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Abstract – Recent studies have shown that a system composed of several randomly interdepen-
dent networks is extremely vulnerable to random failure. However, real interdependent networks
are usually not randomly interdependent, rather pairs of dependent nodes are coupled according
to some regularity which we coin inter-similarity. For example, we study a system composed of
an interdependent world wide port network and a world wide airport network and show that
well-connected ports tend to couple with well-connected airports. We introduce two quantities
for measuring the level of inter-similarity between networks: i) the inter degree-degree correlation
(IDDC); ii) the inter-clustering coefficient (ICC). We then show both by simulation models and
by analyzing the port-airport system that as the networks become more inter-similar the system
becomes significantly more robust to random failure.

Copyright c© EPLA, 2010

Recently, an American Congressional Committee high-
lighted the intensified risk in an attack on national
infrastructures, due to the growing interdependencies
between different infrastructures [1]. However, despite the
high significance and relevance of the subject, only a few
studies on interdependent networks exist and these usually
focus on the analyses of specific real network data [2–6].
The limited progress is mainly due to the absence of
theoretical tools for analyzing interdependent systems.
Very recently, several studies [7,8] presented for the first
time a framework for studying interdependency between
networks and showed that interdependencies significantly
increase the vulnerability of the networks to random
attack. These studies assumed that pairs of interdependent
nodes from the two networks are randomly connected, i.e.,
a randomly selected node from network A is connected
and depends on a randomly selected node from network
B and vice versa. Due to the dependencies an initial fail-
ure of even a small fraction of nodes from one network
can lead to an iterative process of cascading failures that
can completely fragment both networks in the form of a
first-order phase transition.
However, the restriction of random interdependencies

is a strong assumption that usually does not occur
in many interdependent systems. As a first example
consider the Italian power grid and SCADA communi-
cation networks [1,2,7,8]. A power node depends on a

(a)E-mail: parshani.roni@gmail.com

communication node for control while a communication
node depends on a power node for electricity. It is highly
unlikely that a central (high-degree) communication node
will depend on a small (low-degree) power node. Rather,
it is much more common that a central communication
node depends on a central power station. Moreover,
coupled networks usually also pose some similarity in
structure, for instance, an area that is overpopulated
is bound to have many power stations as well as many
communication nodes. Another real example is the world
wide port and airport networks that we study in this
paper. We find that well-connected ports tend to couple
to well-connected airports therefore supporting our
assumption that real interdependent networks are usually
not randomly interdependent.
In this letter we show that inter-similar coupled

networks, i.e. coupled networks in which pairs are coupled
according to some regularity rather than randomly, are
significantly more robust to random failure. Moreover,
increasing the inter-similarity between the networks leads
to a fundamental change in the networks behavior. While
randomly interdependent networks disintegrate in the
form of a first-order phase transition [7,8], networks with
high levels of inter-similarity disintegrate in the form of a
second-order phase transition.
We start by explaining in details the studied model.

Following the model for a system composed of two interde-
pendent networks presented in [7] we assume two networks
A, B where a) each node Ai from network A depends on a
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node Bi from network B and vice versa; b) each node from
one network can only depend on one node from the other
network. In such a system an initial removal of a fraction
of nodes in network A leads to the failure of the dependent
nodes in network B. The failure of the dependent nodes
in network B causes additional nodes to disconnect (and
fail) from network B. These nodes are coupled with new
nodes in network A that also fail due to dependencies and
so on [7,8]. For randomly interdependent networks such an
iterative process of cascading failures leads to a first-order
phase transition in, P∞, the size of the largest connected
cluster remaining at the end of the cascade process.
Here we show that when the coupled networks become

inter-similar the cascade process is significantly reduced.
Figure 1(a) presents simulation results showing that for
low levels of inter-similarity P∞ abruptly drops to zero
at criticality characterizing a first-order phase transi-
tion while for high levels of inter-similarity P∞ continu-
ously decreases characterizing a second-order transition.
Figure 1(b) presents simulation results showing how the
number of iterations (NOI) in the iterative process of
cascading failures is reduced when the networks become
more inter-similar.
We develop two measures to assess the level of inter-

similarity between interdependent networks. We show
that these measures can also determine the robustness
of coupled networks. The first quantity, rAB , measures
the inter degree-degree correlation (IDDC) between a pair
of dependent nodes. The two networks A and B have a
degree distribution of pAk and p

B
k , respectively. Similar

to assortative mixing in a single network [9], we define
by ejk the joint probability that a dependency link is
connected to an A-node with degree j and to a B-node
with degree k. For networks with no IDDC, ejk = p

A
j p
B
k .

