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Abstract
Recent studies have shown that in interdependent networks an initial failure of
a fraction 1 − p of nodes in one network, exposes the system to a cascade of
failures. Therefore it is important to develop efficient strategies to avoid their
collapse. Here, we provide an exact theoretical approach to study the evolution
of the cascade of failures on interdependent networks when a fraction α of
the nodes with higher connectivity are autonomous. We found, for a pair of
heterogeneous networks, two critical percolation thresholds that depend on α,
separating three regimes with very different networks’ final sizes that converge
into a triple point in the plane p−α. Our findings suggest that the heterogeneity
of the networks represented by high degree nodes are responsible for the rich
phase diagrams found in this and other investigations.
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1. Introduction

Networks of networks are systems composed by several networks that in many cases depend
on each other in a non-trivial way [1, 2]. An example of such systems are the power grid
and the communication networks [3] in which the first one provides electric power to the
communication network, and the last one provides control service to the electric network.
Another example is the traffic flow between cities, through the sea port and airport networks
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[4] in which the flow of individuals or goods in a city decays if it does not receive traffic from
one of these networks. Most of these systems are composed by individual networks connected
by internal connectivity links. The role of these internal links is to generate a single component
network that allows to distribute some entities between the nodes, such as the electric flow in
the power grid network. Nodes of different networks are connected by interdependent links
that enable the support between them. Thus in general, when a node fails in one network, the
failure propagates to the other networks through the interdependent links producing sometimes
a ‘domino’ effect with harmful consequences for the functionality of the networks.

It was shown that under a failure of a fraction of nodes in one network, the interdependence
can produce a cascade of failures that spreads through all the system with catastrophic
consequences in the robustness of the individual networks. Buldyrev et al [5] proposed a
minimalist model, based on percolation theory, to study the dynamics of the cascade of
failures. In [5] they consider two interdependent networks, denoted by A and B with fully
interdependence i.e. each node depends on a node in the other network. By definition, a
functional node is connected to the giant component (GC) of its own network and depends on
a node in the other network that also belongs to its GC. Otherwise the node is dysfunctional,
i.e. it is failed [5]. Thus, the GC is the only ‘functional cluster’ and there is only one in
each network. Before receiving an initial failure or attack, every node in one network is
supported by its interdependent node in the other network and thus the nodes are fully
interdependent with a full correspondence between the sizes of the GC of both networks.
The random failure of an initial fraction 1 − p of nodes in one network triggers the cascade
of failures and, as a consequence, the correspondence between both GC is broken. At each
time step, the dysfunctional nodes transmit the failure to their interdependent neighbors,
producing dysfunctional nodes in the other network. The process reaches the steady state
when both networks are abruptly destroyed with a first order transition at a critical threshold
pc or when above pc the correspondence between the GC is reestablished. It was shown
that fully interdependent networks are very fragile under random failures, i.e., they have a
higher critical threshold pc than isolated networks, regardless of the degree distribution [5].
This was an exciting result because it is well known that isolated heterogeneous scale-free
(SF) networks are very robust against random failures (pc → 0). However, to consider full
interdependence is not very realistic because nodes in each network can work autonomously.
For example, some nodes can have a ‘power supply’ or a backup that allow them to remain
functional even when they lack of support from the other network, increasing their chance
to remain functional. As a consequence, partial interdependence where a random fraction
q < 1 of nodes are interdependent and the rest are autonomous, increases the robustness
of the individuals networks compared to the case of fully interdependence [6–10]. It was
found that depending on the value of q and on the fraction 1 − p of random failures in
network A, the transition changes from a discontinuous to a continuous one. In these partial
interdependent networks the correspondence in the steady state between networks A and B
is broken because the autonomous nodes in network B do not receive the initial failure of
network A and can only become dysfunctional by the failure of non-autonomous nodes that
disconnect them from its GC. Then, in the steady state, the size of the GC of network B
is bigger than the one in network A. In [7] it was found that for heterogeneous SF under
random autonomization the sizes of the functional clusters undergo an abrupt decreasing for
a certain value of p = p+

c without a full collapse due to the fact that the high degree nodes are
sustained by autonomous nodes4. However bellow p+

c the size of the GC of network A decreases

4 Note that since in a SF network there is only a small amount of high degree nodes, they have a low probability to
become dysfunctional in the initial failure.
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continuously to zero as in a second order percolating transition at a value p = p−
c , while the

