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Complex networks from such different fields as biology,

technology or sociology share similar organization

principles. The possibility of a unique growth mechanism

promises to uncover universal origins of collective

behaviour. In particular, the emergence of self-similarity

in complex networks raises the fundamental question of

the growth process according to which these structures

evolve. Here we investigate the concept of renormalization

as a mechanism for the growth of fractal and non-fractal

modular networks. We show that the key principle that

gives rise to the fractal architecture of networks is a strong

effective ‘repulsion’ (or, disassortativity) between the most

connected nodes (that is, the hubs) on all length scales,

rendering them very dispersed. More importantly, we show

that a robust network comprising functional modules, such

as a cellular network, necessitates a fractal topology,

suggestive of an evolutionary drive for their existence.

An important result in statistical physics was the generation
of fractal geometries by Mandelbrot1,2, the structures of
which look the same on all length scales. Their importance

stems from the fact that these structures were recognized in
numerous examples in nature, from snowflakes and trees to phase
transitions in critical phenomena2,3. Although these fascinating
patterns are only geometric, new forms of topological fractality
have been observed in complex networks4, where the links rely on
interactions between the participants5,6. Examples of topological
fractal networks include the hyperlinks in the World Wide Web
(WWW), physical interactions in protein interaction networks or
biochemical reactions in metabolism4,7. Other complex networks
such as the Internet do not share the topological fractal property.

These fractal complex networks are characterized by the small-
world property (as given by the logarithmic dependence of the
average distance with the number of nodes) resulting from the
‘short-cuts’ in the network8, a very wide (power-law or ‘scale-
free’9) distribution of connections, and a modular hierarchical
structure10–13. However, the fractal sets of Mandelbrot do not
have these features. In our previous work4, we discovered the
fractal nature of organization in many real networks. However,
the question of how these networks have evolved in time remains
unanswered. We therefore launch a study of growth mechanisms to
understand the simultaneous emergence of fractality. Modularity,
and the small-world effect, as well as the scale-free property
in real-world complex networks. Our results have important
evolutionary implications. They highlight an evolutionary drive
towards fractality, inspired by an increase in network robustness.
Thus, a robust modular network requires a fractal topology.
Furthermore, our analysis indicates that the fractal clusters can be
identified with the functional modules in the case of the metabolic
network of the yeast Escherichia coli.

The ‘democratic’ rule of the seminal Erdös–Rényi model14

(where the nodes in the network are connected at random) was
first invoked to explain the small-world effect. It was then replaced
by the ‘rich-get-richer’ principle of preferential attachment9 to
explain the scale-free property; a discovery carrying important
implications on network vulnerability15,16. However, these rules
do not capture the fractal topologies found in diverse complex

nature physics VOL 2 APRIL 2006 www.nature.com/naturephysics 275

Untitled-5   1 3/22/06, 4:23:37 PM

Nature  Publishing Group ©2006



ARTICLES

N (t – 1) = 4

Mode I

Mode II

Time evolution

Renormalization

˜N (t ) = 16˜

N = 16 NB( B) = 4

Only Mode I

t – 1t

Only Mode II

t – 1t

a b c

Figure 1 Self-similar dynamical evolution of networks. a, The dynamical growth process can be seen as the inverse renormalization procedure with all of the properties of
the network being invariant under time evolution. In this example Ñ (t) = 16 nodes are renormalized with NB (�B ) = 4 boxes of size �B = 3. b, Analysis of Mode I alone: the
boxes are connected directly leading to strong hub–hub attraction or assortativity. This mode produces a scale-free, small-world network but without the fractal topology.
c, Mode II alone produces a scale-free network with a fractal topology but not the small-world effect. Here the boxes are connected through non-hubs leading to hub–hub
repulsion or disassortativity.

networks. We find that models of scale-free networks are not
fractals (see Supplementary Information, Section S1). Here, we
demonstrate a new view of network dynamics, where the growth
takes place multiplicatively in a correlated self-similar modular
fashion, in contrast to the uncorrelated growth of models of
preferential attachment5,9.

