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We study a problem of failure of two interdependent networks in the case of identical degrees of mutually
dependent nodes. We assume that both networks (A and B) have the same number of nodes N connected
by the bidirectional dependency links establishing a one-to-one correspondence between the nodes of the two
networks in a such a way that the mutually dependent nodes have the same number of connectivity links; i.e.,
their degrees coincide. This implies that both networks have the same degree distribution P (k). We call such
networks correspondently coupled networks (CCNs). We assume that the nodes in each network are randomly
connected. We define the mutually connected clusters and the mutual giant component as in earlier works on
randomly coupled interdependent networks and assume that only the nodes that belong to the mutual giant
component remain functional. We assume that initially a 1 − p fraction of nodes are randomly removed because
of an attack or failure and find analytically, for an arbitrary P (k), the fraction of nodes μ(p) that belong to the
mutual giant component. We find that the system undergoes a percolation transition at a certain fraction p = pc,
which is always smaller than pc for randomly coupled networks with the same P (k). We also find that the
system undergoes a first-order transition at pc > 0 if P (k) has a finite second moment. For the case of scale-free
networks with 2 < λ � 3, the transition becomes a second-order transition. Moreover, if λ < 3, we find pc = 0,
as in percolation of a single network. For λ = 3 we find an exact analytical expression for pc > 0. Finally, we
find that the robustness of CCN increases with the broadness of their degree distribution.
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I. INTRODUCTION

The robustness of interdependent networks has been re-
cently studied by Buldyrev et al. [1] within the framework of
the mutual percolation model. They found that two randomly
connected networks with arbitrary degree distributions ran-
domly coupled by bidirectional dependency links completely
disintegrate via a cascade of failures if the fraction p of
the nodes that survive the initial attack is less than some
critical value p = pc > 0. Moreover, the transition at pc is
of the first-order type; i.e., the fraction of the functional
nodes μ(p) that survive after the cascade of failures has a
step discontinuity at p = pc changing from μc = μ(pc) > 0
for p = pc to zero for p < pc. This behavior was observed
even for scale-free (SF) networks with a power-law degree
distribution P (k) ∼ k−λ with 2 < λ � 3. The explanation of
this behavior is based on the fact that in that model the nodes
with large degree (hubs) in one network may depend on the
nodes with small degree in another network. The nodes with
small degree can be isolated from a giant component in one
network by removal of a small fraction of nodes and thus
cause the malfunction of the hubs in the other network. In
real-world interacting networks, the hubs in one network are
more likely to depend on the hubs of another network [2]. This
can significantly enhance the robustness of the interdependent
networks. In general, the correlations among the degrees of
the mutually dependent nodes can be described by a matrix
P (k1|k2) that specifies the conditional probabilities to find a
node with degree k1 in one network, provided it depends on
a node with degree k2 in another network. This matrix can be
quite complex and may depend on many parameters. For each
parameter set the model can be readily studied by computer
simulations [2], but in order to get a general understanding
of the correlation effects, it is desirable to solve the problem
analytically at least in some limiting cases.

In this paper we study the mutual percolation problem in the
case of the strongest possible correlations; namely, we study
the case in which both networks (A and B) have the same
number of nodes N connected by bidirectional dependency
links establishing a one-to-one correspondence D between
the nodes of the two networks in such a way that mutually
dependent nodes have the same number of connectivity links;
i.e., their degrees are identical: P (k1|k2) = 1 for k1 = k2 and
P (k1|k2) = 0 otherwise. This implies that both networks have
the same degree distribution P (k). For brevity we will call such
networks correspondently coupled networks (CCNs), while
we will refer to the model studied in Ref. [1] as randomly
coupled networks (RCNs). Following Ref. [1], we assume that
the nodes in each network are randomly connected.

As in Ref. [1] we begin by randomly removing a fraction
1 − p of the nodes of network A and removing all the A links
connected to these removed nodes. Due to the dependence
between the networks, all the nodes in network B that depend
on the removed A nodes must also be removed. The B links
connected to the removed B nodes are then also removed.
As nodes and links are sequentially removed, each network
begins to fragment into connected components, which we call
clusters. The clusters in network A and the clusters in network
B are different since each network is connected differently. A
set of nodes a in network A and the corresponding set of nodes
b = Da in network B form a mutually connected set, if

(i) Each pair of nodes in a is connected by a path that
consists of nodes belonging to a and links of network A, and

(ii) Each pair of nodes in b is connected by a path that
consists of nodes belonging to b and links of network B.

