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Abstract

Many networks have been reported recently to follow a scale-free degree distribution in which
the fraction of sites having & connections follows a power law: P(k) = ck~>. In this chapter
we study the structural properties of such networks. We show that the average distance be-
tween sites in scale-free networks is much smaller than that in regular random networks, and
bears an interesting dependence on the degree exponent A. We study percolation in scale-free
networks and show that in the regime 2 < A < 3 the networks are resilient to random break-
down and the percolation transition occurs only in the limit of extreme dilution. On the other
hand, attack of the most highly connected nodes easily disrupts the nets. We compute the per-
colation critical exponents and find that percolation in scale-free networks is non-universal,
i.e. depends on X and different from the mean-field behavior in dimensions d > 6. Finally, we
suggest a novel and efficient method for immunization against the spread of diseases in social
networks, or the spread of viruses and worms in computer networks.

1.1 Introduction

1.1.1 Random graphs

Graph theory is rooted in the 18th century beginning with the work of Euler. A graph in its
mathematical definition is a pair of sets (V, E), where V is a set of vertices (the nodes of the
graph), and E is a set of edges, denoting the links between the vertices. In a directed graph,
the edges are taken as ordered pairs, i.e., each edge is directed from the first to the second
vertex of the pair.

The work on graph theory has mainly dealt with the properties of special graphs. In the
1960s, Paul Erdds and Alfréd Rényi initiated the study of random graphs [1, 2, 3]. Random
graph theory is, in fact, not the study of graphs (as there is no such thing as a “random graph™),
but the study of an ensemble of graphs (or, as mathematicians prefer to call it, a probability
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space of graphs). The ensemble is a class consisting of many different graphs, where each
graph has a probability attached to it. A property studied is said to exist with probability P
if the total probability of all the graphs in the ensemble of having that property is P. This
structure allows the use of probability theory in conjunction with discrete mathematics for the
study of graph ensembles.

Two well-studied graph ensembles are G x,ar — the ensemble of all graphs having N
vertices and M edges, and G n,, — consisting of graphs with IV vertices, where each possible
edge is realized with probability p. These two families, initially studied by Erd6s and Rényi
themselves, are known to be similar if M = (g)p, so long as p is not too close to 0 or 1 [4],
and are referred to as ER graphs. Examples of other well-studied ensembles are the family of
regular graphs, where all nodes have the same number of edges, P(k) = dx,x,, and the family
of unlabeled graphs, where graphs which are isomorphic under permutations of their nodes
are considered the same object.

An important attribute of a graph is the average degree, i.e., the average number of edges
connected to each node. We shall denote the degree of the ith node by &; and the average
degree by (k). N-vertex graphs with (k) = O(N?) are called sparse graphs. In what follows,
we concern ourselves exclusively with sparse graphs.

An interesting characteristic of the ensemble Gy, is that many of its properties have a
related threshold function, p;(IV), such that if p < p; the property exists with probability 0, in
the “thermodynamic limit” of N — oo, and with probability 1 if p > p,. This phenomenon
is similar to the physical notion of a phase transition. An example of such a property is the
existence of a giant component, i.e., a set of connected nodes, in the sense that a path exists
between any two of them, whose size is proportional to N. Erdds and Rényi showed [2]
that for ER graphs such a component exists if (k) > 1. If (k) < 1 only small components
exist, and the size of the largest component is proportional to In N. Exactly at the threshold,
(k) = 1, acomponent of size proportional to N'2/3 emerges. This phenomenon was described
by Erd6s as the “double jump”. Another property is the average path length distance between
any two sites, which in almost every graph of the ensemble is of order In V.

1.1.2 Scale-free networks

The Erdés-Rényi model has been traditionally the dominant subject of study in the field of
random graphs. Recently, however, several studies of real world networks have indicated that
the ER model fails to reproduce many of their observed properties.

One of the simplest properties of a network that can be measured directly is the degree
distribution, or the fraction P(k) of nodes having k connections (degree k). A well-known
result for ER networks is that the degree distribution is Poissonian, P(k) = e *z*/k!, where
z = (k) is the average degree [4].

Direct measurements of the degree distribution for networks of the Internet [5, 6], WWW
(where hypertext links constitute directed edges) [7, 8], e-mail network [9], citations of sci-
entific articles [10], metabolic networks [11, 12], trust network [13], and many more, show
that the Poisson law does not apply. Rather, most often these nets exhibit a scale-free degree
distribution:

P(k) = ck™?, k=m,.. K (1.1)
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where ¢ ~ (A — 1)m*~1 is a normalization factor, and m and K are the lower and upper
cutoffs for the connectivity of a node, respectively. The divergence of moments higher than
[A—1] (as K — ocowhen N — o0) is responsible for many of the special properties attributed
to scale-free networks.

All real-life networks are finite (and all their moments are finite). The actual value of the
cutoff K plays an important role. It may be approximated by noting that the total probability
of nodes with k > K is of order 1/N [14, 15]:

/ b P(k)dk ~ 1/N. 1.2)
K

This yields the result

K ~mNYO=1, (1.3)

The degree distribution does not characterize the graph or ensemble in full. There are
other quantities, such as the degree-degree correlation (between connected sites), the spatial
correlations, etc. Several models have been presented for the evolution of scale-free networks,
each of which may lead to a different ensemble. The first suggestion was the preferential
attachment model by Barabasi and Albert, which came to be known as the “Barabasi-albert
model” [5] . Several variants have been suggested to this model (see, e.g., [16, 17]). In this
Chapter we will concentrate on the “Molloy-Reed construction” [18, 19, 20], which ignores
the evolution and assumes only the degree distribution and no correlations between nodes.
Thus, the site reached by following a link is independent of the origin.

Scale-free distributions have been studied in physics, particularly in the context of fractals
and of Lévy flights. Fractals are objects which appear similar (at least in some statistical sense)
at every lengthscale [21, 22]. Many natural objects, such as mountains, clouds, coastlines and
rivers, as well as the cardiovascular and nervous systems are known to be fractals. This is
why we find it hard to distinguish between a photograph of a mountain and that of part of the
mountain, neither can we ascertain the altitude from which a picture of a coastline had been
taken. Diverse phenomena, such as the distribution of earthquakes, biological rhythms and
rates of transport of data packets in communication networks, are also known to posses a scale-
free distribution. They come in all sizes and rhythms, spanning many orders of magnitude.

