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Abstract – In this paper we study the scaling behavior of the fluctuations in the steady stateWS
with the system size N for a surface growth process given by the competition between the surface
relaxation (SRM) and the ballistic deposition (BD) models on degree uncorrelated scale-free (SF)
networks, characterized by a degree distribution P (k)∼ k−λ, where k is the degree of a node.
It is known that the fluctuations of the SRM model above the critical dimension (dc = 2) scale
logarithmically with N on Euclidean lattices. However, Pastore y Piontti et al. (Phys. Rev. E, 76
(2007) 046117) found that the fluctuations of the SRM model in SF networks scale logarithmically
with N for λ< 3 and as a constant for λ! 3. In this letter we found that for a pure ballistic
deposition model on SF networks WS scales as a power law with an exponent that depends on λ.
On the other hand when both processes are in competition, we find that there is a continuous
crossover between a SRM behavior and a power law behavior due to the BD model that depends
on the occurrence probability of each process and the system size. Interestingly, we find that
a relaxation process contaminated by any small contribution of ballistic deposition will behave,
for increasing system sizes, as a pure ballistic one. Our findings could be relevant when surface
relaxation mechanisms are used to synchronize processes that evolve on top of complex networks.

Copyright c© EPLA, 2013

In the last decade the study of complex networks
received much attention because many processes take
place on top of these kinds of structures. Here, we
consider networks with scale-free (SF) topologies char-
acterized by a degree distribution P (k)∼ k−λ, where
k is the degree or number of connections that a node
can have with kmax ! k! kmin, where kmax and kmin
are the maximal and minimal degree, respectively, and
λ measures the heterogeneity of the distribution1 [1].
Historically, the research on complex networks was
mainly focused on how the topology affects processes
that evolve on top of them, such as epidemic spread-
ing [2], traffic flow [3,4], cascading failures [5,6] and
synchronization [7–9]. Recently, it was shown that the
scaling behavior of processes, such as synchronization
and jamming [10,11], is fully governed by the topology

(a)E-mail: larocca@mdp.edu.ar
1As λ decreases the heterogeneity of the network increases due to

the appearance of high-degree nodes called hubs.

of the underlying network. Synchronization processes are
very important in many real situations such as supply-
chain networks based on electronic transactions [12],
neuronal networks [13] and financial transaction between
traders [14]. One of the most successful attempts to
model synchronization phenomena is to map them
into a nonequilibrium surface growth [9,15] where the
relevant magnitude that represents the departure from
synchronization is the dispersion or fluctuations of
some scalar field h over the nodes of a network given
by W = {1/N

∑N
i=1(hi−〈h〉)2}1/2, where hi represents

the scalar on node i, 〈h〉 is the mean value, N is the
system size and {.} denotes an average over network
configurations. Synchronization problems deal with the
optimization of the fluctuations in the steady state,
being the system optimally synchronized when those
fluctuations are minimized. On the other hand a system
is called scalable if their fluctuations do not depend, or
depend weakly, on the system size.
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Many dynamic synchronization processes can be
described by simple growth models. One of the most
successful models of surface growth with relaxation is
the Family model [16] (SRM) that represents very well
film growth either by vapor or by chemical deposition.
Another very important model is the ballistic deposition
(BD) one [17] that represents sedimentation processes
such as low thin-film grow at low temperatures [18].
However, more complex processes cannot be described by
a single growth model and are better represented as the
competition between two or more simple mechanisms. The
competition between models on Euclidean lattices [19–22]
was studied by few researchers, in spite of the fact that
it is more realistic in describing growth processes on real
materials. Pellegrini et al. [19] studied the competition
between the SRM model with probability p and the BD
model with probability 1− p on Euclidean lattices and
found a crossover between a logarithmic and a power law
behavior of the fluctuations in the steady state WS with
N that depends on p for dimensions d! 2. Note that
d= 2 is the critical dimension dc of the SRM model above
which the behavior ofWS takes the mean field value, with
WS ∼ lnN . Pastore y Piontti et al. [23] studied the SRM
model on degree uncorrelated SF networks and found
that

WS ∼
{

lnN, forλ< 3,
const, forλ! 3;

(1)

a very different scaling behavior than the one obtained
on Euclidean lattices above dc, even though complex
networks can be considered as high-dimensional systems
with d% dc. These results were theoretically confirmed by
La Rocca et al. [24] who derived the evolution equation
of this model on complex networks. However, up to our
knowledge, neither the BD model nor the competition
between different processes on complex networks was
ever reported. Usually the SRM model is associated with
diffusion between the first neighbors of a network, such
as in load balance problems in parallel processors, where
the load are tasks to solve. If the load difference between
processors is large, nodes with less load must wait for the
more loaded nodes to finish their tasks. Thus, it is logical
to send all the new tasks to the less loaded node to prevent
the desinchronization of the system. Then sending new
tasks to the less loaded processors could be represented
by the BD model.
In this letter we study the scaling behavior of the

fluctuations in the steady stateWS with the system size N
for the BD model, and the competition between the SRM
and the BD models on degree uncorrelated SF networks.
In our simulations, at each time step a node i is chosen

with probability 1/N . Then, the SRM rules are applied
with probability p and the BD rules with probability
1− p. Denoting by vi the nearest-neighbor nodes of i, the
evolution rules for the SRM model are

1) if hi " hj∀j ∈ vi⇒ hi = hi+1, else,
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Fig. 1: Fluctuations WS as a function of N in log-log scale for
the pure BD model (p= 0) in SF networks for λ= 2.5 (◦), 2.8
("), 3.0 ("), 3.2 (") and 3.5 (∗). The dashed lines correspond
to a power law fitting for large system sizes N with WS ∼N

α.

