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a b s t r a c t

Isolated complex networks have been studied deeply in the last decades due to the fact
that many real systems can be modeled using these types of structures. However, it is well
known that the behavior of a system not only depends on itself, but usually also depends
on the dynamics of other structures. For this reason, interacting complex networks and
the processes developed on them have been the focus of study of many researches in the
last years. One of the most studied subjects in this type of structures is the Synchroniza-
tion problem, which is important in a wide variety of processes in real systems. In this
manuscript we study the synchronization of two interacting scale-free networks, in which
each node has ke dependency links with different nodes in the other network. We map
the synchronization problem with an interface growth, by studying the fluctuations in the
steady state of a scalar field defined in both networks.

We find that as ke slightly increases from ke = 0, there is a really significant decreasing
in the fluctuations of the system. However, this considerable improvement takes place
mainly for small values of ke, when the interaction between networks becomes stronger
there is only a slight change in the fluctuations. We characterize how the dispersion of
the scalar field depends on the internal degree, and we show that a combination between
the decreasing of this dispersion and the integer nature of our growth model are the
responsible for the behavior of the fluctuations with ke.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the last decades the study of complex networks has attracted the attention of many researchers because many real
processes evolve on these types of structures. In early stages of these studies researchers were focused on processes that
develop on isolated networks, however, systems, in general, are not completely isolated, but interacting with other systems
instead. These types of interacting systems,which are a special case of the class calledNetworks of Networks (NoN), are com-
posed of internal and external connections. NoN structures were successfully used to understand epidemic spreading [1–5],
cascade of failures [4–9], diffusion [4,5,10,11] and synchronization [4,12–15].

Synchronization phenomena is a relevant subject in many areas, such as in neurobiology [15–19], animal behavior
[20–22], power-grid networks [23–25] and so forth. In a relatively recent approach, synchronization problems in complex
networks are associated to the fluctuations of a scalar h defined over the system [14,26–39]. This scalar field is a measure of
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the amount of load that a node has to manage. For example, in the problem of queuing networks, the load is proportional to
the waiting time that a node needs to complete his task. The load in a node must be reduced in order to avoid increasing the
waiting time by distributing efficiently the loads and thus improving the synchronization. In this approach the fluctuations
are given by

W =

vuut
(

1
N

NX

i=1

(hi � hhi)2
)

, (1)

where hi is the load of node i, hhi is the average value of the load over the network, N is the system size, and {} is the
statistical average. In the steady state the fluctuations reach a constant valueW ⌘ Ws, which depends on the topology of the
network. This type of process was studied in networks with different topologies, but in the last few years many researches
have focused on Scale-Free (SF) networks because they are obiquous in many real systems. These kinds of networks are
characterized by a degree distribution P(k) ⇠ k��, where P(k) is the probability that a node has k internal links and � is the
exponent of the power law distribution. In general, � takes values between 2.5 and 3 in real SF networks.

One of the most studied models of growth interface is the Family model [14,35–40], which is a surface relaxation model
(SRM). In this model, at each time-step a node is randomly chosen, and the node with the lowest amount of load or ‘height’
between the selectednode and its neighbors increases its load in oneunit. In isolated SFnetworkswith exponent� < 3 itwas
found that the dependence ofWs with the system size N has a crossover between two different behaviors at a characteristic
size N0: for N < N0,Ws ⇠ logN , and Ws ⇠ constant for N > N0 [35]. Thus in the last regime the system is scalable,
i.e. increasing the system size does not affect the fluctuations. In a more recent work [14] the authors studied the SRM
in two interacting SF networks, in which a fraction q (0  q  1) of nodes in each network is connected one by one
through bidirectional external links, allowing diffusion from one network to another. They found that the synchronization
improves as q increases and reaches an improvement of 40% for q = 1. In real systems however, nodes can have more
than one external connection with nodes in the other networks, which implies a stronger interaction between the systems.
This strong interaction may affect the processes that develop on structures of this type. In this work we are interested in
understanding how the strong interaction between networks affects the synchronization of the system. For this purpose
we study the SRM model in two SF networks in which each node has ke external connections. In this study we only use
stochastic simulations due to the fact that the heterogeneity of the SF networks and the lack of geometrical direction makes
difficult any theoretical approach [36].