Lévy flights were suggested by Paul Lévy [23], who was studying what is now known
as Lévy stable distributions. The question he asked was, When is the length distribution of
a single step in a random walk similar to that of the entire walk? Besides the known result,
that of the Gaussian distribution, Lévy found an entire new family — essentially that of scale-
free distributions. Stable distributions do not obey the central limit theorem (stating that for
large numbers of steps the distribution of the total displacement tends to Gaussian), due to the
divergence of the variance of indivual steps. Lévy walks have numerous applications [24, 25].
An interesting observation is that animal foraging patterns which follow stable distributions
have been shown to be their most efficient strategy [26, 27]. For recent reviews on complex
networks and in particular scale free networks see Refs. [28, 29].
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1.2 Small and Ultra-Small Worlds

Regular lattices are embedded in Euclidean space, of a well-defined dimension, d. This means
that n(r), the number of sites within a distance r from an origin, grows as n(r) ~ r? (for
large 7). For fractal objects d in the last relation is non-integer and is replaced by the fractal
dimension d¢. Similarly, the chemical dimension, d;, is defined by the scaling of the number of
sites within 7 edges or less from a given site (an origin), n(l) ~ [%. A third dimension, dmin,
relates between the chemical path (the shortest distance along edges) and Euclidean distances,
[ ~ pdmin |t satisfies dmin = d¢/d; [21, 22, 30].

An example of an object where these concepts fail is the Cayley tree (also known as the
Bethe lattice). The Cayley tree is a regular graph, of fixed degree z, and no loops. It has been
studied by physicists in many contexts, since its simplicity often allows for exact analyses.
An infinite Cayley tree cannot be embedded in a Euclidean space of finite dimensionality.
The number of sites at 7 is n(l) ~ (z — 1)!. Since the exponential growth is faster than any
power-law, Cayley trees are referred to as infinite-dimensional systems.

In most random network models the structure is locally tree-like (since most loops occur
only for n(I) ~ N), and, since the number of sites grows as n(l) ~ (k — 1)!, they are also
infinite-dimensional. As a consequence, the diameter of such graphs (i.e., the minimal path
between the most distant nodes) scales like D ~ In N [4]. This small diameter is to be
contrasted with that of finite-dimensional lattices, where D ~ N'/dt,

Recently, a model has been suggested by Watts and Strogatz [31, 32] which retains the
local high clustering of lattices while reducing the diameter to D ~ In N. This, so called,
small world network is achieved by replacing a fraction ¢ of the links in a regular lattice with
random links, to random distant neighbors. (In other variants of the small world model the
“long range” links are simply added on, without prior removal of lattice links.) A study of
scale-free networks embedded in Euclidean space (at the obvious price of a cutoff in &) which
exhibit finite dimensions can be found in [33].

1.2.1 Diameter of scale-free networks

We now aim to show that scale-free networks with degree exponent 2 < A < 3 possess a
diameter D ~ Inln N, smaller even than that of ER and small world networks. If the network
is fragmented, we will only be interested in the diameter of the largest cluster (assuming there
is one). Our analysis of the diameter of the Molloy-Reed scale-free networks is based on [34].

We adopt a different definition of diameter: the average distance between any two sites
on the graph. We find it easier still to focus on the radius of a graph, L = (I): the average
distance of all sites from the site of highest degree in the network (if there is more than one,
we pick one arbitrarily). The diameter of the graph, D, is restricted to:

L<D<2L, (1.4)

and thus essentially scales like L.
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1.2.2 Minimal graphsand lower bound

We begin by showing that the radius of any scale-free graph with A > 2 has a rigorous lower
bound that scales as Inln N. It is easy to convince oneself that the smallest diameter of a
graph, of a given degree distribution, is achieved by the following construction: Start with the
highest degree site, then connect to each successive layer the extant sites of highest degree,
until the layer is full. By construction, loops will occur only in the last layer.

Let the number of links outgoing from the Ith shell (layer) be ;. Let K; denote the highest
degree of a site not yet reached by the Ith layer. Then, for the graph of minimal diameter
described above,

K,
xi=N P(k)dk ~ m* 'NK . (1.5)
K1

The number of links outgoing from layer [ + 1 equals the total number of links in all the sites
between K; and K1 minus one link for each site — the one used to connect to the previous
layer:

K A—1
Xi+1 =N (k= 1)P(k)dk ~ ——

A—1 2—XA
m M INK2, (1.6)
Kian -2

+1

Solving these recursion relations, with the initial conditions K, = N/~ and yo = K,
leads to:

i = aAD () 1wttt (1.7)
wherea = (A=1)/(A=2)m,u = (A —-2)/(A—=1),and
K =m(xa/N)=r . (1.8)

To bound the radius L of the graph, we will assume that the low degree sites are connected
randomly to the giant cluster. We pick a site of degree 1 < k* < (Inln N)'/(A—1), Using
Eq. (1.8) we can show that if ; = Inln N/ In(A — 2) then K, < k*, so, with probability 1 all
sites of degree k > k* lie within [; layers from the site we picked. On the other hand, if we
start uncovering the graph from any site — provided it belongs to the giant component — then
within a distance I, from this site there are at least /5 bonds. The probability that none of those
bonds leads to our site (of degree k*) is (1 — P(k*)k* /(k))2. Thatis, if lak* P(k*)/{k) > 1,
at least one bond will lead to our site. Thus, taking £** ' <« I, < InIn N, we will definitely
reach a site of at least degree k* in the I5th layer from almost any site. Since I = 11 + lo,
all sites are at a distance of order Inln N from the highest degree site, and L ~ Inln N is a
rigorous lower bound for the diameter of scale-free networks with A > 2.

1.2.3 Thegeneral case of random scale-free networks

We now argue that the scaling of D ~ Inln N is actually realized in the general case of
random scale-free graphs with 2 < A < 3. One can view the process of uncovering the
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network as actually building it, by following the links one at a time. For simplicity, let us start
with the site of highest degree, K ~ N''/(A*~1) (guaranteed to belong to the giant component).
Next, we expose the layers one at a time. We view the graph as built from one large developing
cluster, and sites which have not yet been reached (they might or might not belong to the giant
component), see Fig. 1.1. A similar consideration has been used by Molloy and Reed [19].

After [ layers are explored the distribution of the yet unreached sites changes (since most
high-degree sites are exposed first) to P'(k) ~ P(k)exp(—k/K;) [19].

