
April 2017

EPL, 118 (2017) 18001 www.epljournal.org

doi: 10.1209/0295-5075/118/18001

Promoting information spreading by using contact memory
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Abstract – Promoting information spreading is a booming research topic in network science
community. However, the existing studies about promoting information spreading seldom took
into account the human memory, which plays an important role in the spreading dynamics. In this
letter we propose a non-Markovian information spreading model on complex networks, in which
every informed node contacts a neighbor by using the memory of neighbor’s accumulated contact
numbers in the past. We systematically study the information spreading dynamics on uncorrelated
configuration networks and a group of 22 real-world networks, and find an effective contact strategy
of promoting information spreading, i.e., the informed nodes preferentially contact neighbors with
a small number of accumulated contacts. According to the effective contact strategy, the high-
degree nodes are more likely to be chosen as the contacted neighbors in the early stage of the
spreading, while in the late stage of the dynamics, the nodes with small degrees are preferentially
contacted. We also propose a mean-field theory to describe our model, which qualitatively agrees
well with the stochastic simulations on both artificial and real-world networks.

Copyright c⃝ EPLA, 2017

Introduction. – A wide range of propagation phe-
nomena in the real world, such as the spreading of in-
formation, rumor, disease and behavior, can be described
by spreading dynamics on complex networks [1–6]. The
problem of how to enhance or promote the spreading has
attracted much attention in the last few years in many
disciplines [7]. Promoting spreading speed and under-
standing its effects in the outbreak size of the reached
nodes are two important features to study in both theoret-
ical and empirical aspects. Theoretically existing studies
found that promoting the spreading dynamics could in-
duce distinct critical phenomena with different outbreak
thresholds and critical exponents [8]. Practically speak-
ing, promoting the spreading dynamics could shed some
lights on the propagation of information [9–11], market-
ing management [12,13], disease spreading [14–18], etc.
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Many strategies for promoting spreading dynamics have
been proposed, such as choosing influential seeds [19,20]
and designing effective contact strategies [21,22]. Kitsak
et al. found that selecting nodes with high k -shells as
spreading sources can effectively enhance the size of the
spreading in most cases [20], however the k -shell index
cannot reflect the importance of nodes in the core-like
group in which the nodes are connected very locally [23].
Yang et al. proposed a contact strategy based on the
degree of neighbors nodes to promote the information
spreading [21]. They found that the information spread-
ing can be greatly promoted in uncorrelated networks if
the small-degree neighbors are preferentially contacted.
In addition, if the reached nodes, denoted as informed
nodes, preferentially contact nodes with few informed
neighbors, the information spreading could be further
promoted [22].

In the real world, the activities of humans ex-
hibit the characteristic of having memory [24,25]. This
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characteristic has significant impacts on the spreading dy-
namics of information, epidemic, and behavior [26–28].
For instance, human’s memory produces a larger preva-
lence in the exponential decay time of new informed nodes
than processes without memory [29]. Wang et al. [27]
found that memory affects the growth pattern of the final
outbreak size in the dynamics of social contagion. How-
ever, previous works about promoting information spread-
ing always neglected the memory of individuals. In this
letter, we propose a non-Markovian information spreading
model, in which each individual (node) keeps memory of
the number of accumulated contacts (NAC) with informed
neighbors in the past. We assume that every informed
node contacts a neighbor based on the values of neighbors’
NAC. To describe our model, we develop a novel mean-
field theory. Our theoretical predictions are in good qual-
itative agreement with the stochastic simulations on both
artificial networks and 22 real-world networks. Through
theoretical analysis and extensive numerical simulations,
we find that preferentially contacting neighbors with small
NAC is an efficient strategy to promote the spreading.
This strategy markedly promotes the information spread-
ing, since it increases the number of effective contacts with
susceptible nodes. With our effective strategy, we find
that the informed nodes are more likely to contact high-
degree nodes in the early stage, while small degree nodes
are preferentially contacted in the late stage. As a result,
our strategy unifies the probability that nodes of differ-
ent degrees will be contacted enhancing the information
spreading remarkably.