We call a mutually connected set a mutually connected
cluster if it cannot be enlarged by adding other nodes and still
satisfy the conditions above. Only mutually connected clusters
are potentially functional.
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As has been shown in Ref. [1] the majority of mutually
connected clusters consist of single mutually dependent nodes.
The probability of finding a mutually connected cluster
consisting of two or more nodes becomes negligible as the
number of nodes in the networks goes to infinity. However,
aside from finite mutually connected clusters a giant mutually
connected cluster that constitutes a nonzero fraction of nodes
can exist if p is not too small.

This giant mutual cluster is called the mutual giant
component. We assume that only the nodes that belong to
the mutual giant component remain functional. The mutual
giant component can be found by an iterative algorithm [1]
that is equivalent to a physically meaningful process of the
cascade of failures.

Here we find analytically the fraction of nodes μ(p) that
belong to the mutual giant component for the case of CCNs.
We find that as in Ref. [1], the system undergoes a percolation
transition at a certain fraction p = pc, which, however, is
always smaller than pc for RCNs with the same degree
distribution with the exception of random regular graphs [3]
for which both values coincide. Moreover, we find that the
system undergoes a first-order transition at pc > 0 if the degree
distribution has a finite second moment. For the practically
important case of SF networks [4–8] with 2 < λ � 3, for
which the second moment diverges, the transition becomes
a second-order transition. If λ < 3, we find that pc = 0 as in
the percolation of a single network [9], while for λ = 3 we
find an exact analytical expression for pc > 0. The change
in transition order has been also observed in interdependent
networks with partial coupling [10]. We also investigate how
the broadness of the degree distribution affects the robustness
of CCNs.

II. GENERATING FUNCTIONS AND THE
CASCADE PROCESS

A. First stage

We will describe the stages of the cascade of failures in
CCNs in terms of the generating function of their degree
distribution [11,12]:

G(x) =
∞∑

k=0

P (k)xk, (1)

and the generating function of the associated branching process
[13]:

H (x) = G′(x)

G′(1)
= 1

〈k〉
dG(x)

dx
, (2)

where 〈k〉 ≡ G′(1) is the average degree. It is known that the
degree distribution P̃ (k,p) of a network Ã that is obtained by
random removal of a fraction 1 − p of nodes from a network
A with the original degree distribution P (k) is related to P (k)
through a binomial expansion [11]:

P̃ (k′,p) =
∑
k�k′

P (k)pk′
(1 − p)k−k′

Ck′
k , (3)

where Ck′
k = k!/[k′!(k − k′)!] are binomial coefficients. Ac-

cordingly [11], the generating function of this distribution is

G̃(x,p) = G(xp + 1 − p). (4)

The fraction of nodes that do not belong to the giant component
of a network is given by [12,14,15]

r = G(f ), (5)

where f is the smallest nonnegative root of a transcendental
equation:

f = H (f ). (6)

The degree distribution of nodes that do not belong to the giant
component is given by [14]

Po(k,f ) = P (k)f k/r. (7)

Accordingly the degree distribution of nodes in the giant
component is given by

Pi(k,f ) = P (k)(1 − f k)/(1 − r). (8)

Thus the degree distribution in the giant component of a
decimated network after random removal of a 1 − p fraction
of nodes is

P̃i(k
′,f,p) = P̃ (k′,p)[1 − f (p)k

′
]/[1 − r(p)], (9)

where

r(p) = G̃[f (p),p], (10)

and f (p) satisfies the transcendental equation

f (p) = H̃ [f (p),p]. (11)

In order to find the original degree distribution in the giant
component of network A we must restore the links that lead
to the randomly removed nodes. If a node in the decimated
network A has a degree k′, it might have any degree k � k′
in the original network A with probability P (k|k′) given by
Bayes’ formula:

P (k|k′) = P (k)Ck′
k pk′

(1 − p)k−k′
/P̃ (k′,p). (12)

Thus the total probability that a node in the giant component
has a degree k is

P1(k) =
∑
k′�k

P (k)Ck′
k pk′

(1 − p)k−k′ P̃i(k′,f,p)