Let us now consider layer I + 1. A threshold function emerges: the new distribution of
unvisited sites behaves like a step function — almost P(k) for k < K;11,and0fork > Kj41.
The reason for this is as follows. A site with degree k has a probability of p = k/(IN (k)) to
be reached by following a link®. If there are x; outgoing links then for px; > 1 we can
assume that, in the limit N — oo, the site will be reached in the next level with probability 1.
Therefore, all unvisited sites with degree & > N/x; will be surely reached in the next chemical
layer. On the other hand, almost all the unvisited sites with degree ¥ < N/x; will remain
unvisited in the next layer and their distribution will remain virtually unchanged. From these
considerations, the highest degree of the unexplored sites in layer [ + 1 is determined by:

K1 = N/xi.- (1.9)

In layer [ + 1 all sites with degree & > N/x; will be exposed. Since the probability
of reaching a site via a link is proportional to kP(k), the average degree of sites reached
by following a link is k = (k2)/(k) [14]. « for layer [ can be computed from the general
formula [14], valid for scale-free distributions,

3—\ 3—X
n:(’\_2>(K —m ) (1.10)
A—3/\K2-*> —m2-2
but with the layer cutoff K of (1.9). That is, k; ~ Kf;l".

Using the above consideration, the number of outgoing links from layer [ + 1 can be
computed. Consider the total degree of all sites reached in the I + 1 level. This includes all
sites with degree k, K; 1 < k < K, as well as other sites with average degree proportional to
#—1 (the —1 is due to one link going into the shell). Thus, the value of « (the avergae number
of links for a site reached via a link) is calculated using the cutoff K, 1. (Loops within a layer,
and multiple links connecting a site in layer I + 1, can be neglected as long as the number of
sites in the layer is less than order N, N — o0o.) The two contributions can be written as the

sum of two terms:

K;
Xi+1 = N (k — 1)P(k)dk + xi [(Ki41) — 1] (1.11)
K1
Noting that P(k) o k~* and that x oc K3~ [14], it follows that x;4.; o« NK2-> (note that

+1
both terms in Eq. (1.11) scale similarly). This results in a second recurrence equation:

X1 = ANK?™X (112)

— A=l A—1 5 A=2,)-2
where A = $=5m"~" + =5sm” 74,

1We assume that (k) for the unvisited sites is fi xed, since it is dominated by the low-degree nodes, whose distri-
bution is unchanged.
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K

Figure 1.1: Illustration of the exposure process. The large circle denotes the exposed fraction of the

giant component, while the small circles denote individual sites. The sites on the right have not been
reached yet. After [34]

K
B
e

Solving the equations (1.9) and (1.12) yields

=—2)t -1 1 (A—2)l+1
3 - -1

i ~ A NS (1.13)

where x; is the number of outgoing links from the Ith layer. Eq. (1.9) then leads to:

=211 (-2

K~ A 3% No=1. (1.14)

Using the same considerations that follow Eqg. (1.8), one can deduce that also here
D ~InlnN. (1.15)

Our result that D ~ Inln IV is consistent with the observations that the distance in the
Internet network is extremely small, and that the distance in metabolic scale-free networks is
almost independent of N [11].

For A > 3and N > 1, & is independent of N, and since the second term of Eq. (1.11) is
dominant, Eq. (1.11) reduces to x;+1 = (k — 1)x;, Where & is a constant depending only on
A. This leads to the known result x; ~ C(N, X)(x — 1)! and the radius of the network [35] is

L~InN. (1.16)

For A = 3, Eq. (1.11) reduces to x;+1 = x: Inx;. Taking the logarithm of this equation
one obtains In x; 41 —In x; = Inln y;. Defining g(I) = In x; one obtains a difference equation
which may be approximated (in the continuum limit) by g’ = In g. Substituting v = In g, the
equation reduces to

Inln N
L= / et gy, (1.17)
Inln \/N



10 1 Structural Properties of Scale-Free Networks

The lower bound is obtained from the highest degree site for A = 3, having degree K =
m+/N. Thus, xo = m+v/N. The upper bound results from that I for which x; ~ N (and lower
order corrections). The integral in Eq. (1.17) can be approximated by the steepest descent
method, leading to

L ~1InN/(Inln N), (1.18)

(assuming Inln N > 1).

The result of Eq. (1.18) has been obtained rigorously for the maximum distance in the
Barabasi-Albert (BA) model [5], where A = 3 (for m > 2) [36]. Although the result in
[36] applies to the largest distance between two sites, their derivation leaves no doubt that the
average distance would behave similarly. For m = 1, the graphs in the Barabasi-Albert model
turn into trees, and the behavior of D ~ In N is obtained [36, 37]. It should be noted that for
m = 1 the giant component in the random model contains only a fraction of the sites (while
form > 2 it contains all sites — at least to leading order). This might explain why exact trees
and BA trees are different from Molloy-Reed random graphs.

1.3 Percolation

Since the 1940s percolation has been the subject of intense studies among physicists and
mathematicians. In site percolation, usually defined on lattices, the sites (nodes) are present
(or occupied, or wet) with probability ¢, or equivalently, removed (blocked) with probability
p = 1 — ¢. The (infinite) network undergoes a sharp phase transition at a critical threshold g,
from a connected, or percolating phase, where a spanning cluster runs across the entire size of
the system, for ¢ > ¢, to a fragmented phase, where only finite clusters exist, for ¢ < g.. An
introduction to the general subject of percolation can be found in [38, 22, 30]2

The percolation transition is continuous (second order), and near the transition point many
properties behave as power laws. For example, the probability for a site to be in the spanning
cluster (for ¢ > ¢.) grows as P, ~ (¢ — g.)?, and the number of clusters of size s, at
g = ¢, iISns ~ s~ 7. The critical exponents 3, T, and their likes, are universal, depending
only upon the dimensionality d of the lattice. For d > d. = 6 the lattice dimension no longer
plays a significant role and the critical exponents assume their mean-field values (e.g., 8 = 1,
T = 5/2). The mean-field case can be conviniently obtained from the exact solution of the
percolation problem on Cayley trees (whose effective dimension is infinite). Percolation in ER
graphs also follows mean-field behavior. The percolation thresholdisg. = 1—p. = 1/(2—1)
for Cayley trees, and ¢. = 1/(k) for ER graphs.

The problem of percolation on scale-free networks has important practical applications.
Below we explore consequences to the resilience of the Internet in the face of random break-
down of servers as well as under intentional attack, and to immunization strategies against the
spread of contagious epidemics in population and computer networks.