For networks with IDDC, the level of correlation can
be defined by

∑
jk jk(ejk − pAj pBk ). Normalizing by the

maximum value of IDDC we obtain a general measure,
rAB , in the range −1� r� 1. The value 1 is achieved
for a system with maximum IDDC, the value of zero for
no IDDC and a value −1 for a system with maximum
anti-IDDC. If the two networks have the same degree
distribution (pk = p

A
k = p

B
k ) the maximum IDDC value is

given by σ2q =
∑
k k
2pk − (

∑
k kpk)

2 and we obtain

rAB =
1

σ2q

∑

jk

jk(ejk − pjpk). (1)

Positive values of rAB indicate that high-degree nodes
from network A tend to couple with high-degree nodes
from network B and vice versa. Negative values of rAB

indicate that high-degree nodes from network A tend to
couple with low-degree nodes from network B and vice
versa. Randomly interdependent networks correspond to
the case of rAB = 0.
The second measure is the inter-clustering coefficient

(ICC), cAB , that evaluates for a pair of dependent nodes
{Aj , Bj} how many of the neighbors of Aj depend on
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Fig. 1: (Colour on-line) (a) Simulation results for P∞, the
fraction of nodes remaining in the largest cluster of network B
after a random failure of a fraction 1− p of the nodes in network
A. The simulations compare four different configurations (see
text) of two interdependent SF networks each of size N =
100000 and λ= 2.7 showing that inter-similar coupled networks
are significantly more robust to random failure compared to
randomly interdependent networks (the value of p for which
P∞ approaches zero is much smaller). (b) Simulation results
showing the number of iterations (NOI) in the iterative process
of cascading failures, at pc. The NOI is plotted as a function
of the similarity (S) between the networks which is measured
either by the IDDC (circles), or by the ICC (squares). As
the networks become more inter-similar the NOI is reduced
indicating that less nodes fail. When measuring the effect of
the IDDC on the NOI the ICC is kept zero. Similarly, when the
effect of ICC is measured the IDDC is kept zero. The dashed
line marks the region that cannot be properly simulated since
the ICC is too high to generate networks with no IDDC.

neighbors of Bj and vice versa. Analogous to a single
network [10], we define the local inter clustering coefficient,
cAj of node Aj as

cAj =
tj

kAj
, (2)

where tj is the number of links connecting the neighbors of
Aj to the neighbors of Bj and k

A
j is the degree of Aj (see

footnote 1). Note that cAj is not equal to c
B
j . The global

ICC can be defined as the average of all the local clustering
coefficient, cA = 1

N

∑
j c
A
j . But in this case c

A �= cB . We
therefore prefer to define the global clustering as

cAB =
1

M

∑

j

tj , (3)

whereM is the total number of dependency links between
the two networks and 0� cAB � 1. For increasing values of
cAB more of the neighbors of Ai depend on the neighbors
of Bi and the two networks become more inter-similar. For
cAB = 1 the two networks must be identical.

1According to the assumption made in [7,8] that a node from A
depends on at most one node from B, kAj is the maximum number
of neighbors of Aj that can depend on neighbors of Bj . However, for
a more general model, where a node can depend on more than one
node, kAj must be replaced by the new maximum.
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The effect of inter-similarity between networks is
dramatically influenced by the network topology. In a
case where two interdependent networks have a broad
degree distribution, an interdependent pair {Aj , Bj} can
greatly differ in their degree. As a result the diversity
in the correlation between the networks (IDDC) is
significantly increased. We therefore apply our theory to
two important and very different network topologies. The
first is the Erdős-Rényi (ER) network model [11–13], in
which all links exist with equal probability leading to a
Poisson degree distribution P (k) = e−〈k〉〈k〉k/k!. The ER
network model has become a classic model in random
graph theory and was intensively studied in the past few
decades. The other model is that of scale-free (SF) [14,15]
networks with a broad degree distribution, usually in the
form of a power law, P (k)∼ k−γ with γ > 2. It was found
that many real networks are scale free [14,15].
To show the effect of our measures on the robustness