2. Model

We build two SF networks Ai (i = 1, 2) using the Molloy–Reed Algorithm [41], avoiding multiple and self connections,
and we use a minimum degree kmin = 2 to ensure that each network has a single component [42]. In both networks every
node j, with j = 1, . . . ,N , has kij internal connections with nodes in the same network and ke external connections with
nodes in the other network. By simplicity, we consider the same number of external connections for all nodes. We denote
by vi

j and bij the set of internal and external neighboring nodes respectively of node j from network Ai. We chose as initial
condition all the scalar fields hi

j randomly distributed in the interval [0, 1].
At each time step a node j in one of the networks Ai, with i = 1, 2, is randomly chosen and receives a load unit. Then:

(1) The load diffuses to the node m, which is the one with the smaller load in the set {j, vi
j}. We denote this process as the

first internal diffusion.
(2) If hi

m is smaller than all the heights in the set bim, then the load is deposited inm and hi
m = hi

m +1. (Color green in Fig. 1.)
Otherwise the load diffuses to the node with the smaller height in the set {bim}. We denote this process as external
diffusion.

(3) If an external diffusion takes place, step (1) is repeated and, after a second internal diffusion, the load is deposited in a
node n in the network Al with l 6= i (color red in Fig. 1). Then hl

n = hl
n + 1.

3. Results and discussions

For the simulations we build two SF networks with the same exponents � = 2.6 and sizes N = 3 ⇥ 105 to ensure that
the system is in the scalable regime [35]. As the two networks used here have the same exponent � and same system size N ,
the fluctuationsWi

s on each network will be in average the same, thus by simplicity we drop the index i. In Fig. 2 we plot the
square fluctuations in the steady state of each network W 2

s as a function of the external connection parameter ke. We can
observe that the synchronization of the system improves as ke increases and that the fluctuations converge asymptotically
to the optimal value W 2

s (N), which corresponds to the case ke = N . The reduction in the fluctuations when more external
connections are added is due to the fact that the overloaded nodes in one network have the possibility to diffuse their excess
of load to nodes that possess lower levels of load in the other network. This external diffusion allows to synchronize nodes
that have increasingly similar amounts of load. It is important to notice that for high interacting networks with ke = N ,
the value W 2

s (N) is independent of the exponent � of the degree distribution because in this case the interaction between
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Fig. 1. Schematic of the rules of our model for two interacting networks. The circles represent the nodes and the columns the amount of load or height in
each node. Full lines denote the internal connections and the dot-lines the external ones. The networks have N = 4 and ke = 1. A load unit is dropped in a
node of one of the networks (colored cubes) and diffuses between nodes following the rules (colored arrows), until it is finally deposited. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

networks, represented by the external connections, dominates the dynamics and the saturation value of the synchronization.
Thus in this case of strong interaction the topology of the isolated networks represented by internal connections plays a
minor role. More precisely, the nodes have more probability to diffuse to nodes in the other network because the number
of external connections is much higher than the number of internal ones.

In order to visualize the relative improvement of the synchronization compared to the isolated network we compute
the percentage of the maximum optimization that the system achieves for ke > 0, ⌘ = (W 2

s (0) � W 2
s (ke))/(W 2

s (0) �
W 2

s (N)) ⇥ 100%. In the inset of Fig. 2 we plot ⌘ as function of ke. From the plot we can observe that we do not need to have
very high values of ke to get a good improvement, since ⌘ approaches fast to the optimal case (ke = N). As ke increases more
connections are added in order to obtain some improvement in the synchronization, and this is very expensive compared
to the resulting profit. For example, increasing ke from zero to five implies adding 5N external connections and ⌘ is about
94.5%, when we increase ke from 5 to 10 we duplicate the external connections between networks and obtain only a 3% of
improvement over the previous case. This is a high cost to pay to only obtain a slight improvement in the synchronization
of the system.

To understand the role of the internal connections of the nodes in the fluctuations, we define the average contribution
S(k) that nodes with degree k made toW 2

s , where S(k) is given by

S(k) = 1
N

NX

j=1/kj=k

(hj � hhi)2
NP(k)

.
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Fig. 2. Square fluctuations of the scalar field W 2
s as a function of the external connections ke (�). The dashed line corresponds to the case ke = N . In the

inset we plot the percentage of the maximum improvement that the synchronization can achieve compared to the isolated network ⌘ as a function of ke.
For small values of ke, ⌘ almost approaches its optimal value.

Fig. 3. The average contribution S(k) that a node with degree k makes to the fluctuations as a function of k, for ke = 0 (black �), ke = 1 (red ⇤), ke = 2
(green ⇧), ke = 5 (blue 1), ke = 10 (orange 5), and ke = N (violet ⇥). The values of S(k) shown in the vertical axis are multiplied by 10�6. The curves
exhibit a minimum around k = 6 for all ke. For ke = N , S(k) is a constant which does not depend on the topology of the networks.