2) if hj <hn∀n *= j ∈ vi⇒ hj = hj +1.

While for the BD model the evolution rules are

1) if hi ! hj∀j ∈ vi⇒ hi = hi+1, else,
2) if hn ! hj∀j *= n∈ vi⇒ hi = hn.

As initial condition we choose {hi}= 0 for i= 1, . . . , N
and the time step increases by 1/N . The SF networks
with different values of λ were constructed using the
configurational model [25].
In fig. 1 we show the fluctuations WS as a function of
N for the BD model (p= 0) in log-log scale for different
values of λ. We can see that for all the values of λ there
exists a power law behavior denoted by the dashed lines
that represent the fitting of the data with WS ∼Nα for
large system sizes, where the exponent α depends on
λ. Clearly, we can observe that this behavior is very
different from the one found for the SRM model on SF
networks (see eq. (1)). The power law behavior of the
fluctuations in the steady state of the BD model seems
to be an inherent property of the model regardless of the
topology of the complex network over which the process
evolves, although the exponent of the power law depends
on the heterogeneity of the network. We find that as
the heterogeneity of the network decreases, above λ= 2.5,
finite-size effects become more relevant modifying the
power law behavior found for large N . Thus, we propose
that

WS ∼Nα(1+AN−δ), (2)

where the term N−δ is the correction to finite-size scaling
with δ> 0 and A a constant. We can measure the finite-
size effects taking the derivative of WS/Nα with respect
to N

χ(N) =
∂

∂N

(

WS
Nα

)

∼N−(δ+1).
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Fig. 2: (a) Corrections to the scaling χ(N) as a function of N
in log-log scale for λ= 2.8 (◦) and 3.5 ("). The dashed lines
correspond to the power law fitting from which we obtain δ.
(b) Linear-linear plot of WS/N

α as a function of N−δ for the
same values of λ as in (a).

In fig. 2(a) we plot χ(N) as a function of N up to N =
25000, for two values of λ> 2.5. The dashed lines represent
the fitting with a power law from where we obtain the
values of δ. In order to show that our proposed scaling (see
eq. (2)) is correct in fig. 2(b) we plotWS/Nα as a function
of N−δ. We can see that for large system sizes WS/Nα

does not depend on N , but as N decreases we observe a
linear behavior, which shows the agreement between the
proposed corrections to scaling and the simulations.
Next, we study the competition between the SRM

and the BD models, i.e., the scaling behavior of WS
with N when we increase the parameter p. Although the
conclusions reached from the competition between the
two models are qualitatively the same for all the values
of λ, we will consider only the case λ= 2.5 because the
effects found are more pronounced in this case and because
for this value of λ finite-size effects are negligible as we
mention above. In fig. 3 we plot WS as a function of
N in log-log scale for different values of p. We can see
that for p= 0 there is a pure power law with exponent
0.186 (see fig. 1) and for p= 1 the scaling behavior of
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Fig. 3: Fluctuations WS as a function of N in log-log scale for
SF networks with λ= 2.5, kmin = 2, for p= 0 (◦), 0.6 ("), 0.8
("), 0.9 ($), 0.95 (%), and 1 (∗).

WS with N corresponds to a logarithm as expected for
λ< 3 [23,24]. For values 0< p< 1 we find that there is a
crossover between both regimes. The corresponding curves
become steeper as p increases leading to expect that
they will cross at some point. However, as the system
size is increased we observe that the curves change their
slope, avoiding the crossing between them. This is can be
expected since the fluctuations in the competition with the
SRM model, which tend to smooth out the interface via
diffusion, cannot overcome the fluctuations of the pure BD
model. In fact, we expect that for large sizes (N →∞), the
behavior of all the curves with p < 1 will tend to follow a
power law with the same exponent that for the case p= 0.
However, from our data we cannot show our expectation
even for the system sizes as big as the ones that we have
achieved (N ∼ 106). Note that each point in figs. 1 and 3
corresponds to 104 realizations of the networks for fix N
where each value of WS was obtained by a linear fitting
on the steady state. Thus, to reach bigger system sizes is
very time consuming and goes beyond our computational
capabilities. For this reason from the results shown until
here we can only conclude that in the competition between
both models, even for p close to unity, the BD dominates
the behavior of the fluctuations.
In the competition, the BD model is responsible of