Model. – We propose a generalized susceptible-
informed model [1] to describe the information spreading.
In this model, each node can either be in the susceptible
or informed state. Initially, we randomly choose a small
fraction of nodes in the informed state, while the remain-
ing nodes are in the susceptible state. At each time step t,
each informed node i contacts one of its neighbors j with
a probability wij(t) (to be defined later). If node j is
susceptible, it will become informed with a transmission
probability λ. During the spreading process, we adopt the
synchronous updating rule, i.e., all nodes will update their
states synchronously at each time step [30]. The dynami-
cal process evolves until time T , at which we compute the
density of informed nodes ρ(T ). The change of this mag-
nitude with the parameters will allow us to evaluate the
efficiency of our strategy [31].

An effective information spreading strategy should
increase the effective contacts between informed and sus-
ceptible nodes [32]. To achieve this goal our strategy
assumes that every node remembers the number of accu-
mulated contacts (NAC) with informed neighbors in the
past. An informed node i contacts a neighbor j at time t
with probability

wij(t) =
[nj(t) + 1]α

∑

v∈Γ(i)[nv(t) + 1]α
, (1)

Fig. 1: (Color online) An illustration of the information spread-
ing process on complex networks. (a) At time t, the informed
node 5 will contact a neighbor and transmit the information
to it if the contacted neighbor is in the susceptible state.
(b) Individual 5 contacts neighbor j ∈ {1, 2, 3, 4} with proba-
bility w5j(t) = [nj(t) + 1]α/

∑4
v=1[nv(t) + 1]α, where nj(t) is

the NAC of node j. For example, node 5 contacts node 1 with
probability w51(t). (c) Assuming that node 5 contacts node
1 at time t successfully, node 1 will get the information and
change to the informed state with probability λ.

where nj(t) is the value of NAC of node j at time t, and
Γi is the neighbor set of node i (see footnote 1). The pa-
rameter α determines the tendency of node i to contact
a neighbor j with small or large value of nj(t). For the
case of α > 0, neighbors with larger nj(t) are preferen-
tially contacted, and for the case of α < 0, the opposite
situation occurs. When α = 0, all neighbors are randomly
chosen and we recover the classical susceptible-informed
model. As every node remembers its NAC before time
t, the information spreading process is a non-Markovian
process. In fig. 1 we show a schematic of the information
spreading dynamics.

Results. –

Theoretical analysis. To describe our model of infor-
mation spreading dynamics, we develop a mean-field the-
ory. We denote as si(t) and ρi(t) the probabilities that
node i is susceptible and informed at time t, respectively.
Since each node can only be in the susceptible or informed
state, we have si(t) = 1 − ρi(t). A susceptible node j will
become informed at time t if it fulfills two conditions si-
multaneously: 1) being contacted by an informed neighbor
i with probability wij(t), and 2) being informed success-
fully with probability λ. The probability of node j to make
a transition to the informed state by neighbors at time t
is [33]

Φj(t) = 1 −
N
∏

i=1

[1 − λAijwij(t)ρi(t)], (2)

where N is the system size and Aij is the element of the
adjacency matrix of a given network. If there is an edge
between nodes i and j, Aij = 1; otherwise, Aij = 0. Thus,

1In the equation, we set nj(t) + 1 to avoid that the denominator
is zero.
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the evolution of the probability of the informed node j is

ρj(t + 1) = ρj(t) + sj(t)Φj(t). (3)

In order to obtain the value of wij(t), we compute nj(t)
which is given by

nj(t + 1) = nj(t) + Θj(t), (4)

where

Θj(t) =
N

∑

i=1

Aijwij(t)ρi(t) (5)

is the increase of node j’s NAC at time t. From
eqs. (2)–(5), we obtain the evolution equations for the in-
formation spreading dynamics. At time t, the density of
informed nodes is given by

ρ(t) =
1

N

N
∑

j=1

ρj(t), (6)

and the density of susceptible nodes is s(t) = 1 − ρ(t).

Stochastic simulations. We perform extensive numeri-
cal simulations on both artificial and real-world networks.
All the obtained results are averaged over 103 indepen-
dent realizations of seeds on a fixed network. Initially, we
randomly select 5% nodes as informed seeds. The infor-
mation transmission probability is set as λ = 0.1. Notice
that other values of λ > 0 do not qualitatively affect our
results.