It is straightforward to show thatW 2
s = Pkmax

k=kmin
N P(k) S(k). In Fig. 3 we plot S(k) as a function of the internal degree k for

different values of ke. From this plot we can see that as k increases S(k) decreases, reaching a minimum around k = 6. This
behavior can be explained as follows: as k increases the nodes have more neighboring nodes to which they can send their
excess of load or from which they can receive load, approaching their height to hhi. However around k = 6, the nodes have
too many neighbors and start to act as load sinks, and thus high degree nodes become the most loaded of the system. As
ke increases S(k) decreases for all the values of k and as a consequence the synchronization improves, and in addition S(k)
has a minor dependence on k. This implies that the amount of load of all the nodes becomes similar and hence the external
connections dominate the dynamics of the growthmodel over the internal topology of the network. Thus S(k) has the same
value regardless of the internal degree of a node when ke = N . In Fig. 3 we show only the values of S(k) for nodes with
k < 15 because the total contribution from higher degree nodes to the fluctuations is far smaller.

In order to explain why the main contributions to the fluctuations are reduced when the interaction between networks
increases, we study the distribution of load of nodes with internal connectivity k around the main value h(k) � hhi, where
h(k) is the average amount of load of nodes with degree k. In Fig. 4 we plot the distributions of h(k) � hhi, for k = 2 and for
k = 10 for different values of ke. From Fig. 4(a), we can see that as the number of external connections increases for ke > 0,
the dispersion of these distributions is reduced. For example, when we increase ke from 0 to 1, the dispersion is reduced
from 0.934 to 0.501. Also these distributions have nodes with levels of load above and below the mean value, and with an
average load very close to hhi, regardless of the value of ke. These observations, which are also seen for k < 6 – not shown
here – confirm that the main reason of the reduction of the fluctuations is that nodes with small degree and load above the
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Fig. 4. (a) Distribution of load of the nodes around the mean value for nodes with (a) degree k = 2 for ke = 0 (black �), ke = 1 (red ⇤), ke = 2 (green ⇧),
ke = 5 (blue 1), ke = 10 (orange 5) and ke = N (violet ⇥). (b) Degree k = 10 for ke = 0 (black �), ke = 1 (red ⇤), ke = 5 (blue 1) and ke = N (violet ⇥).

Table 1

Dispersion of the distributions of load of the nodes with internal degree k
around hhi for different values of ke. Notice that the dispersion is

p
NS(k).

ke 0 1 2 5 10 N

k = 2 0.934 0.501 0.419 0.349 0.317 0.289
k = 10 0.667 0.427 0.373 0.326 0.306 0.289

main value send their excess of load to nodes with also small degree and load below the main value through the external
connections of the system. Other values of dispersion of these distributions around the main value are displayed in Table 1.

From Fig. 4(b) we can see that the distribution of h(k = 10) � hhi for ke = 0 is not centered in 0. This is because,
as explained above, nodes with k > 6 act as load sinks and usually become over saturated in the growing process. As ke
increases not only the width of the distribution is reduced but also it is centered close to 0. Thus all the load distributions
for different values of k get closer as ke increases. Adding external connections decreases the dispersion of the distributions,
however due to the discrete nature of the rules of our growth model and the initial conditions, the reduction has a limit at
which the distribution tends to a rectangular shape as can be seen in Fig. 4(a) and (b) for ke ! N . Also from Table 1 we can
see that the values of the dispersion of the load distribution for k = 2 are closer to the values for k = 10 as ke increases. All
the results shown in this table are qualitatively the same for other values of � in the interval 2 < �  3.

It is worthwhile tomention that we expect that in NoN composed of more than two networksW 2
s will be slightly smaller

than in the case of two interacting networks, because the system will be able to perform more relaxation steps between
networks.

4. Conclusions

We studied the synchronization of a system of two interacting SF networks for a simple surface relaxation model, in
which the nodes of each network are connected with ke nodes of the other network. We found that as ke increases the
synchronization of the system improves, reaching an optimal value for ke = N . We also found that the addition of a small
number of ke connections results in a similar improvement compared to the case ke = N . This is important because an
increase in the value of ke requires to add a large number of external connections to the system, which is very expensive
from an economic point of view. We explain the reduction of the fluctuations in each network when ke increases, by the
decrease of the contributions from nodes with small degree, which is a consequence of the external connections that reduce
the dispersion of load of these nodes around the mean value.

In future works we will explore another type of external connection, such as external connections taken from a
distribution.
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