generating bigger height differences (jumps) between
neighboring nodes than the SRM model, which tends
to smooth out the interface by diffusion (see fig. 3).
As a consequence, the big jumps that produce the BD
model increase the fluctuations of the system. As N
increase, the number of jumps also increases and as a
consequence the BD model dominates the behavior of
the system, even for p close to unity. In order to verify
our assumption we introduce the definition of “step”.
Steps are landing structures with edges generated by
the BD process and flat regions smoothed by the SRM
process. Since WS represents the dispersion of the heights
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Fig. 4: (Color online) Schematic of the formation of steps for
a one-dimensional lattice where we use the threshold ∆h= 2.
The steps, represented by different colors and capital letters,
are bounded by nodes whose height difference exceeds the value
of 2. The numbering in the horizontal axis represents the node
number and the vertical axis is the height of each node.

around their mean value, we can assume that most of
the nodes of the network have a height h≈ 〈h〉±mWS ,
where m is a positive integer number that determines
the degree of confidence for a Gaussian distribution, i.e.,
m= 1 correspond to 66% of confidence and m= 3 to
99%. We verified that the distribution of heights is a
Gaussian distribution for any value of p. This implies that
in average the absolute value of the difference of heights
between any two pairs of neighboring nodes is at most

∆h≈
√
2mWS .

Then, if we denote the fluctuations for the pure SRM
model (p= 1) as WSRMS , we define a step as an almost
flat connected region of the interface where each pair of
neighboring nodes has ∆h"

√
2mWSRMS . Thus, comput-

ing how many steps each model generates and how this
magnitude changes with p, we can measure the influ-
ence of the BD process2. In fig. 4 we show for ∆h> 2 a
schematic plot for the particular case of a one-dimensional
lattice where each step is marked with a different color
and labeled by a letter. For example, step C consists of
nodes IV and V that have ∆h< 2 between them, and is
limited by nodes III and VI because their height differ-
ence is greater than 2. Note that a step can be formed
by a single node, as in the cases A and D. Thus, a step
is a soft region of the interface bounded by two borders
represented by nodes with an abrupt jump in their height
differences (∆h>

√
2mWSRMS ).

In fig. 5 we plot in log-log scale the average number of
steps nS as a function of N for p= 0, 0.6, 0.9 and 1, for
m= 3 and taking WSRMS ≈ 1 (see fig. 3). We can see that
2While quantitative results depend on the value of m, the

qualitative results do not, since the number of steps will change
depending on m but the crossover between the two models will be
clearly presented for any m! 1.
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Fig. 5: Average number of steps nS as a function of N in the
surface for m= 3 in log-log scale for SF networks with λ= 2.5
and p= 0 (◦), 0.6 ("), 0.9 (") and 1 ("). The lines are used
as guides for the eyes.

for p= 1, nS is much smaller than for p= 0 for all the
values of N . For large N and 0< p< 1 the curves of nS
try to reach the value of p= 0, which means that the BD
is the dominating mechanism (see fig. 3). Thus, even for
values of p very close to 1, corresponding to pure SRM, as
N increases, more steps appear and the BD model ends
dominating the behavior of the fluctuations in the steady
state. This explain the crossover behavior of WS with
N for all the values of p < 1. Thus, a relaxation process
driven by diffusion competing with a small contribution
of the ballistic deposition will behave as a pure ballistic
one for large N . Then, if we are interested in reducing
the fluctuations in order to improve the synchronization
of the system when these two processes are competing, we
must increase the diffusion and reduce the system size. Our
findings could have a great impact when surface relaxation
mechanisms are used to synchronize a system on complex
networks because a small contribution of the BD process
reduces the synchronization and as a consequence the
scalability of the system with the system size worsens3.
In summary, we studied the scaling behavior of the

fluctuations on the steady state for the ballistic deposition
model in degree uncorrelated SF networks and found
that WS ∼Nα where the exponent α increases with the
heterogeneity of the SF networks, i.e., as λ decreases. Our
results suggest that the power law behavior of WS is an
inherent property of this process found also in Euclidean
lattices. We also studied the scaling of WS with N for
the competition between the SRM and the BD models
and found that there exists a crossover between different
behaviors as we increase p. For large N , we found that for

3The results obtained for λ! 3 are very similar to the ones found
for λ= 2.5, although the crossover between the two behaviors now
is between a constant, consequence of the SRM model for λ! 3 (see
eq. (1)), and a power law.
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p < 1 the value of WS approaches to the BD one, which
means that the BD model always dominates the behavior
of the fluctuations in the steady state. This was shown
using the definition of step, where the average number
of steps measure the influence of the BD process. We
found that the crossover between the SRM and the BD
corresponds to an abrupt increase in the average number
of steps.
In a forthcoming work we will study analytically the BD

model and the competition between the BD and the SRM
models deriving the evolution equations for the heights
from which we will be able to derive the scaling behavior
of WS for all the values of p.
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