We first study the information spreading dynamics on
artificial networks. We built the artificial networks using
the uncorrelated configuration model [34,35] with power-
law degree distributions P (k) ∼ k−γ with kmin ≤ k ≤√

N , where kmin is the smaller value of the degree and γ
is the degree exponent. In all our simulations the network
size is N = 104 and kmin = 4 in order to have a high
average degree and, therefore, a relative high number of
contacts.

In fig. 2 we show the results on artificial networks with
different degree exponents. For a given value of T , we
find that ρ(T ) decreases with α, as shown in figs. 2(a)
and (c). Specifically, if every informed node i preferen-
tially contacts a neighbor j with small value of nj(t), i.e.,
α < 0, more nodes will be informed. On the other hand,
if neighbors with large NAC are preferentially contacted,
i.e., α > 0, there will be few nodes to be informed. From
the figures we can see that for T = 100 almost all nodes
are in the informed state when α ≤ −1, however, there are
few informed nodes when α ≥ 1. We can explain the above
phenomena as follows. The larger the value of nj(t), the
larger the probability that node j has been informed. As a
result, an informed node i should contact a neighbor with
small value of NAC to increase the number of effective
contacts (i.e., contact with a susceptible neighbor), and
further promotes the information spreading. In figs. 2(b)
and (d) we show the time evolution of ρ(t) for γ = 2.1

Fig. 2: (Color online) Information spreading on artificial net-
works with different degree exponents. The fractions of in-
formed nodes at time T = 50, 100 and 200 as a function of α
for γ = 2.1 (a) and γ = 3.0 (c). Time evolution of ρ(t) in
log-log scale with α = −2.0, 0.0 and 1.0 vs. t for γ = 2.1 (b)
and γ = 3.0 (d). The symbols represent the simulation results,
and the lines are the theoretical results from eq. (6).

and 3.0, respectively. We find that for small values of α,
ρ(t) is large, nevertheless when α = 1.0 the information
spreads slowly and it is hard to expand the information
to the whole network. Our theoretical predictions agree
with the stochastic simulations in most cases. The devi-
ations between the theoretical and the numerical results
arise from disregarding the strong dynamical correlations
among the states of neighbors in the theory [1,2]. From
the figures we can also see that the phenomena for γ = 2.1
and γ = 3.0 are similar, which indicates that the hetero-
geneity of the degree distribution does not qualitatively
affect the results.

In order to explain our above results we compute the
average values of NAC of nodes with degree k ⟨nk(T )⟩
at time T . From figs. 3(a) and (c), we can observe that
at the early stage of the information spreading dynam-
ics (i.e., T = 10), ⟨nk(T )⟩ increases linearly with k for
all the values of α, i.e., high-degree nodes are more likely
to be contacted by informed neighbors than low-degree
nodes. Note that ⟨nk(T )⟩ is slightly smaller for α = −2.0
than for α = 1.0. At a later stage of the information
spreading dynamics (i.e., T = 100), we find some inter-
esting phenomena as shown in figs. 3(b) and (d). For the
case of α = 0.0, ⟨nk(T )⟩ still increases linearly with k.
When α = 1.0, the values of ⟨nk(T )⟩ of the largest degree
nodes are more than 200 times larger than the ones for
nodes with minimum degree, and the number of the ef-
fective contacts are decreased in this case. However, for
the case of α = −2.0, almost all the nodes have the same
values of ⟨nk(T )⟩. This indicates that, compared to the
case of α = 1.0, in the latter case informed nodes are
more likely to contact neighbors with small degrees. Since
nodes with small degrees have small probabilities to be in-
formed, preferentially contacting them increases the num-
ber of effective contacts. As a result, nodes with different
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Fig. 3: (Color online) The average number of accumulated con-
tacts ⟨nk(T )⟩ for nodes with degree k at time T = 10 (top)
and T = 100 (bottom). In (a) and (b), the degree exponent is
γ = 2.1. In (c) and (d), we set γ = 3.0.

Fig. 4: (Color online) The time evolution properties of the
information spreading on theoretical networks. ⟨nS(t)⟩ ((a)
and (e)), pS(t) ((b) and (f)), ⟨kI(t)⟩ ((c) and (g)), and DI(t)
((d) and (h)) vs. t. In the left column, we set γ = 2.1. In the
right column, we set γ = 3.0. The information transmission
probability is λ = 0.1.

degrees almost have uniform probabilities of being con-
tacted and the information spreading can be accelerated
significantly.