P̃ (k′,p)
, (13)

or using Eq. (9),

P1(k) =
∑
k′�k

P (k)Ck′
k pk′

(1 − p)k−k′ 1 − f (p)k
′

1 − r(p)

= P (k)
1 − [f (p)p + 1 − p]k

1 − r(p)
. (14)

Introducing the new notations f1 = f (p) and

t1 = f1p + 1 − p (15)

and using Eqs. (10) and (4), we obtain the generating function
of this degree distribution:

G1(x) = G(x) − G(xt1)

1 − G(t1)
. (16)
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The fraction of nodes in the giant component of the decimated
network A is 1 − r1, where r1 = G(t1). Because the decimated
network has Np nodes, the size of the giant component A1 of
network A after random removal of (1 − p) nodes is N1 =
Np(1 − r1).

B. Second stage

We assume that only nodes that belong to A1 are functional;
thus after the first stage of the cascades of failures, only
a p(1 − r1) < p fraction of the nodes in network B remain
functional. Thus we expect further disintegration of network
B at the second stage of the cascade, and its giant component
B2 will be even smaller than A1. We define a set of nodes
B1 = D(A1) by projecting A1 onto network B using the
one-to-one correspondence D between the nodes of networks
A and B established by dependency links. Since the degree
of each node in network B is the same as the degree of its
dependent node in network A, the giant component A1 of
network A obtained at the first stage of the cascade has the same
degree distribution as the set B1 in network B. Thus the degree
distribution of set B1 coincides with the degree distribution of
set A1, which is given by Eq. (14). Moreover, from the point of
view of network B, the nodes in B1 are randomly selected and
randomly connected. The structure of Eq. (14) implies that the
selection process of B1 can be interpreted as random selection
of nodes from the original network B by first removing 1 − p

fraction of nodes due to the original attack and then removing
the nodes that do not belong to the giant component of Ã.
From the point of view of network B these nodes are removed
at random with probability t k1 , which depends only on the node
degree, k.

Thus, to compute B2 we can use the same approach used
at the first stage, but applied to the new network B1 with the
new degree distribution given by Eq. (14). The only problem
is that many of the links outgoing from network B1 are ending
at the nodes that do not belong to network B1, and thus
for computation of B2 these links must be removed. The
probability p1 of a random link originating in network B1

to end up in B1 is equal to the ratio of the number of links
originating in network B1:

L1 = N1

∑
kP1(k) = pN〈k〉[1 − G′(t1)t1/〈k〉] (17)

to the total number of links N〈k〉. Therefore,

p1 = L1

N〈k〉 = p(1 − s1), (18)

where

s1 = t1G
′(t1)/〈k〉. (19)

Accordingly, the degree distribution of links connecting the
nodes of network B1 is

P̃1(k′,p) =
∑
k�k′

P1(k)pk′
1 (1 − p1)k−k′

Ck′
k , (20)

and the generating function of this distribution is

G̃1(x,p1) = G(xp1 + 1 − p1) − G[t1(xp1 + 1 − p1)]

1 − r1
. (21)

Thus the size N2 of the giant component B2 is N2 =
p(1 − r1)[1 − r(p1)]N , where r(p1) = G̃1(f2,p1) and f2 =
H̃1(f2,p1). Introducing a new notation

t2 ≡ f2p1 + 1 − p1 (22)

and taking into account Eq. (21), we see that

f2 = G′(t2) − G′(t1t2)t1
〈k〉(1 − s1)

(23)

and N2 = p(1 − r1){1 − [G(t2) − G(t2t1)]/(1 − r1)}N . Using
that r1 = G(t1), we get

N2 = p[1 − G(t1) − G(t2) + G(t1t2)]N. (24)

We can compute the original degree distribution P2(k) in B2

using Bayes’ formula in the same way as we obtained the
distribution P1(k):

P2(k) = P (k)

(
1 − t k1

)(
1 − t k2

)
1 − G(t1) − G(t2) + G(t1t2)

. (25)

C. Third stage

On the third stage of the cascade we will compute the giant
component A3 of network A, which is the result of further
disintegration of A1 because the nodes in A1 that do not belong
to A2 = D(B2) failed at the second stage. We can again apply
the same technique because the set of nodes A2 is a selection of
nodes in A1, which is made independent of its topology. From
the point of view of network A, this selection is a random
selection that can depend only on the degree of a node.