2We have exchanged here the traditional roles of p and ¢ in percolation theory, p < ¢, to conform with what
seems to be the norm in papers on scale-free graphs.
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1.3.1 Random breakdown

For a graph having degree distribution P(k) to have a spanning cluster, a site j which is
reached by following a link (from site 4 on) the giant cluster must have at least one other link,
on average, to allow the cluster to exist. For this to happen the average degree of site 5 must
be at least 2 (one incoming and one outgoing link), given that site 4 is connected to j:

(kili < ) = > kiP(kili ¢ j) = 2. (1.19)
ki

Using Bayes’ rule we get
P(kili ¢ j) = P(ki,i < j)/P(i ¢ j) = P(i < jlki)P(ki)/P(i ¢ j), (1.20)

where P(k;,i > 7) is the joint probability that node 4 has degree k; and that it is connected to
node j. For randomly connected networks (neglecting loops) P(i +» j) = (k)/(IN — 1) and
P(i + jlk;) = ki/(N — 1), where N is the total number of nodes in the network. Using the
above criterion Eq. (1.19) reduces to [18, 14]:

_ (k%)

K= 7 2, (1.21)
at the critical point. A spanning cluster exists for graphs with « > 2, while graphs with
k < 2 contain only small clusters whose size s is negligible compared to the entire network,
limy 00 8/N = 0. The criterion (1.21) and its range of validity was derived rigorously by
Molloy and Reed [18], using somewhat different arguments.

Neglecting the loops is justified below the transition, since the probability for a bond to
form a loop in an s-node cluster is proportional to (s/N)? (i.e., proportional to the probability
of choosing two sites in that cluster). An estimate of the fraction of loops P,,,,, in the network
yields

52 58S S
Proop x Z N—Zz < ﬁ =N (1.22)
i i

where the sum is over all clusters in the system (s; is the size of the ith cluster), and S is
the size of the biggest cluster. Since S ~ In N below the transition, P, is negligible when
N — o0.

1.3.2 Percolation critical threshold

The above reasoning can be applied to the problem of percolation in a generalized random
network [14]. If we randomly remove a fraction p of the sites (along with the emanating
links), the degree distribution of the remaining sites will change. For instance, sites with initial
degree kq will have, after the random removal of nodes, a different number of connections
k, depending on the number of removed neighbors. The initial degree distribution, Py (ko),
becomes, following dilution

P(k) =Y Py(ko) (l‘;:) (1 —p)kpro*. (1.23)

ko=k
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The first two moments of the new P(k) are

(k) =" P(k)k = (1 - p)(ko), (1.24)
k=0
and
(k) =" P(k)k* = (1 - p)*(k3) + p(1 — p) ko), (1.25)
k=0

where (ko) and (k2) are computed with respect to the original distribution Py (ko). On substi-
tuting the new moments in Eq. (1.21) we obtain the criterion for criticality, following dilution:

() _ (L= p)(R) +p(1 = p)(ho) _ (1.26)

(k) (1 —p)(ko)

This can be rearranged, to yield the critical threshold for percolation [14]:

K

1

— 1.27
7 (127

1- Dc =
where ko = (k2)/(ko) is calculated using the original distribution, before the random removal
of sites.

Egs. (1.21) and (1.27) are applicable to random graphs of arbitrary degree distribution.
For example, using (1.27) for Cayley trees yields the well-known threshold [38, 22] ¢. =
1—p. = 1/(z—1). Another example is ER graphs. Their edges are distributed randomly and
the resulting degree distribution is Poissonian [4]. Applying the criterion from Eq. (1.21) to
the Poisson distribution of ER graphs yields

)+,

(k) (k) ’

which reduces to the known result [4] (k) = 1.

Evidently, the key parameter governing the threshold, according to (1.27), is the ratio of
second- to first-moment, k. This may be estimated by approximating (1.1) to a continuous
distribution (the approximation becomes exact for 1 < m <« K, and it preserves the essential
features of the transition even for small m):

2 -2\ K32 —m3-2
ko = (3__A)}{2k__nﬁk. (1.29)

. (1.28)

In the limit of K > m, we have

m, A>3,
XA mA2K3 A 2< A< 3; (1.30)
K, 1<A<2

2—A
3—-A

Iio—)‘
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We see that for A > 3 the ratio kg is finite and there is a percolation transition at 1 — p, ~

(%m — 1)_1: for p > p. the spanning cluster is fragmented and the network is destroyed.
However, for A < 3 the ratio ¢ diverges with K and so p. — 1 when K — oo (or N — 00).
The percolation transition does not take place: a spanning cluster exists for arbitrarily large
fractions of dilution, p < 1. In finite systems a transition is always observed, though for
A < 3 the transition threshold is exceedingly high. For the case of the Internet (A ~ 5/2),
we have ko ~ K'/2 ~ N'/3. Considering the enormous size of the Internet, N > 106,
one needs to destroy over 99% of the nodes before the spanning cluster collapses. For A > 4
calculation of x shows that it is lower than 2 even before the breakdown occurs. For A > 4 and
m = 1 the network consists of only finite clusters and no spanning cluster to begin with (this
is reminiscent of the result for A > 3.478... found in [20], where the different threshold stems
from rigorous consideration of the discrete nature of (1.1)). Note that if mm > 2, a spanning
cluster exists for all values of \.

1.3.3 Generating functions

A general method for studying the size of the infinite cluster and the residual network for a
graph with an arbitrary degree distribution was first found by Molloy and Reed [19]. They
consider the infinite cluster as it is being exposed, layer by layer, and develop differential
equations relating the number of unexposed links and unvisited sites in subsequent shells (see
Section 1.2).

An alternative, and very powerful approach based on generating functions was advanced
by Newman, Watts and Strogatz [35]. Their method is beautifully reviewed in this book, in
the Chapter by Newman. Here, we follow closely in their footsteps. Our ultimate goal is to
compute the size of the giant component as well as the critical exponents associated with the
percolation transition in scale-free networs, resulting from random dilution (Section 1.3.5).