In fig. 4, we study the time evolution properties of the
information spreading. In figs. 4(a) and (e), we show the
time evolution of the average number of accumulated con-
tacts ⟨nS(t)⟩ for the effective contacts (i.e., the newly

Fig. 5: (Color online) Information spreading on real-world net-
works. The fractions of informed nodes at time T = 50, 100 and
200 for Advogato (a) and Hamsterster friendships networks (c).
The time evolution of ρ(t) with α = −2.0, 0.0 and 1.0 vs. t for
Advogato (c) and Hamsterster friendships networks (d). The
theoretical analysis results are obtained from eq. (6). We set
the information transmission probability as λ = 0.1.

contacted susceptible nodes) for γ = 2.1 and 3.0. For
the case of α = −2.0, most of the nodes with a small
number of contacts are informed at the early stage, while
the remaining few nodes with a large number of contacts
are informed at the late stage. However, for the case of
α = 1.0, nodes with a small number of contacts are hard
to be informed. We also find that the ratio of the number
of effective contacts to all contacts at time t, i.e., pS(t), is
very high in the early stage when α = −2.0 (see figs. 4(b)
and (f)). To clarify the types of informed nodes at dif-
ferent stages of the process, we study the average degree
⟨kI(t)⟩ and the degree diversity DI(t) [22] of the newly
informed nodes at time t. Here DI(t) is defined as

DI(t) =
1

∑

k

[

Ik(t)−Ik(t−1)
I(t)−I(t−1)

]2 , (7)

where I(t) is the number of newly informed nodes at time
t, and Ik(t) is the number of those with degree k. The large
values of DI(t) indicate that the newly informed nodes
have heterogeneous degrees. From figs. 4(c) and (g), we
can see that for the case of α = −2.0, ⟨kI(t)⟩ is very large
at the early stage, and then decreases at the later stage.
DI(t) shows the same tendency as seen in figs. 4(d) and
(h). Thus, when α = −2.0 high-degree nodes are more
likely to be informed in the early stage, while in the late
stage low-degree nodes are often informed. When α = 1.0
both ⟨kI(t)⟩ and DI(t) are large in the whole spreading
process, which means that nodes with low degrees are hard
to be informed. These results corroborate our finding that
the heterogeneity of degree distribution does not qualita-
tively affect the above-stated results.

Finally, we study our suggested information spread-
ing dynamics on 22 real-world networks, which in-
cludes metabolic networks, infrastructure networks,
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Table 1: Statistical characteristics of the 22 real-world networks. The statistical characteristics including the network size (N),
number of edges (E), maximum degree (kmax), first and second moments of the degree distribution (⟨k⟩) and second moments
(⟨k2⟩), degree-degree correlations (r), clustering (c), and modularity (Q).

Category Networks Statistical characteristics of networks

N E kmax ⟨k⟩ ⟨k2⟩ r c Q
Social Advogato [36] 5042 39227 803 15.56 1284 −0.096 0.092 0.337

Hamsterster friendships [37] 1788 12476 272 13.955 635.61 −0.089 0.09 0.396
Hamsterster full [37] 2000 16098 273 16.098 704.71 0.023 0.23 0.45

Metabolic Caenorhabditis elegans [38] 453 2025 237 8.9404 358.49 −0.226 0.124 0.401
Reactome [39] 5973 145778 855 48.812 6995.1 0.241 0.606 0.719

Human protein (Figeys) [40] 2217 6418 314 5.79 324.93 −0.332 0.008 0.472
Human protein (Vidal) [41] 2783 6007 129 4.317 68.103 −0.137 0.035 0.615

Infrastructure Air traffic control [37] 1226 2408 34 3.928 28.899 −0.015 0.064 0.686
OpenFlights [42] 2905 15645 242 10.771 601.45 0.049 0.255 0.581

Power [43] 4941 6594 19 2.669 10.333 0.003 0.08 0.932
Collaboration CA-Hep [44] 8638 24806 65 5.744 74.601 0.239 0.482 0.752

Netsci [45] 379 914 34 4.823 38.686 −0.082 0.741 0.846
Citation DBLP [46] 12495 49563 709 7.933 347.28 −0.046 0.062 0.538
HumanContact Jazz musicians [47] 198 2742 100 27.697 1070.2 0.02 0.52 0.439

