ 1 the trees are compact, while for p41 they are not.
Identifying the parallel length correlation xk�t1=z with os and hs with t [6], and using Eqs. (1) and (2), we

obtain

z ¼
nk
n?

. (8)

Therefore, the dynamical exponent z that is an exponent that characterize the interface is related with the
exponents that characterize the bulk’s properties.

3. Model and simulation results

Our model take place in a 1þ 1 dimensional square lattice, where one dimension is the surface of linear size
L and the other is the height of the interface. The interface is represented by the set fhig, i ¼ 1; . . . ;L, where hi

is the height of the interface at column i. Periodic boundary conditions in the lateral dimension are assumed.
Particles are dropped at a random column from a height five times the height of the maximum value of the
interface and are allowed to diffuse with probability p downward and 1� p in the lateral directions. Upwards
diffusion is forbidden. Here p represents the strength of the electric field and 1� p takes into account the mass
transport or ‘‘diffusion’’ due to the thermal energy transferred by the bulk current to the solution where the
particles travel. At the beginning the interface is flat, without loss of generality we assume that hi ¼ 0,
i ¼ 1; . . . ;L, as the initial condition of the interface, therefore the particles deposited at the flat interface are
seeds for the treeing process. If a particle reaches a position nearest neighbor of a tree, it is considered as a new
deposited particle that belongs to the same tree as the one of the nearest neighbor particle. If there is more
than one nearest neighbor belonging to different trees one of them is selected at random and the particle is
incorporated to that tree. The process stops when exactly M particles are deposited. In Fig. 1 we show a
typical configuration of the trees after M particles were deposited. We analyze the bulk properties of the frozen
trees.

As in our problem we have a tuning parameter p we expect that the exponents nk and n? will depend on p.
Notice that in our problem p ¼ 1 is not a random deposition [2] process because the process of selection of the
tree, where a new particle will stick, generate correlations between nearest neighbors. Therefore, it is expected
that for p! 1 the process will belong to the same universality class as the BD growth model i.e. the KPZ
universality class. On the other hand, when diffusion is the main driving force we expect nkðpÞ4nkðp ¼ 1Þ
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Fig. 1. Plot of one configuration of the trees formed with our model for p ¼ 0:64 and L ¼ 250. Different colors indicate different trees. We

can see some trees that cannot grow anymore because they are overlapped by other trees. Those trees are frozen structures were our

analysis was done.
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because as p decreases the particles are allowed to diffuse more in the lateral direction reducing the screening
of the trees.

In order to prove our ansatz we perform extensive numerical simulations of our model to study the
magnitudes of the bulk properties of the growing process such as hs and os as function of s, given by

h2
s ¼

1

s

X
i�s

h2
i ; ð9Þ

o2
s ¼

1

s

X
i�s

o2
i , ð10Þ

where hi and oi are the height and the width of the column i. As the main direction of growth is perpendicular
to the surface we analyze only the cases pX0:32. In Fig. 2(a) we show the log–log plot of hs as a function of s

for different values of p. We can see that as p decreases the slope of hs increases, thus nk � nkðpÞ. The exponent
nkðpÞ was obtained by a least square fitting of the data minimizing the w2 function [7] with a power law in the
region where it is valid, using as the standard deviation the errors of the simulations. The values obtained are
plotted with their errors in the inset of Fig. 2(b) and shown in Table 1. We can see that the values of nkðpÞ
depend on p. In Fig. 2(b) we plot hs as a function of snkðpÞ, it is easy to see the linear relation. In order to obtain
tðpÞ we compute NsðsÞ. The values of tðpÞ were obtained by the same method than nkðpÞ fitting Ns as function
of s with a power law. In Fig. 3 we show the plot of Ns=s�tðpÞ as function of s. The flat behavior of the curves
for big values of s, where the power law holds, shows the agreement with the computed values of tðpÞ. In the
inset of Fig. 3 we plot the values obtained for this exponent as function of p with the error bars. Also this
exponent depend on p. Performing the same analysis for osðsÞ, we find that n? ’ 0:4109� 0:0003 independent
of p. In order to confirm this result, we compute the conditional distribution of os given s and p, Pðos=s; pÞ.
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Fig. 2. (a) Log–Log plot of hs as function of s for different values of p, p ¼ 1 (�), p ¼ 0:64 (4), p ¼ 0:56 (�), p ¼ 0:48 (&) and p ¼ 0:32
(	). The dashed line is used as a guide to show the KPZ behavior of hs (hs�s0:6). (b) Plot of hs as function of snkðpÞ for different values of p.