In [35, 39] a generating function is constructed for the degree distribution:

Go(z) = P(k)z*. (1.31)
k=0

The probability of reaching a site with degree & by following a specific link is kP(k)/{k)
[18, 14, 35], and its corresponding generating function is

.,L.kfl
Gul) = 5 b = g Co()/(h) (132

Let Hy(x) be the generating function for the probability of reaching a branch of a given size
by following a link. When a fraction p = 1 — ¢ of the sites are diluted, H; satisfies the
self-consistent equation:

Hi(z) =1- g+ qzG1(Hi(2)) - (1.33)

Given that Go(z) is the generating function for the degree of a site, the generating function
for the probability of a site to belong to an n-site cluster is:

Ho(z) =1-q+ qzGo(H1(2)) . (1.34)
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Below the transition, all clusters are finite and Ho(1) = 1. However, above the transition
Hy(1) is no longer normalized, since it excludes the probability of the incipient infinite cluster,
P, In other words, Py, = 1 — Hy(1). It follows that

Poolq) =q(1 =) P(k)u*), (1.35)
k=0

where v = H; (1) is the smallest positive root of
(Kyu=1-q+ % 3 kP(kyut (1.36)
k=0

This equation can be solved numerically and the solution can be substituted into Eq. (1.35)
to compute the size of the infinite cluster in a random graph of arbitrary degree distribution.
(The analysis neglects the presence of loops, which is well justified near criticality.)

1.3.4 Intentional attack

Another model of interest, suggested in [40], is that of intentional attack on the most highly
connected nodes of the network. In this model an attacker (e.g., computer hackers trying to
cause damage to the network, or doctors trying to disrupt a contagious epidemic) succeeds
in knocking off a fraction p of the most highly connected sites in the network. As might be
expected, such a strategy is far more effective than random dilution. We shall see, in fact, that
a small threshold p suffices to disrupt the net (for all A).

Next we consider analytically the consequence of such an attack, or sabotage, on scale-free
networks [41]. A different approach was given independently in [39]: (a) the cutoff degree K
reduces to some new value K < K, and (b) the degree distribution of the remaining sites is
no longer scale-free, but is changed due to the removal of many of their links. Recall that the
upper cutoff K, before the attack, may be estimated from

> 1
Pk) == . (1.37)
20w

Similarly, the new cutoff K, after the attack, follows from

K o)
S Pk =Y Pk) - % —p. (1.38)
k=K k=K

If the size of the system is large, N >> 1/p, the original cutoff K" may be safely ignored. We
can then obtain K approximately by replacing the sum with an integral:

K =mp'/0-2 (1.39)

We estimate the impact of the attack on the distribution of the remaining sites as follows.
The removal of a fraction p of the sites with the highest degree results in a random removal of
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links from the remaining sites — links that had connected the removed sites with the remaining
sites. The probability p for a link to lead to a deleted site equals the ratio of the number of
links belonging to deleted sites to the total number of links:

p=> kP (k) (1.40)

where (ko) is the initial average degree. With the usual continuous approximation, and ne-
glecting K, this yields

2—A
P (E ) _ p-N/a-N) (1.41)
m

for A > 2. For A = 2, p — 1, since just a few nodes of very high degree control the entire
connectedness of the system. Indeed, consider a finite system of N sitesand A = 2. The
upper cutoff K ~ N must then be taken into account, and approximating Eq. (1.40) by an
integral yields § = In(Np/m). That is, for A = 2, a very small value of p is needed to destroy
an arbitrarily large fraction of the links as N — oo.

With the above results we can compute the effect of intentional attack, using the theory
previously developed for random removal of sites [14]. Essentially, the network after attack
is equivalent to a scale-free network with cutoff &, that has undergone random removal of a
fraction p of its sites. Since the latter effect influences the probability distribution as described
in Eq. (1.23), the result in Egs. (1.27) and (1.29) can be used, but with 5 = (K /m)?>* and
K replacing p. and K, respectively. This yields the equation:

% 2—A 2-2A % 3—A

(K /m) —-2= ﬁm[(K/m) -1], (1.42)
which can be solved numerically to obtain K (m, ), and then p.(m, \) can be retrieved from
Eg. (1.39). In Fig. 1.4 we plot p. (there denoted f.) — the critical fraction of sites needed to
be removed in the sabotage strategy to disrupt the network — computed in this fashion, and
compared to results from numerical simulations. A phase transition exists (at a finite p.) for
all A\ > 2. The decline in p. for large X is explained from the fact that as A increases the
spanning cluster becomes smaller in size, even before attack. (Furthermore, for m < 2 the
original network is disconnected for A large enough.) The decline in p. as A — 2 results from
the critically high degree of just a few sites: their removal disrupts the whole network. This
was first argued in [40]. We note that for infinite systems p. — 0 as A — 2. The critical
fraction p. is rather sensitive to the lower degree cutoff m. For larger m the networks are
more robust, though they still undergo a transition at a finite p.. (Fig. 1.4 illustrates the case
ofm=1.)

1.3.5 Critical exponents

The generating functions method has the advantage of turning a combinatorial problem into
an algebraic one, concerning power series. The algebraic problem is often simpler.
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Here we use generating functions for obtaining the percolation critical exponents [42].
These can be extracted from the resulting power series by means of appropriate Abelian and
Tauberian methods [43, 44].

First, we compute the order parameter critical exponent 5. Near criticality the probability
of belonging to the spanning cluster behaves as P, ~ (g — g.)®. For infinite-dimensional
systems (such as a Cayley tree) it is known that 3 = 1 [38, 22, 30]. This regular mean-field
result is not always valid, however, for scale-free networks. Eq. (1.35) has no special behavior
at ¢ = qc; the singular behavior comes from u. At criticality, P, = 0 and Eq. (1.35) imply
that u = 1. We therefore examine Eq. (1.36) foru =1 —eand ¢ = q. + 4:

l—e=1—¢q. -0+ (qCU:) %) i EP(k)(1 —e)F—L. (1.43)
k=0

The sum in (1.43) has the asymptotic form

i EP(k)uF~t ~ (k) — (k(k —1))e
k=0

+ %(k(k —1)(k=2))+---+cT(2=Ne 2, (1.44)
where the highest-order analytic term is O(e™), n = | A — 2]. Using this in Eq. (1.43), with
g =1/(k — 1) = (k)/(k(k — 1)), we get

7““(’2;)1))2 5= %(k(k 1)k = 2))e 4o+ D2 = NS (1.45)

The divergence of § as A < 3 confirms the vanishing threshold for the phase transition in that
regime. Thus, limiting ourselves to A > 3, and keeping only the dominant term as e — 0,
Eqg. (1.45) implies

(1.46)

€~

k(k—1))2 = 1
2(k(k—1))

TR R(E—T) (h=2) 0 A>4

Returning to P, Eg. (1.35), we see that the singular contribution in e is dominant only for
the irrelevant range of A < 2. For A > 3, we find Py, ~ gc(k)e ~ (g — gc)”.