Because the degrees of the mutually dependent nodes in
networks A and B coincide, the degree distribution in the set
A2 is given by Eq. (25). We can rewrite Eq. (14) for the degree
distribution of nodes in A1 as

P1(k) = P (k)
1 − t k1

1 − G(t1)
. (26)

Comparing Eqs. (26) and (25) we see that the only significant
difference between them is the factor 1 − t k2 in the numerator
of Eq. (25), while the expressions in the denominators are
just normalization factors. Thus the distribution P2(k) is the
degree distribution of a set of nodes obtained from the set
A1 by random deletion of some nodes in A1 with probability
t k2 , which depends on the degree of the node k. Thus from
the point of view of the network A the set A2 can be
obtained from A1 by random deletion of some nodes with
probability t k2 .

The only difference with the situation at the second stage
is that A2 is selected not from the random subset of nodes Ã
but from its connected giant component A1. Accordingly, we
must find a way to replace A1 by some random selection of
nodes out of the original network A. Recall that Ã is obtained
by randomly selecting nodes of the original network A with
probability p. In order to obtain A2 from A1, we must delete
the nodes from A1 with probability t k2 . We achieve the same
result if we randomly delete nodes from Ã with the same
probability. Let us denote Ã2 a set obtained from Ã by random
deletion of nodes with probability tk2 . It is clear that the giant
component of Ã2 coincides with A3, the giant component of
A2. This is true because it is equivalent to first find all the paths

016112-3



BULDYREV, SHERE, AND CWILICH PHYSICAL REVIEW E 83, 016112 (2011)

between all pairs of nodes in Ã and then delete some paths due
to deletion of nodes, or to first delete the nodes and find all the
paths among the remaining nodes of Ã. The set Ã2 is the result
of first selecting nodes from A with probability p and then
selecting the remaining nodes with probability 1 − tk2 . This is
equivalent to selecting nodes from the network A at random
with probability p(1 − tk2 ). Thus A3 is the giant component of
a subset of nodes of the original network A selected at random
with probability p(1 − tk2 ). Note also that B2 obtained on the
second stage is the giant component of network B after random
selection of nodes with probability p(1 − tk1 ). Thus the third
stage in the cascade of failures is equivalent to the second stage
with the replacement of t1 by t2. Accordingly, from the point
of view of the network B, B3 = DA3 can be obtained from B2

by random deletion of nodes with probability t k3 , which can
be obtained from t2 using the same algorithm by which we
obtained t2 from t1.

D. Recursive relations

Generalizing, for stage i we arrive at a recursive relation
between ti and ti+1. Namely, once we know ti we can find ti+1,
as well as the size of the giant component at the stage i + 1:

Ni+1 = p[1 − G(ti) − G(ti+1) + G(ti ti+1)]N (27)

and the degree distribution of the nodes inside this giant
component:

Pi+1(k) = P (k)

(
1 − tki+1

)(
1 − t ki

)
1 − G(ti) − G(ti+1) + G(ti ti+1)

. (28)

In order to find ti+1 from ti we repeat the steps used deriving
t2 from t1 by first introducing

si = tiG
′(ti)/〈k〉 (29)

and

pi = p(1 − si) (30)

in analogy to Eqs. (19) and (18). Then

ti+1 ≡ fi+1pi + 1 − pi, (31)

where fi+1 satisfies a transcendental equation analogous to
Eq. (23):

fi+1 = G′(ti+1) − G′(ti ti+1)ti
〈k〉(1 − si)

. (32)

Excluding fi+1 and si from Eq. (32) we find that ti+1 is given
by the smallest non-negative root of the equation:

ti+1 = (1 − p) + p

〈k〉 [G′(ti)ti + G′(ti+1) − tiG
′(ti ti+1)].

(33)

To start the iterative process we must take into account the
definition of t1 given in Eqs. (15) and (11), which is equivalent
to a transcendental equation

t1 = (1 − p) + p

〈k〉G
′(t1), (34)

which is the same as Eq. (33) if we introduce t0 ≡ 0.