size of network B goes to a finite value. The goal is to find a way to autonomize efficiently the
networks in order to increase their robustness compared to the case of random autonomization
[11, 12]. Schneider et al [11] proposed a model where the robustness of the system is enhanced
by targeted autonomization of a fraction α ≡ 1 − q of the higher degree nodes. Using a
theoretical mean field approximation that assumes that the cascade of failures affects both
autonomous and non-autonomous nodes, they showed that even for homogeneous networks
there is a critical point in the plane p − q, at (pc, qc) where the transition changes from first
order for q > qc to a continuous one for q < qc. This theoretical result was qualitatively
supported by simulation, but the exact theoretical solution was not derived so far. An exact
theoretical formulation allows to find some other effects that are hidden in the simulations due
to finite size effects. Very recently, Valdez et al [13], introduce an exact general framework
that they apply to explain the effect of partially correlated interdependent networks in the
robustness of heterogeneous SF interdependent networks under cascade of failures. The exact
result allowed to find very interesting features such as a triple point in the phase diagram that
depend on the level of correlation. Here, we apply the formalism presented in [13] to targeted
autonomization and derive the exact theoretical solutions for this process.

2. Theoretical results

We study the temporal evolution of the sizes of the GC of two interdependent networks under
targeted autonomization when a fraction α of the higher degree nodes of both networks are
autonomous. Each network, that we denote by A and B, has connectivity links distributed
according to P[kA] and P[kB], where kA and kB are the connectivity links of nodes in A and B
respectively. Let us assume that a fraction of interdependent nodes qA[kA] (qB[kB]) in network
A (B) depends on the connectivity links of network A (B). In the initial stage a fraction 1− p of
nodes fails at random in network A. At each stage n of the cascade failure that goes from A to
B, a node in network A with degree kA is functional if it is autonomous and belongs to its GC
with probability (1 − qA[kA])(1 − (1 − p fAn)

kA ) or if it is not autonomous but was connected
to the GC of B in a previous stage with probability qA[kA](1 − (1 − fBn−1)

kB ). Since the initial
failure (at n = 0) of 1 − p nodes happens only in network A, then only fAn is multiplied by
p. Here fAn ( fBn) is the probability that a random selected edge that leads to a non-failed node
at n = 0, this node belongs to the GC of network A (B) at stage n [14, 15] and fulfils the
self-consistent equation

fAn =
kmax∑

kA=kmin

kA P[kA]
〈kA〉 (1 − qA[kA]) (1 − (1 − p fAn)

kA−1)

+
kmax∑

kA=kmin

kAP[kA]
〈kA〉

qA[kA](1 − (1 − p fAn)
kA−1)

×
kmax∑

kB=kmin

P[kB](1 − (1 − fBn−1)
kB ) (1)

where kmin and kmax are the minimum and maximum connectivity links respectively.
The first term in equation (1) takes into account the autonomous functional nodes in A

with degree kA and the second term corresponds to functional nodes in A with degree kA that
depend on functional nodes of B with degree kB at step n − 1. Thus, the fraction of nodes "n
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of the GC of network A at step n is given by,

"n = p

(
kmax∑

kA=kmin

P[kA](1 − qA[kA])(1 − (1 − p fAn)
kA )+

kmax∑

kA=kmin

qA[kA]P[kA](1 − (1 − p fAn)
kA )

×
kmax∑

kB=kmin

P[kB](1 − (1 − fBn−1)
kB )

)

. (2)

For network B, fBn also fulfils a self-consistent equation

fBn =
kmax∑

kB=kmin

kBP[kB]
〈kB〉

(1 − qB[kB])(1 − (1 − fBn)
kB−1)

+ p
kmax∑

kB=kmin

kBP[kB]
〈kB〉

qB[kB](1 − (1 − fBn)
kB−1)

×
kmax∑

kA=kmin

P[kA](1 − (1 − p fAn)
kA ). (3)

Thus the fraction of nodes φn of the GC of network B is given by

φn =
kmax∑

kA=kmin

P[kB](1 − qB[kB])(1 − (1 − fBn)
kB )

+ p
kmax∑

kA=kmin

P[kA](1 − (1 − p fAn)
kA )

×
kmax∑

kB=kmin

q[kB]P[kB](1 − (1 − fBn)
kB ). (4)

In the steady state, i.e. for n → ∞, "n ≈ "n−1 and φn ≈ φn−1, thus "n and φn converges to
"∞ and φ∞, respectively [13, 16, 17].

In this model, qA[kA] and qB[kB] are given by

qi[ki] =






1 ki < kS

(1 − w) ki = kS

0 kS < ki,

where i = A, B, kS is the degree at and above which a fraction α of nodes are autonomous,
and kS fulfils

∑ks−1
ki=kmin P[ki] ! 1 − α <

∑ks
ki=kmin P[ki]. Thus if we denote by w the fraction

of autonomous nodes with degree ks, wP[ks] +
∑kmax

ki=ks+1 P[ki] = α. Note that for α > 0
equations (1)–(4) are not symmetric which leads to the non-correspondence between the final
sizes of the GC of networks A and B, as mentioned above. The symmetry is restored only for
qA = qB = 1 (α = 0) [5] or when the initial failure happens in both networks [7].