We see that the order parameter exponent S attains its usual mean-field value only for
A > 4. Moreover, for A < 4 the percolation transition is higher than 2nd-order: for 3 + ﬁ <
A< 3+ ﬁ the transition is of the nth-order.

For networks with A < 3 the transition still exists, though at a vanishing threshold, ¢. = 0.
The sum in Eq. (1.43) becomes:

i EP(k)u*=t ~ (k) + (2 — \)e* 2. (1.47)
k=0
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Using this in conjunction with Eq. (1.36), and remembering that here ¢. = 0 and therefore
q = 9, leads to

e (%)3%53_& _ (1.48)

The results can be summarized by

5 2<A<3,
B=4x3 3<A<4, (1.49)
1 A>4

In other words, the transition in 2 < A < 3 is a mirror image of the transition in 3 < A < 4.
An important difference is that g. = 0 is not A-dependent in 2 < A < 3, and the amplitude
of P, divergesas A — 2 (but remains finite as A — 4). Some of the results for 5 have been
reported before in [41], and also found independently in a different but related model of virus
spreading [45, 46, 47]. The existence of an infinite-order phase transition at A = 3 for growing
networks of the Albert-Barabasi model has been reported in [48, 49]. These examples suggest
that the critical exponents are not model-dependent but depend only on .

In [35] it was shown that for a random graph of arbitrary degree distribution the finite
clusters (of size s) follow the usual scaling form:

ng ~s Te | (1.50)

At criticality s* ~ |¢ — g¢|“ diverges and the tail of the distribution behaves as a power
law. We now derive the exponent 7. The probability that a site belongs to an s-cluster is
ps = sn, ~ 817, and is generated by Hy:

Ho(z) = Y pea’. (1.51)

The singular behavior of Hqy(z) stems from H;(z), as can be seen from Eq. (1.34). H(x)
itself can be expanded from Eq. (1.33), by using the asymptotic form (1.44) of G;. We letz =
1—¢, as before, but work at the critical point, ¢ = g.. With the notation ¢(e) = 1 — Hy (1 —¢),
we finally get (note that at criticality H; (1) = 1):

¢ (k(E-1(k—2)

_¢=_(Ic+(1_6)%[1_i+ 2<k'>

¢2—|—-'-+CF(2_)\)¢)‘_2].

(k)
(1.52)

¢From this relation we extract the singular behavior of Hy: ¢ ~ €Y. Then, using Tauberian
theorems [43] it follows that p, ~ s~17¥, hence 7 = 2 + y.

For A > 4 the term proportional to *~2 in (1.52) may be neglected. The linear term
e may be neglected as well, due to the factor . This leads to ¢ ~ €'/2 and to the usual
mean-field result

r=2 a4 (153)
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For A < 4, the terms proportional to e, $? may be neglected, leading to ¢ ~ €'/(*~2) and

1 20 -3
T—2+/\_2—)\_2, 2<A<4. (1.54)
Note that for 2 < A < 3 the percolation threshold is strictly g. = 0. In that case we work at
g = ¢ small but fixed, taking the limit § — 0 at the very end. For thecase 2 < A < 3, 7 in
Eq. (1.54) represents the singularity of the distribution of branch sizes. For the distribution
of cluster sizes in this range one has to consider the singularity of x in Eq. (1.34), leading to
T=23.

For growing networks of the Albert-Barabasi model with A = 3, it has been shown that
sn, o< (slns)~2 [49]. This is consistent with 7 = 3 plus a logarithmic correction. Related
results for scale-free trees have been presented in [50].

At the transition point the size of the largest cluster, S, can be obtained from the finite
cluster distribution by taking the integral over the tail of the distribution to equal 1/N. This
results in

S ox NT=1 = N(A=2)/(A=1), (1.55)

For XA = 4 this reduces to the known N2/3 dependence [4]. For A — 3, S o« N'/2. It is not
yet clear whether the results have a meaningful interpretation for A < 3.

The critical exponent o, for the cutoff cluster size, may be also derived directly. Finite-size
scaling arguments predict [38] that

ge(00) = ge(N) ~ N~@ = N™751 | (1.56)

where N is the number of sites in the network, v is the correlation length critical exponent:
& ~ (¢ —qc)7, and d is the dimensionality of the embedding space. Using a continuous
approximation of the distribution (1.1) one obtains [14]

2 A\ K32 — A
K~ (3-A)1(2A-nﬂx’ (1.57)

where, as usual K ~ N'/(A~=1)_For 3 < X < 4, this and Eq. (1.27) yield

4e(00) = Go(N) ~ Ak ~ K372 ~ N3=1 (1.58)
which in conjunction with Eqg. (1.56) leads to
_A=3
CA=27
For A > 4 we recover the regular mean-field result o = 1/2. Note that Egs. (1.56), (1.49),
(1.54) are consistent with the known scaling relation: o8 = 7—2[38, 22, 30]. For2 < A < 3,
ge(o0) = 0and go(N) ~ K23 ~ NA=3)/(A=1) Therefore
3=
SA-27
again consistent with the scaling relation 8 = 7 — 2 (cf Eq. (1.49)).

o 3<A<4. (1.59)

2<A<K3, (1.60)

g
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1.3.6 Fractal dimension

It is well known that on a random network in the well connected regime, the average distance
between sites is of order log,, N [4, 51]. This has also been shown to hold for sgeneral net-
works [35] and may be even lower for scale-free networks [34]. However, the diluted case
is essentially the same as infinite-dimensional percolation. In this case, there is no notion of
geometrical distance (since the graph is not embedded in an Euclidean space), but only of
chemical distance (the smallest number of edges connecting any two nodes). It is known from
infinite-dimensional percolation theory that the fractal dimension at criticality is d¢ = 2 [22].
Therefore the average (chemical) distance (I) between pairs of sites on the spanning cluster at
criticality behaves as

Iy ~vVM (1.61)

where M is the number of sites in the spanning cluster. This is analogous to percolation in
finite dimensions, where in lengthscales smaller than the correlation length the cluster is a
fractal with dimension d¢ and above the correlation length the cluster is homogeneous and
has the dimension of the embedding space. In our infinite-dimensional case, the crossover
between these two behaviors occurs around the correlation length ¢ = |p. — p| .