The symbols represent the same as in (a) with the values of nkðpÞ from Table 1. The collapse of the curves indicates that hs�snkðpÞ. In all

these simulations L ¼ 103, M ¼ 106 and the averages were done over 106 realizations. In the inset plot, we show nkðpÞ as function of p with

the error bars using the method of least squares with a power law as explained in the text.

Table 1

Values of the exponent nkðpÞ, pðpÞ, tðpÞ and zðpÞ as function of p from the simulations compared with the values of the experiment of silver

electrodeposition [4], the BD model and the actual values of the exponents of the KPZ and Edward Wilkinson (EW) [8] universality

classes.

p nkðpÞ pðpÞ tðpÞ zðpÞ

0.32 0.6648(2) 1.0757(5) 1.333(3) 1.618(2)

0.48 0.6506(5) 1.0615(8) 1.350(1) 1.583(2)

0.56 0.6455(4) 1.0564(7) 1.361(7) 1.571(2)

0.64 0.6418(5) 1.0527(8) 1.382(4) 1.562(2)

1 0.6263(4) 1.0372(7) 1.399(3) 1.524(2)

EXP 0.63(3) 1.09(7)[1] 1.37(4)[1] —

BD 0.6 — 1.4[4] —

KPZ 0.6 1 1.4 1.5

EW 0.65 1 1.35 2
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We find that this distribution can be approximated very well with a Gaussian function,

Pðos=sÞ� exp �
ðos � hosiÞ

2

2s2

� �
, (11)

where oos4 ¼ o��sn? and o� is the most probably value of the distribution, that in a Gaussian coincides
with the mean value. In Fig. 4 we plot Pðos=sÞsn? as function of os=sn? . The collapse of the curves indicates
clearly that n? depends only on s and does not depend on p. From the values obtained for nkðpÞ and n?, we
compute pðpÞ using Eq. (7) (see Table 1). We can see that as p decreases pðpÞ increases, so the trees are slightly
less compact. Replacing the values of nkðpÞ and n? in Eq. (8) we obtain zðpÞ. The values are shown in Table 1
and plotted with the errors in Fig. 5. From the results we can see that as p decreases, z increases. All our results
suggest that for po1 our model does not belong to the KPZ universality class. In order to see whether our
results are or not due to finite size effects, we compute the exponents for different system sizes. In Figs. 6 and 7
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Fig. 3. Plot of Ns=s�t in log–log scale only to display better the fact that for big s, Ns=s�t is constant. The symbols represent the same

values of p than in Fig. 2. In the inset figure, we show the values obtained for tðpÞ as function of p with the error bars using the method of

least squares with a power law as explained in the text.
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Fig. 4. Plot of Pðos=sÞ as function of s for different values of p. The collapse of the curves shows that the os does not depend on p. The

symbols represent the same values of p as in Fig. 2.
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we show the results obtained for nkðpÞ and tðpÞ for p ¼ 0:32 and different system sizes. We can see from the
figures that after some characteristic system size close to L ¼ 1000 the values obtained, between the error bars,
does not depend on L. Thus, in our model, the correction to scaling due to finite size effects are not necessary
for the values displayed in Table 1. We checked that this is also the case for other values of p.
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Fig. 5. Plot of zðpÞ as function of p with the error bars, for L ¼ 1000 and 106 realizations. Our results shows that as p increases z decreases

to a value very close to the one of the KPZ universality class.
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Fig. 6. Plot of nkðpÞ as function of L for p ¼ 0:32 with L ¼ 125; 250; 500; 1000; 1500 and 2000. The dashed line is used as a guide to show

the value reported in Table 1. Our results shows that after some characteristic size around L ¼ 1000 the exponent does not depend on L.

Thus the finite size effects of our model are weak.
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4. Conclusions

In this work we present a model where the strength of the electric field and the diffusion are taking into
account through a parameter p. Our model represents well the electrochemical aggregate experiment in the
limit p! 1. In this limit we find exponents close to the one of the 1þ 1d KPZ model. The finite size effects are
very weak and after a characteristic value of L�1000, nkðpÞ does not depend on L. The exponent tðpÞ, does not
depend on L between our error bars. We can conclude that, except n?, all the other exponents depend on p.
Our results could be explained by a crossover from a KPZ regime for p ¼ 1 to another universality class as p

decreases.
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Fig. 7. Plot of tðpÞ as function of L for p ¼ 0:32 with L ¼ 125; 250; 500; 1000; 1500 and 2000. The dashed line is used as a guide to show the

value reported in Table 1. Our results shows that between our error bars this exponent does not depend on L.
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