of inter-dependent networks, we compare between the
following four systems: i) two randomly interdependent
SF networks (rAB = 0 and cAB = 0). ii) Two SF networks
where every pair of dependent nodes {Aj ,Bj} has the
same degree, kAj = k

B
j (r

AB = 1 and cAB = 0). iii) Two

interdependent SF networks with rAB = 0 and cAB = 0.4,
which is the maximum ICC we were able to obtain
without inserting IDDC. iv) Two identical interdependent
SF networks (rAB = 1 and cAB = 1). Figure 1(a) presents
P∞, the fraction of nodes remaining in the largest cluster
of network B after a random failure of a fraction 1− p of
network’s A-nodes. The figure shows that high IDDC even
with no ICC or high ICC even with no IDDC, significantly
increases the fraction of failing nodes (smaller pc) that will
fragment the system (P∞ = 0), indicating that the system
is more robust. Moreover, for high IDDC or ICC the jump
in the size of P∞ that characterizes a first-order phase
transition changes to a gradual decrease identified with
a second-order transition. Figure 1(b) provides additional
support for our claim that inter-similarity increases the
robustness of interdependent networks. The number of
iterations (NOI) in the process of cascading failures at
pc for a network of size N , scales with N

1/4 for randomly
interdependent networks [7] and is equal to 1 for identical
networks. The figure shows that indeed when the inter-
similarity is increased either via the IDDC measure or via
the ICC measure, the NOI decreases, respectively.
Next, we study a real interdependent system that is

composed of a world wide port network and a world wide
airport network. The airport network is composed of
1767 airports and records the majority of the air traffic
around the world. The port network is composed of 1076
ports and records the flow of commodities around the
world. Previous studies have shown [16–18] that different
transportation systems that are located in the same city
(or area) depend on each other through their common
influence on the economic prosperity of that city. In
terms of our two networks, the development of an airport
in a city will lead to an increase in air-traffic that in
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Fig. 2: (Colour on-line) The sea-air interdependent system is
composed of a world wide port network and a world wide
airport network. The simulations present the fraction of nodes
remaining in the largest cluster of the airport network, P∞,
after a fraction p of the ports in the port network are randomly
removed (similar results are obtained for the opposite case).
The results are compared between two different configurations:
i) (squares) the networks are randomly coupled; ii) (circles)
the networks are coupled according to geographic locations
(GL), i.e., an airport depends on the nearest port and vice
versa. When the networks are coupled by GL the system is
significantly more robust to random failure (the value of p for
which P∞ approaches zero is much smaller).

turn will result in economic prosperity. The prosperity of
that city will have a positive effect on the development
and increase of traffic to that city’s port and vice versa.
Accordingly, for our mapping we assume that a port
depends on a nearby airport and vice versa. However,
since the networks are not of the same size we first
renormalized the networks so that they corresponds to
the model presented in [7,8]. We first match between
pairs of ports and airports with the minimal distance
between them under the condition that a port only
depends on one airport and vice versa. The remaining
airports that do not depend on any port are merged
with the closest airport such that the new renormalized
node includes the accumulated traffic of these airports. A
similar process is applied to the port network. At the end
of this process we obtain two networks both of size 992
that are coupled based on geographical location (GL).
We find that for the GL interdependent port-airport
networks the coupling between the networks is not
random, the IDDC parameter is rAB = 0.2 (compared
to rAB→ 0 for randomly interdependent networks)
indicating that high-degree ports tend to couple with
high-degree airports. These findings support our theory
regarding inter-similarity between real interdependent
networks.
The next step is to enquire how the high level of IDDC