For 3 < X < 4 the situation is somewhat different. Below the transition all clusters are
finite and almost all finite clusters are trees. The correlation length can be defined using the
formula [22]:

s D Pg(l)

& S0 (1.62)

The number of sites in the I shell can be seen to be approximately (k) (x — 1)!~* [35]. Since

k—1= (kg —1)gand g = 1/(ko — 1) we get g(I) = c(1 — §)!, where § = q — g.. This

leads to & ~ (g — qc)~ %, i.e., vy = 1. Above the threshold, the finite clusters can be seen

as a random graph with the residual degree distribution of sites not included in the infinite
cluster [19]. That is, the degree distribution for sites in the finite clusters is

P,(k) = P(k)u*, (1.63)

where w is the solution of Eq. (1.36). Using this distribution, we can define «,. for the finite
clusters. This adds a term proportional to e*~3 to the expansion of &. But, since § oc e*~3
(1.46), this leads again to v; = 1.

Using v, the dimension of the network at criticality can be found. The chemical dimension
d; = 1/ovy, therefore

A-2
TA=3

Since every path, when embedded in a space above the critical dimension, can be seen as a
random walk, it follows that » = v, /2 [22]. Therefore, the fractal dimension is,

d; (1.64)

1 -2
ho b2

1.
Vo A—3 (1.65)
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The dimension of the embedding space is,

1 A—1
dc_ya(r—1)_2>\—3‘ (1.66)

dy, dg, and d,. of the embedding space reduce to the known values of 2, 4, and 6, respectively,
when A = 4. Some of the above results have been obtained also by Burda et al., [50].

1.4 Percolation in Directed Networks

Many of the large complex networks of interest, such as the Internet, WWW, electric power
grid, cellular, and social networks are directed [52, 28, 29]. For example, in social and eco-
nomical networks if node A gains information or acquires physical goods from node B, it does
not necessarily mean that node B gets similar input from node A. Likewise, most metabolic
reactions are one-directional, thus changes in the concentration of molecule A affect the con-
centration of its product B, but the reverse is not always true. Despite the directedness of
many real networks, the modeling literature, with few notable exceptions [35, 53], has fo-
cused mainly on undirected networks.

Important aspects of directed networks are captured by their degree distribution, P(j, k),
or the probability that an arbitrary node has j incoming and & outgoing edges. Many naturally
occurring directed networks, such as the WWW, metabolic networks, citation networks, etc.,
exhibit a power-law, or scale-free degree distribution for the incoming or outgoing links:

Pin(out) (l) = Cli/\i"(om)a m<I<K, (167)

similar to that of Eq. (1.1) [7, 8].

The structure of a directed graph has been characterized in [35, 53], and in the context
of the WWW in [54, 8]. In general, a directed graph consists of a giant weakly connected
component (GWCC) and several finite components. In the GWCC every site is reachable
from every other, provided that the links are treated as bi-directional. The GWCC is further
divided into a giant strongly connected component (GSCC), consisting of all sites reachable
from each other following directed links. All the sites reachable from the GSCC are referred
to as the giant OUT component, and the sites from which the GSCC is reachable are referred
to as the giant IN component. The GSCC is the intersection of the IN and OUT components.
Sites in the GWCC, but not in the IN and OUT components, constitute the “tendrils” (see Fig.
1.2).

Here we repeat the analysis of Section 1.3 for the case of directed networks. We limit
ourselves mostly to final results and conclusions. A detailed derivation can be found in [55].

1.4.1 Threshold

The condition for the existence of a giant component in a directed random network of arbitrary
degree distribution can be deduced in a manner similar to [14]. If a site is reached following a
link pointing to it, then it must have at least one outgoing link, on average, in order to be part
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of a giant component. This condition can be written as

(kjli = j) = Y kjP(ki, kjli > j) = 1. (1.68)
ki k;

Figure 1.2: Structure of ageneral directed graph.

Reasoning as in Section 1.3.2, the above criterion reduces to [35, 53]
(k) > (k). (1.69)

Suppose a fraction p = 1 — ¢ of the nodes is removed from the network, then the original
degree distribution, P(j, k), becomes

) - . ] ik _
PR = 3 Plioka) ()@= () a -ttt (1.70)
: J k
Jo,ko
In view of this new distribution, Eq. (1.69) yields the percolation threshold
(k)
e=1—p.= L 171
q Pe = Uiy (1.71)

where averages are computed with respect to the original distribution before dilution, P(j, k).
Eq. (1.71) indicates that in directed scale-free networks if (jk) diverges then g. — 0 and the
network is resilient to random breakdown of nodes and bonds.

The term (jk) may be dramatically influenced by the appearance of correlations between
the in- and out-degrees of the nodes. This effect has been discussed in [53]. Our own stud-
ies [55] of uncorrelated and correlated distributions reveal that In the former case the threshold
is simply g. = 1/(k), while in the latter case (jk) diverges whenever

Mowt = 2)(Nin —2) <1, (1.72)
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Figure 1.3: Phase diagram of the different regimes for the IN component of scale-free correlated di-
rected networks. The boundary between Resilient and Anomalous exponents is derived from Eq. (1.72)
while that between Anomalous exponents and Mean fi eld exponents is given in table 1.1 for X = 4.
For the diagram of the OUT component A;, and A, change roles

causing the percolation threshold to vanish. The various regimes resulting from this observa-
tion are summarized in Fig. 1.3.

Percolation of the GWCC can be seen to be similar to percolation in the non-directed graph
created from the directed graph by ignoring the directionality of the links. The threshold is
obtained from the criterion (cf Eq. (1.27))

(k)
R Wl A— 1.7
Here the connectivity distribution is the convolution of the in and out distributions,
k
P'(k)=>_P(,k-1). (1.74)
1=0

Whether the distribution is correlated or not, P’(k) is always dominated by the slower decay-
exponent, therefore percolation of the GWCC is the same as in non-directed scale-free net-
works, with s = min(Ain, Aout). Note that the percolation threshold of the GWCC may
differ from that of the GSCC and the IN and OUT components [53].