We apply our equations to SF networks of sizes N = 106 with degree distribution
P[k] ∼ k−λ with kmin ! k ! kmax and λ = 2.5. Here, we use kmin = 2 to ensure that at the
beginning all the nodes belong to the GC [18]. Since the theoretical solutions of equations
(1)–(4) near the criticality are sensitive to the precision employed in the calculations, we use a
multiple precision arithmetic library [19]. We chose a finite kmax in order to emulate the finite
power law region observed in many real networks [20] such as the movie actor network [21],
the scientific collaboration network [15, 22] and the protein network [23]. In figure 1 we show
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Figure 1. Cascade failure on network A with targeted autonomization on SF networks
of size N = 106 with λ = 2.5 and 2 ! k ! kmax = 1000. (a) "n as a function of
n obtained by 100 network realizations (box plots) and from equations (1)–(4) (solid
lines) for α = 0.01%, p = 0.60 (black) and p = 0.62 (red). The ends of the whiskers
represent the 5th-percentile and 95th-percentile. In the inset we plot the theoretical
solution for (from top to bottom): p = 0.077 90, p = 0.077 822, p = 0.077 8214 and
p = 0.077 8213 (pc ≈ 0.077 821 334). (b) "∞ as a function of p for different values
of α, α = 0.1% (red, ©), α = 0.01% (blue, +) and α = 0.001% (black, "). The
simulations are represented by symbols and the theoretical solutions obtained from
equations (1)–(4) for n → ∞ by solid lines. The simulations were performed over 100
network realizations. In the inset we show the finite size effects of the simulations as N
increases from N = 5 × 106 to N = 2.5 × 107 for p = 0.47 and α = 0.001%. Each box
plot is obtained over 1000 network realizations and shows the 5th, 25th, 50th, 75th and
95th percentile values. For bigger network sizes, the median of "∞ approaches to the
theoretical value (dotted line).

the temporal evolution and the steady state of the fraction of nodes in the GC of network A,
for SF networks with λ = 2.5. From figure 1 we can see the excellent agreement between the
theory and the simulations, except for very low values of "∞ that is due to finite size effects.
In the inset of figure1(b) we show from N = 5 × 106 to N = 2.5 × 107 that the value of
"∞ obtained from the simulations approaches to the theoretical solution for p = 0.47 and
α = 0.001% as the system size increases.

As was observed in [11], for homogeneous networks, the robustness of the networks
increases with α due to the fact that the higher degree nodes of both networks, that are the ones
that sustain the functionality of the networks, are autonomous. Our theoretical equations allow
one to find a surprising behavior of the transitions with two critical thresholds at p = p+

c and
p = p−

c that depend on α (with p−
c < p+

c ).5 At p+
c the sizes of the functional networks A and B

have an abrupt jump. Below this critical threshold the GC of network A is destroyed at p−
c . To

compute the value of the critical point p+
c , we solve numerically the system of equations (1)

and (3) with the condition det(J − I) = 0,6 where J is the Jacobian of equations (1) and (3)
and I is the identity matrix. This method also can be applied to find p−

c , however here we use a
more explicit and physical derivation to compute it7. Assuming that the transition in network
A is continuous, then the probability fA → 0 continuously when p → p−

c . As a consequence
at this threshold fB, that is not zero due to the broken symmetry imposed by the initial failure

5 In [11] it only one threshold was found, since the process was studied only on homogeneous networks.
6 Geometrically, this equation is the condition of the tangency between the identity plane and the surface composed
by the right hand side of equations (1) and (3) in the steady state.
7 Another method to obtain graphically the value of the critical point is by measuring the position of the peak of
the NOI curve as a function of p, where the NOI is the number of iterations needed to reach the steady state of the
evolution equations. At p+

c there is a sharp peak, which corresponds to the condition det(J − I) = 0. However, around
p−

c the NOI has not a visible peak within the precision we used.
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Figure 2. Phase diagram in the plane α − p: (i) the yellow area corresponds to the
nonfunctional phase, i.e., "∞ = 0, (ii) the blue area corresponds to a partial functional
phase in which the size of the GC of both networks is #10−3 and (iii) the white area
corresponds to a functional phase where "∞ $ 10−2. The white circle corresponds to
a triple point. The solid lines represent the abrupt change on both network’s sizes and
the dotted line, which is defined for α > αc, represents a continuous transition of "∞ at
p−

c , obtained from equation (7). The cross symbols correspond to some points obtained
from equations (1)–(4) around which the solution "n vanishes for n → ∞.