III. THE MUTUAL GIANT COMPONENT AND
THE PHASE TRANSITION

The cascade of failures will stop when ti+1 = ti = t , and
hence the fraction of nodes in the mutual giant component
μ = limi→∞ Ni/N is given by the simplified equation (27):

μ = p[1 − 2G(t) + G(t2)], (35)

where t is the smallest non-negative root of the equation

t = (1 − p) + p

〈k〉 [(1 + t)G′(t) − tG′(t2)]

= 1 − p[1 − (1 + t)H (t) + tH (t2)]. (36)

The right-hand side of Eq. (36) has zero derivative at t = 1,
if G′′(1) is finite. This condition is equivalent to the existence of
the second moment of the degree distribution. Thus one can see
[Fig. 1(a,b)] that for finite second moment and small enough
p, Eq. (36) has only the trivial solution t = 1 corresponding
to μ = 0 and, therefore, to the complete disintegration of
the networks. As p increases, a nontrivial solution μ > 0
will emerge at p = pc, at which point the right-hand side of
Eq. (36) will touch the straight line representing the left-hand
side at t = tc; at that point the slope of both lines is equal to 1.
Since at t = 1 the slope of the right-hand side is zero, tc must
be smaller than 1, and thus the mutual percolation transition is
of the first order, where μ changes from zero (for p < pc) to
μ � μc > 0 (for p � pc). The value of μc is given by Eq. (35)
computed at t = tc.

An efficient way of finding pc is to solve Eq. (36) with
respect to 1/p:

1 − (1 + t)H (t) + tH (t2)

1 − t
= 1

p
(37)

and find the maximum of the left-hand side with respect to t

(Fig. 2). The left-hand side of Eq. (37) is a curve that changes
from 1 − H (0) = 1 − P (1)/〈k〉 at t = 0 to zero at t = 1. At
t = 0 it has a positive slope 1 − [P (1) + 2P (2)]/〈k〉, so it must
have an absolute maximum at tc ∈ (0,1). The equation for tc
can be readily obtained by differentiation of Eq. (37):

1 − 2H (tc) + H
(
t2
c

) − (
1 − t2

c

)
H ′(tc)

+ 2t2
c (1 − tc)H ′(t2

c

) = 0. (38)

The value of the left-hand side of Eq. (37) at t = tc gives
1/pc. If the value of this maximum is less than 1, then the
networks do not have a mutual giant component at any p.

IV. SPECIAL CASES

Figure 1 shows the graphical solutions of Eq. (36) for
several special cases of degree distributions of CCNs.

A. Erdős-Rényi networks

For Erdős-Rényi (ER) networks [3,12] H (t) = exp[〈k〉(t −
1)], and the maximal value of the left-hand side of Eq. (37)
monotonically increases with 〈k〉. This can be readily seen by
differentiating Eq. (37) with respect to 〈k〉. The maximal value
reaches 1 at 〈k〉 = 1.706 526, below which correspondently
coupled ER networks disintegrate even without any initial
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FIG. 1. Graphical solution of Eq. (36) for various special cases of CCNs. (a) ER networks with average degree 〈k〉 = 3. One can see that the
monotonically increasing curves representing the right-hand side of Eq. (36) for different p have zero slopes at t = 1. The relevant solutions for
t are given by the lower intersection points of these curves and a straight line y = t representing the left-hand side of Eq. (36). For p = 1, this
solution t = 0.0602 is indicated by a vertical straight line. The intersection of this vertical line with the plot of Eq. (35) (dot-dash line) gives
the mutual giant component μ = 0.931. The critical p = pc = 0.649 9451 corresponds to a sudden disappearance of the nontrivial solution.
(b) RR networks with 〈k〉 = 3. Note that for p = 1 the nontrivial solution is t = 0, which means that μ = 1. The value of pc = 0.758 751 is
grater than the pc for ER networks with the same average degree shown in panel (a). (c) Analogous plot for SF networks with λ = 2.5. It shows
that the slope of the curves is infinite for t → 1. One can see that in this case the nontrivial solution exists for any p > 0. However, as p → 0,
the nontrivial solution t → 1, and, accordingly, μ → 0 indicating the second-order transition at p = pc = 0. (d) The marginal case of λ = 3.
The slopes of the curves for t → 1 are finite. This means that there is a critical p = pc > 0 at which the slope of the curve becomes equal to
1 at t → 1. For the displayed case of kmin = 1, Eq. (44) yields pc = 0.593 284 56. The nontrivial solution smoothly approaches 1 as p → pc.
This again implies μ → 0 (second-order transition).

attack or failure (Fig. 2). Note that the equivalent value of
〈k〉 for randomly coupled ER networks is 2.4554 [1].