in the port-airport networks affects the robustness of the
system. Figure 2 presents P∞ of the port network for an
increasing fraction of failing nodes in the airport network
(similar results are obtained when the initial nodes fail
from the port network). The figure compares between two
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Fig. 3: (Colour on-line) Simulation results for ER networks
each of size N = 100000 and 〈k〉= 3.75 showing the effect
of changing the degree-degree correlation (DDC) within a
single network (solid symbols) compared to the effect in
two interdependent networks (open symbols). For the case of
interdependent networks the DDC is measured within each
network and the IDDC and ICC are kept zero. Even though the
effect of the DDC on a single network is minor (solid circles)
it significantly decreases the robustness of interdependent
networks (open circles).

configurations of the port-airport system: i) The networks
are randomly coupled. ii) The networks are coupled based
on geographical location (GL). The results support our
theory that a systems with high IDDC is more robust to
random attack (P∞ is larger) and that the phase transition
becomes smoother as the networks become more inter-
similar. However, since each of the networks has a very
high average degree (within each network the nodes are
well connected) and as a result the networks are very hard
to fragment, we have made the reasonable assumption that
when 75 percent of the traffic to a certain port (or airport)
is disabled that port becomes non functional.
Until now we have shown the critical effect of inter-

similarity on the robustness of a system composed of
interdependent networks. But what is the effect of the
local properties within each of the networks on the
robustness of the interdependent system? Here we show
that the degree-degree correlation (DDC) [9] within a
network that has only a minor effect on the robustness
of single networks greatly affects the robustness of an
interdependent system. While for single networks a higher
DDC usually slightly increases the robustness of the
network for an interdependent system a higher DDC
significantly increases the vulnerability of the system.
In fig. 3 we demonstrate the effect for the case of ER
networks. For ER networks that are characterized by a
very narrow degree distribution, the DDC is expected to
have a very limited effect on a single network. But, when
two such ER networks with high DDC become randomly
interdependent the effect of the DDC becomes dramatic,
as shown in fig. 3.
After showing that real coupled networks are indeed

inter-similar, we present a mechanism for generating

inter-similar coupled networks. The model we present
can be regarded as a generalization of the Barabási-
Albert (BA) preferential attachment model [14,15] to two
interdependent networks, that naturally incorporates inter
degree-degree correlations between the nodes of the two
networks. According to the BA model, a single network
with an initial set of m0 randomly connected nodes is
grown by adding on each step a new node that is connected
to m different nodes from the already existing network.
The probability of the new node to connect to a specific
node is proportional to that node’s degree. Generaliz-
ing the model to two interdependent networks A and B,
we start with two initial sets of nodes mA0 and m

B
0 of

the same size. The two sets are each internally randomly
connected and in addition each node frommA0 is randomly
connected to one node in mB0 . On each step t, a pair
of dependent nodes {At, Bt} are added to the networks,
At to network A and Bt to network B, independently,
according to the preferential attachment model. Since the
two nodes are added independently, there is no correla-
tion between the neighbors of node At in network A and
the neighbors of Bt in network B. This process mimics
a natural process of two interdependent growing network.
In terms of our initial example of a power network and a
communication network, at different times new develop-
ing areas are populated and connected to infrastructures.
Every such area adds a pair of dependent nodes, a power
node and a communication node. Even though At and
Bt are differently connected within each network, because
of the preferential attachment process, the fact that they
were added at the same time significantly increases the
probability that they have a similar degree. When simu-
lating a system of two interdependent networks accord-
ing to our generalized BA model we obtained two SF
networks with λ= 3 as obtained by the BA model for
a single SF network [14,15]. We also obtain a very high
level of IDDC (rAB = 0.6) without any change in the
ICC value (cAB = 0). Our model therefore provides a
natural mechanism for generating SF inter-similar coupled
networks with high inter degree-degree correlation but
without inter-clustering coefficient. Our simulations also
confirm that an interdependent system generated accord-
ing to the generalized BA model is significantly more
robust to random failure than a randomly interdependent
system.
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Additional remark : After submitting this manuscript
Buldyrev et al. [19] presented an analytical solution for
the specific case where all interdependent pairs have the
same degree (cAB = 1).
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