1.4.2 Critical exponents

Percolation of the GSCC and IN and OUT components may be analyzed with the formalism of
generating functions [44, 39, 35, 53] (see, also, the Chapter by Newman in this book). We have
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uncorrelated correlated
GWCC | min(Aout, Ain) +1 | min(Aout, Ain)
IN )\out + 1 )\out + %
ouT Ain + 1 Ain + 2que=2in
GSCC | min(Aout, Ain) + 1 | min(A:,;, A5)

Table1.1: Valuesof \* for the different network components for both correlated and uncorrel ated cases.

computed the critical exponents g and 7, following the approach of Section 1.3.5. The results
are the same as for the non-directed case, Egs. (1.49) and (1.54), but where X is replaced by an
effective A\* whose value differs for uncorrelated and correlated distributions. The value of A*
for the various components in both the uncorrelated and correlated scenario are summarized
in table 1.1. Our findings [55] indicate that even the tiniest amount of correlation results in
behavior typical to the correlated case. We may therefore conclude that in practical situations
only the correlated case counts, for it is expected, to some extent, in most naturally occurring
directed networks.

1.5 Efficient Immunization Strategies

It is well established that random immunization fails to prevent epidemics of diseases that
spread upon contact between infected individuals. On the other hand, targeted immunization
requires global knowledge of the topology of the social network in question, rendering it
impractical. We propose an effective strategy, based on the immunization of a small fraction
of random acquaintances of randomly selected individuals, that prevents epidemics without
requiring global knowledge of the network [56].

Social networks are known to possess a broad distribution of the number of links (con-
tacts) k, emanating from a node (an individual) [57, 58, 59, 10]. 3 Studies of percolation
on broad distribution networks show that a large fraction f. of the nodes need to be removed
(immunized) before the integrity of the network is compromised. This is particularly true for
scale-free networks with 2 < A < 3 — the case of most known networks [6, 9, 13] — where
the percolation threshold f. — 1, and the network remains connected (contagious) even after
immunization of most of its nodes [60, 61, 62, 63, 45, 14, 39]. In other words, with a random
immunization strategy most of the population needs to be immunized before an epidemic is
arrested (see Fig. 1.4).

When the most highly connected nodes are targeted first, removal of just a small fraction
of the nodes results in the network’s disintegration [39, 41]. This has led to the suggestion of
targeted immunization of the HUBSs (the most highly connected nodes in the network) [64, 65].
The main shortcoming of this approach is that it requires a complete, or at least fairly good
knowledge of the connectivity of each node in the network. Such global information often
proves hard to gather, and may not even be well-defined (as in social networks, where the
number of social relations depends on subjective judging). Here we propose an effective

30ften this is the scale-free distribution P(k) = ck~*. Our results apply, however, to broad distributions in
general.
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immunization strategy that works at low immunization rates f, and obviates the need for
global information.

151 Acquaintance immunization

In our approach, we choose a random fraction p of the population (of size V) and ask each
individual to point at an acquaintance with whom they are in contact. The acquaintances,
rather than the individuals themselves, are the ones immunized. The fraction f. needed to be
immunized in order to stop the epidemic can be computed analytically.

In each immunization event the probability that a node with & contacts is selected is
kP(k)/(N(k)). Let n;(k) be the number of individuals in chemical shell I who are sus-
ceptible (not immunized). In the next chemical shell, I + 1, each of those sites connects to
k — 1 neighbors (excluding the one connecting to shell / — 1). To find out ;41 (k'), we mul-
tiply the number of links going out of the Ith layer by the probability of reaching a site of
connectivity &' by following a link from a susceptible site, p(k’|k A si), and the probability
that this site is also susceptible, p(sy: |k’ A k A si). This gives

nipr (k') = n(k)(k — Dp(K |k A sk)p(sw K Ak A se) . (1.75)
k

From Bayes’ rule,

p(sklk A K )p(K'|k)
p(sk|k)
p(k'|k) = k' P(K')/(k) is independent of k. p(sg|k A k') = e=P/¥ x (e=P/k)k=1 where the

average is taken with respect to p(k) as defined before. p(sy|k) = {exp(—p/k))¥, since no
knowledge exists on its neighbors. Using all these relations one obtains:

p(k'|k A sg) = (1.76)

) _ p(k)e /¥
p(K'|k A sp) = W 1.77)
The above results, along with (1.75) yield
g (k') = of “2p(k)e 2% > "y (k) (k — 1)e ?/k (1.78)
k

where v, = {exp(—p/k)). This leads to the stable distribution of connectivity in a chemical
layer: n; (k) = avk~2p(k)e?/*, for some a. Putting this back into (1.78) results in:

nigr (K) = m(k') Y p(k)(k — 1ok 2e 20/k . (1.79)
k

Therefore, if the sumin (1.79) is larger than 1 the population is above the percolation threshold
and the epidemics would propagate, while it would be arrested if the sum is smaller than 1.
Thus,

> plk)(k — Vv ek =1 (1.80)
k
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Figure 1.4: Critical probability, f., as a function of X, for the random immunization (top), acquain-
tance immunization (middle), double acquaintance immunization (lower middle) and attack (bottom)
strategies. Curves represent analytical results (approximate for double acquaintace), while data points
represent simulation data, for apopulation N = 10°.

is the condition for criticality. The desired immunization fraction then follows:
fe="Y_ P(k)vj, . (1.81)
k

A related immunization strategy calls for the immunization of acquaintances referred to
by at least n individuals. (Above, we specialized to n = 1.) The threshold is lower the larger
n is, and may justify, under certain circumstances, this somewhat more involved protocol.

In Fig. 1.4, we show the immunization threshold f. needed to stop an epidemic in net-
works with 2 < A < 3.5 (this covers all known cases). Plotted are curves for the (inefficient)
random strategy, and the strategy advanced here, for the cases of n = 1 and 2. Note the dra-
matic decrease of f. with the suggested strategy. Improvements can be achieved for any broad
distribution.

Various immunization strategies have been proposed earlier, mainly for the case of an
already spread disease and are based on tracing the chain of infection towards the super-
spreaders of the disease [66]. Our approach can be used even before the epidemic starts
spreading, and therefore does not require any knowledge of the chain of infection.

1.6 Summary and Outlook

The main goal of this chapter has been to study the effect of the special nature of scale-free
distribution on the properties of random network models. Some general methods have been
presented for the study of generalized random networks. Those include methods for the study
of the layer structure of the graph, the percolation threshold and the critical exponents.
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The special properties of scale-free networks, in conjunction with the general method
presented for the study of scale-free and other networks, might prove useful for applications
such as the design of more robust networks [40], the improvement of routing [67] and search
algorithms [68], and the predicting and arresting of computer and human viruses [45, 65].
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