B. Random regular graphs

For a random regular (RR) graph [Fig. 1(b)] in which all the
nodes have the same degree k = 〈k〉, G(t) = t 〈k〉 and H (t) =
t 〈k〉−1. Then t satisfies

t = (1 − p) + p(t 〈k〉−1 + t 〈k〉 − t2〈k〉−1) (39)

and

μ = p(1 − t 〈k〉)2. (40)

Equations (39) and (40) can be obtained by simpler methods
presented in Ref. [1] for RCNs, since for the case of random

regular graphs, the degrees of all the nodes in both networks
coincide, and therefore the CCNs and RCNs models are
equivalent. Indeed, from Eq. (1) of Ref. [1] it follows in a
special case of coinciding degree distributions of the coupled
networks that

μ = p[1 − G(t)]2, (41)

where

t = 1 − p[1 − G(t)][1 − H (t)]. (42)

If G(t) = t 〈k〉 and H (t) = t 〈k〉−1, Eqs. (41) and (42) are
equivalent to Eqs. (40) and (39), respectively.

016112-5



BULDYREV, SHERE, AND CWILICH PHYSICAL REVIEW E 83, 016112 (2011)

0 0.2 0.4 0.6 0.8 1
t

0

0.5

1

1.5
1/

p

<k>=3
<k>=1.8
<k>=1.7065
<k>=1.6
<k>=1.7065,RCN

1/p
c
=1.5368

FIG. 2. Graphical solution of Eq. (37) for ER networks with
different degree 〈k〉 illustrating the method of finding pc. The
bold dashed curve corresponds to 〈k〉 = 3 studied in Fig. 1(a). As
〈k〉 decreases below 1.706, the nontrivial solution corresponding to
p � 1 disappears. We also show the behavior of the analogous equa-
tion (45) for 〈k〉 = 1.706 for RCNs. In agreement with proposition
(3) this curve is always below the curve with the same average degree
for CCNs studied here.

C. Scale-free networks

For SF networks with λ < 3 [Fig. 1(c)], the derivative of the
right-hand side of Eq. (36) is infinite at t = 1, which means that
a nontrivial solution exists at any p > 0 since in the vicinity
of t = 1 the straight line representing the left-hand side of
Eq. (36) is always above the curve representing the right-hand
side, while for t = 0, the curve is always above the line. This
means that SF CCNs are as robust as a single SF network for
which pc is always zero.

For the marginal case of λ = 3 [Fig. 1(d)] G′′(t) diverges
as ln(1 − t) when t → 1, and thus the left-hand side of
Eq. (36) has a finite derivative at t = 1. Accordingly p =
pc > 0, but the nontrivial solution emerges at tc = 1, so
the transition becomes of the second order. For the case
of P (k) = (kmin/k)2 − [kmin/(k + 1)]2 for k � kmin = 1,2, . . .

and P (k) = 0 for k < kmin we can find pc analytically. Indeed,
in this case P (k) behaves asymptotically as 2k2

min/k3. For
k → ∞ the leading term in G′′(t) becomes 2k2

mint
k/k, so

G′′(t) = −2k2
min ln(1 − t) + c(t), where c(t) is a continuous

function. Accordingly, the slope of the right-hand side of
Eq. (36) at t = 1 becomes p4k2

min ln(2)/〈k〉, where

〈k〉 = kmin + k2
min

(
π2

6
−

kmin∑
k=1

1

k2

)
. (43)

The critical threshold is thus

pc =
1

kmin
+ π2

6 − ∑kmin
k=1

1
k2

4 ln(2)
. (44)

For kmin = 1, pc = 0.593 284 56; and for kmin = 2, pc =
0.322 779 24.