in A and by the partially interdependence (0 < α < 1), reduces to

fB =
kmax∑

kB=kmin

kBP[kB]
〈kB〉

(1 − qB[kB])(1 − (1 − fB)kB−1). (5)

Solving this self-consistent equation we found the non-trivial solution of equation (5), from
where we obtain fB at the threshold p−

c . Since p−
c is a critical point for network A, the rhs of

equation (1) for n → ∞ is tangent to the identity function evaluated at fA = 0, thus

1 = p
kmax∑

kA=kmin

kA(kA − 1)P[kA]
〈kA〉 (1 − qA[kA])

+ p
kmax∑

kA=kmin

qA[kA]
kA(kA − 1)P[kA]

〈kA〉

kmax∑

kB=kmin

P[kB](1 − (1 − fB)kB ). (6)

Then p = p−
c is explicitly given by

p−
c =




〈
k2

A

〉
− 〈kA〉
〈kA〉

− G0B[1 − fB]




ks−1∑

kA=1

kA(kA − 1)P[kA]
〈kA〉

+ (1 − w)ks(ks − 1)P[ks]
〈kA〉








−1

,

(7)

where
(〈

k2
A

〉
− 〈kA〉

)/
〈kA〉 is the branching factor of random percolation in network A and

G0B[x] ≡
∑

kB
P[kB]xkB is the generating function of network B. Thus p−

c is a correction to
the threshold of percolation in individual networks where pc = 〈kA〉

/(〈
k2

A

〉
− 〈kA〉

)
, because

the branching factor in this process is reduced by the second term, as a result of the targeted
autonomization. Note that if kmax → ∞ the branching factor diverges, and p−

c → 0 for all
α > 0.8 The solution of equation (7), has a physical meaning only if p−

c < p+
c , otherwise there

is only one threshold at p = p+
c where both networks fully collapses. The phase diagram in

the plane p − α, displayed in figure 2, shows a triple point in which the line of the first order

8 It is straightforward to obtain the same result for random autonomization [7] under random failure in both networks.
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transition forks at αc = 0.000 702(1)% into two branches where the upper one corresponds to
an abrupt collapses at p = p+

c and the lower one corresponds to p−
c where the size of network

A continuously vanishes.
If the assumption on the continuity of the transition used to derive p−

c holds, the evolution
equation around p−

c will also show a continuous critical behavior at the value of p−
c obtained

from equation (7). We solve numerically the equations (1)–(4) for p−
c + δp, for different

values of α. In the inset of figure 1(a) we show the temporal evolution for α = 0.01%
(with p−

c = 0.077 821 334). We can see that above but very close to our theoretical p−
c , "∞

goes to a finite value, while slightly below network A collapses ("∞ = 0). In figure 2 we
show (with cross symbols) some values of p−

c of the continuous branch of the phase diagram
obtained from the evolution equations9, that are in total agreement with equation (7). This
result confirms our argument which leads to equation (7), used to obtain the lower branch
of the phase diagram allowing us to find p−

c . We found the same qualitative behavior for
different values of λ, however as the heterogeneity decreases, the network is less robust and
it is expected that at some point the triple point will be lost. At this point the phase diagram
will have only one transition line, such as in homogeneous networks [11]. These findings may
indicate that when high degree nodes in SF networks are protected via targeted autonomization,
random autonomization [7] or correlation [13], they induce multiple and different kinds of
order transitions.

In summary, we have presented the exact formulation of the cascade of failures for targeted
immunization with any degree distribution of connectivity links. We show theoretically that
increasing autonomization α enhances the robustness of SF networks and generates in the
phase diagram p − α different regimes with different characteristic sizes of the GC. These
regimes converge into a triple point which is reminiscent of the triple points of liquids.
Physically it means that high degree nodes, that are responsible for maintaining the integrity
of the networks, play a fundamental role in the rich phase diagrams of these processes.
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Havlin S and Stanley H E 2007 Optimal path and minimal spanning trees in random weighted
networks Int. J. Bifurcation Chaos 17 2215–55

[15] Newman M E J, Strogatz S and Watts D 2001 Random graphs with arbitrary degree distributions
and their applications Phys. Rev. E 64 026118

[16] Son S-W, Bizhani G, Christensen C, Grassberger P and Paczuski M 2012 Percolation theory on
interdependent networks based on epidemic spreading Europhys. Lett. 97 16006

[17] Baxter G J, Dorogovtsev S N, Goltsev A V and Mendes J F F 2012 Avalanche collapse of
interdependent networks Phys. Rev. Lett. 109 248701

[18] Bornholdt S, Schuster H G and Wiley J 2003 Handbook of Graphs and Networks vol 2 (New York:
Wiley)

[19] Nikolaevskaya E, Khimich A and Chistyakova T 2012 Programming with Multiple Precision
vol 397 (Berlin: Springer)
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