Adolescent health [48] 2539 10455 27 8.236 86.414 0.251 0.142 0.597
Computer Route views [49] 6474 12572 1458 3.884 640.08 −0.182 0.01 0.612

Route [50] 5022 6258 106 2.492 34.181 −0.138 0.012 0.898
Lexical King James [37] 1707 9059 364 10.614 441.85 −0.052 0.162 0.461
OnlineContact Pretty Good Privacy [51] 10680 24340 206 4.558 86.287 0.239 0.266 0.877

Email [52] 1133 5451 71 9.622 179.18 0.078 0.22 0.565
Emailcontact [20] 12625 20362 576 3.226 356.36 −0.387 0.109 0.674

Blog [53] 3982 6803 189 3.417 47.145 −0.133 0.284 0.853

Fig. 6: (Color online) Comparison of the theoretical and nu-
merical predictions of the information spreading on 22 real-
world networks. Different colors indicate different values of α.
The analysis results are obtained from eq. (6). The results are
obtained at the end time T = 100. We set λ = 0.1.

collaboration networks and citation networks, etc. For
simplicity, the directed networks are treated as undirected
ones and the weighted networks are treated as unweighted
ones. table 1 displays their statistical characteristics in
details.

Figure 5 shows the information spreading on two repre-
sentative networks. Strikingly, we find that the results on
real-world networks are qualitatively similar to the ones

found in artificial networks as shown in fig. 2. Specifi-
cally, if the informed nodes preferentially contact neigh-
bors j with small nj(t), the information spreading will
be markedly facilitated. On the contrary, the information
spread is slower if nodes with large NAC are favored, and
it is hard to spread the information to the network.

We further verify the effectiveness of our suggested
mean-field theory on the real-world networks at T = 100
for different values of α, as shown in fig. 6. We can see that
our theoretical predictions qualitatively agree with the nu-
merical simulations, although the theoretical predictions
are slightly larger than the simulation results. The devia-
tions between theoretical and numerical predictions derive
from the strong dynamical correlations among the states
of neighbors [1,2].

Discussions. – In this letter, we proposed a novel non-
Markovian information spreading model by introducing
the individuals’ memory, which assumes that every node
remembers the number of accumulated contacts (NAC)
with informed neighbors in the past, and an informed
node contacts a neighbor with different biases values of
NAC. To describe the non-Markovian spreading dynam-
ics, we developed a novel mean-field theory. Through ex-
tensive numerical simulations on artificial networks and
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real-world networks, we found that the memory charac-
teristic markedly affects the spreading dynamics. If the
informed nodes preferentially contact neighbors with low
NAC, the information spreading is markedly promoted
due to the increasing of the number of effective contacts
between susceptible and informed nodes. In the effective
contact strategy, the high-degree nodes are more likely to
be contacted in the early stage, while the low-degree nodes
are preferentially contacted in the late stage. As a result,
nodes with different degrees almost have uniform proba-
bilities of being contacted and the information spreading
is accelerated significantly. Importantly, the effectiveness
of the promoting strategy weakly depends on the struc-
tures of networks. The agreement between our theoretical
predictions and numerical results is verified on artificial
networks as well as the real-world networks. Our effective
strategy to promote the information spreading on com-
plex networks, could be used for other spreading dynam-
ics, such as technical innovations, healthy behaviors, and
new products adoption. Our theoretical method of non-
Markovian spreading model can be extended to the study
of other social dynamics.

∗ ∗ ∗

This work was supported by the National Natural
Science Foundation of China (Grant No. 61673086).
LAB thanks UNMDP and FONCyT, Pict 0429/2013 for
financial support.

REFERENCES

[1] Pastor-Satorras R., Castellano C., Van Mieghem

P. and Vespignani A., Rev. Mod. Phys., 87 (2015) 925.
[2] Wang W., Tang M., Stanley H. E. and Braunstein

L. A., Rep. Prog. Phys., 80 (2017) 036603.
[3] Pastor-Satorras R. and Vespignani A., Phys. Rev.

Lett., 86 (2001) 3200.
[4] May R. M. and Lloyd A. L., Phys. Rev. E, 64 (2001)

066112.
[5] Wang Z., Bauch C. T., Bhattacharyya S.,

D’Onofrio A., Manfredi P., Perc M., Perra N.,
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