D. Effect of the broadness of the degree distribution

It follows from Fig. 1 that for the same 〈k〉 = 3, pc of
the RR networks (0.758 751) is greater than the pc of the
ER networks (0.649 9451). Moreover, for SF networks with
λ = 3 and kmin = 1, for which the average degree is π2/6 < 3,
we have even smaller pc = 0.593 284 56. For SF networks
with λ = 3 and 〈k〉 = 3, we can estimate pc = 0.35, which is
much smaller than the pc for the narrower ER and RR degree
distribution. For SF networks with λ < 3, which are even
broader, pc = 0 for any 〈k〉. This is in a complete agreement
with the trend observed in percolation of single networks,
for which the robustness increases with the broadness of the
degree distribution if one keeps 〈k〉 constant but is opposite to
the trend observed in Ref. [1] for RCNs.

In order to investigate the effect thoroughly, we study
several classes of degree distributions for a number of values of
〈k〉. Figure 3 shows pc as function of 〈k〉 for RR, ER, uniform,
and SF with λ = 3 degree distributions. For each value of 〈k〉
the variance of SF degree distribution (∞) is greater than the
variance of the uniform degree distribution (〈k〉(〈k〉 + 1)/3),
which is greater than the variance of ER degree distribution 〈k〉,
which is greater than the variance of RR degree distribution (0).
Indeed, Fig. 3 shows that pc(SF) < pc(uniform) < pc(ER) <

pc(RR). Thus our numerical results suggest that CCNs become
more robust if their degree distribution becomes broader
(provided the average degree is constant). This behavior is
the opposite of the behavior of RCNs.

However, in general, if the measure of broadness is
simply the variance of the degree distribution, our statement
is incorrect. It is possible to find two distributions with
the same variances and average degrees that have different
values of pc. One particular example is the following two
distributions: P1(0) = 0,P1(1) = P1(2) = P1(3) = P1(4) =
P1(5) = 1/5 and P2(0) = P2(3) = 0,P2(1) = P2(5) = 1/6,

0 5 10 15 20
<k>

0

0.2

0.4

0.6

0.8

1

p c

RR
ER
Uniform
SF, λ=3

FIG. 3. The values of pc versus 〈k〉 for several degree distributions
of increasing broadness, namely RR, ER, uniform, and SF with λ = 3.
We define the uniform distribution as follows: P (k) = 1/(2〈k〉 + 1)
for k = 0,1 , . . . , 2〈k〉 and P (k) = 0 for k > 2〈k〉. For SF distribution
we use Eqs. (43) and (44), while for other distributions we numerically
solve Eq. (38) and use Eq. (37) to find pc. One can see that pc

decreases(and hence the robustness increases) with the broadness.
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P2(2) = P2(4) = 1/3, which have pc, respectively, 0.683 099
and 0.683 657.

V. GENERAL IMPLICATIONS ON THE
NETWORK ROBUSTNESS

Finally, we will compare the robustness of CCNs and RCNs
with the same degree distributions. We will show that in the
limit of infinitely large networks (1) the value of pc for CCNs is
always (except for RR networks) smaller than the pc for RCNs
and (2) for the same p, the value of the mutual giant component
for CCNs is always (except for RR networks) larger than for
RCNs.

In case of the finite networks these propositions are not
rigorous since it is possible to find peculiar CCN topologies
such that after switching some dependency links the resulting
RCN will retain its mutual giant component while the original
CCN will completely disintegrate once the same fraction of
nodes is deleted in both cases. However, the probability of
such exceptions will become negligible for sufficiently large
networks.

Equation (42) for the randomly coupled networks can be
rewritten as

[1 − H (t)][1 − G(t)]

1 − t
= 1

p
. (45)

The critical value of pc for randomly coupled networks can
be determined as the inverse maximal value of the left-hand
side of Eq. (45). Our proposition (1) is an obvious corollary of
the following proposition (3): for any t ∈ [0,1] the left-hand
side of Eq. (37) is greater or equal than the left-hand side
of Eq. (45) (Fig. 2). Subtracting Eq. (45) from Eq. (37) and
applying relation (2) between G(t) and H (t) we see that the
inequality stated in proposition (3) is equivalent to

tG′(t2) − tG′(t) + G(t)G′(1) − G(t)G′(t) � 0. (46)

We will prove Eq. (46) using mathematical induction. We see
that for RR graphs for which the degree of every node is
equal to m, i.e., P (m) = 1, Eq. (46) is satisfied as an equality.
Assuming that it is satisfied for any degree distribution such
that P (k) = 0 for k < m and k > n � m, we will show that it
is also satisfied for the degree distribution P̃ (k) = (1 − b)P (k)
for any k except for k = n + 1, for which P̃ (n + 1) = b > 0.
The generating function for this new distribution is obviously
G̃ = (1 − b)G + btn+1. After elementary algebra we can
see that

tG̃′(t2) − tG̃′(t) + G̃(t)G̃′(1) − G̃(t)G̃′(t) (47)

= (1 − b)[tG′(t2) − tG′(t) + G(t)G′(1) − G(t)G′(t)] (48)

+ b(1 − b)[G(t) − tn+1]{[n + 1 − G′(1)](1 − tn)

+G′(t) − G′(1)tn}, (49)

which proves Eq. (46) for G̃ provided it is true for G, if
we take into account the obvious inequalities n + 1 > G′(1),
1 � tn, G(t) � tn+1, and G′(t) � G′(1)tn for any t ∈ [0,1].
This concludes the proof of propositions (3) and (1). Note that
the equality sign in these inequalities and hence in inequality
(46) is realized only for t = 1 and t = 0 [if P (0) = 0]. Hence
proposition (1) always implies strict inequality except for the
case of RR graphs.

To prove the proposition (2) we first notice that the smallest
positive root of Eq. (37), t1, is always smaller than the smallest
positive root t2 of Eq. (45). This a is direct consequence
of proposition (3). Also we notice that the right-hand side
of Eq. (35) is a monotonically decreasing function of t .
This can be shown by differentiation and comparing the
terms of G′(t) and tG′(t2) corresponding to the same P (k),
namely, kP (k)tk−1 � kP (k)t2k−1. Thus μ(t1) > μ(t2). Finally,
we state proposition (4): For the same value of t , the right-hand
side of Eq. (35), μ(t), is greater or equal than the right-hand
side of Eq. (41), μr (t). One can prove this proposition using
the same induction method we used to prove proposition (3).
Combining these two results, μ(t1) > μ(t2) � μr (t2), which
concludes the proof of proposition (2).

Thus CCNs are statistically more robust than RCNs with
the same P (k) but are still prone to cascade failures and, then,
to first-order disintegration (only if G′′(1) < ∞) as in the case
of randomly coupled networks.

VI. SUMMARY

In this work we have studied the problem of failure of CCNs,
i.e., coupled networks with coinciding degrees of mutually
dependent nodes. We derive new recursive equations [Eqs. (33)
and (27)] describing the cascade of failures, which are different
from the analogous equations for RCNs studied in Ref. [1]. We
also find equations for the size of the mutual giant component
[Eqs. (35) and (36)], as well as the efficient way of finding the
critical fraction of nodes p = pc that must survive the initial
random failure for the mutual giant component not to vanish,
by finding the maximum of Eq. (37).

We show that if the second moment of the degree distri-
bution is finite, CCNs disintegrate in a cascade of failures via
a first-order transition at which the mutual giant component
suddenly drops from a positive fraction above pc > 0 to zero
below pc. This behavior is analogous to the behavior of
RCNs, with the only difference that RCNs disintegrate via
a first-order transition even when the second moment of their
degree distribution diverges.

Moreover, we show that CCNs are statistically more robust
than RCNs with the same degree distribution. In particular,
we show that scale-free CCNs with λ < 3 disintegrate via a
second-order phase transition in the same way as noninteract-
ing networks and thus are very resilient against random failure.
Namely, the mutual giant component for these networks
exists at any p > 0 but becomes infinitely small as p → 0.
Finally CCNs become more robust if their degree distribution
becomes broader (provided the average degree is constant).
This behavior is the opposite of the behavior of RCNs.

All our analytical predictions are confirmed by simulations
of coupled networks with a large number of nodes (N � 106).

Our findings support recent numerical studies of Parshani
et al. [2], who found that coupled networks with positively
correlated degrees of mutually dependent nodes (and not
just the present case of fully coincidental degrees) are more
robust that their randomly coupled counterparts studied in
Ref. [1]. This can be attributed to the fact that the correlation
between the degrees of nodes suppresses (or attenuates) the
phenomenon of hubs becoming more vulnerable by being
dependent on low-degree nodes in a coupled network.
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