We formalize these ideas by borrowing the concept of
‘length-scale renormalization’ from critical phenomena3. In this
paper, we will show that the emergence of self-similar fractal
networks, such as cellular networks, is due to the strong repulsion
(disassortativity17) between the hubs at all length scales. The hubs
prefer to grow by connections to less-connected nodes rather
than to other hubs, an effect that can be viewed as an effective
hub repulsion. In this new paradigm, the ‘rich’ still get richer,
although at the expense of the ‘poor’. In other words, the hubs grow
by preferentially linking with less-connected nodes to generate a
more robust fractal topology. In contrast, weakly anticorrelated
or uncorrelated growth leads to non-fractal topologies such
as the Internet.

GROWTH MECHANISM

The renormalization scheme tiles a network of N nodes with
NB(�B) boxes using the box-covering algorithm4, as shown in
Fig. 1a. The boxes contain nodes separated by a distance �B,
measured as the length of the shortest path between nodes. Each
box is subsequently replaced by a node, and the process is repeated
until the whole network is reduced to a single node. The way to
distinguish between fractal and non-fractal networks is represented
in their scaling properties as seen in Fig. 2a and b. Fractal networks
can be characterized by the following scaling relations (Fig. 2a):

NB(�B)/N ∼ �−dB
B and kB(�B)/khub ∼ �

−dk
B , (1)

where khub and kB(�B) are the degree of the most connected
node inside each box and that of each box, respectively (Fig. 1a).
Although both of them are partial variables, the ratio between them
is a global quantity, only depending on the length scale �B, as we
showed previously4. The two exponents dB and dk are the fractal
dimension and the degree exponent of the boxes, respectively.
Although the term ‘fractal dimension’ is usually reserved for
geometrical self-similarity, here we relax the usage to include the
topological self-similarity as well. For a non-fractal network like the

Internet (Fig. 2b), we have dB → ∞ and dk → ∞; the scaling laws
in equation (1) are replaced by exponential functions.

On the basis of the results leading to equation (1), we propose
a network growth dynamics as the inverse of the renormalization
procedure. Thus, the coarse-grained networks of smaller size are
network structures appearing earlier in time, as shown in Fig. 1a.
A present time network with Ñ (t) nodes is tiled with NB(�B) boxes
of size �B. Each box represents a node in a previous time step, so
that Ñ (t −1) = NB(�B). The maximum degree of the nodes inside
a box corresponds to the present time degree: k̃(t) = khub, which
is renormalized such that k̃(t − 1) = kB(�B). The tildes over the
quantities are needed to differentiate the dynamical quantities, such
as the number of nodes as a function of time, Ñ (t), from the static
quantities, such as the number of nodes of the present network,
N , or the number of nodes of the renormalized network, NB. The
renormalization procedure applies to many complex networks in
nature4. These include fractal networks such as the WWW, protein
interaction networks of E. coli, yeast18 and human, and metabolic
networks of 43 different organisms from the three domains of life,
and some sociological networks. The renormalization scheme can
also be applied to non-fractal networks, such as the Internet. Below
we will show that the main difference between these two groups is in
the connectivity correlation. We also provide empirical, analytical
and modelling evidence supporting this theoretical framework on
the basis of the validity of exponents, scaling theory, and statistical
properties of the connectivity correlation.

CORRELATION

A question of importance to explain the selection rules governing
the fractality of the network is to determine how the nodes in
older networks are connected to those of the present day. The
answer lies in the statistical property of correlation between the
nodes and boxes within a network configuration. Studying the
correlation profile in real networks similar to those considered
previously17,19,20 provides initial hints to the above question. The
correlation profile19 compares the joint probability distribution,
P(k1,k2), of finding a node with k1 links connected to a node with
k2 links with their random uncorrelated counterpart, Pr(k1, k2),
which is obtained by random swapping of the links, while
preserving the degree distribution. A plot of the ratio R(k1,k2) =
P(k1,k2)/Pr(k1,k2) provides evidence of a correlated topological
structure that deviates from the random uncorrelated case.

276 nature physics VOL 2 APRIL 2006 www.nature.com/naturephysics

Untitled-5   2 3/22/06, 4:23:38 PM

Nature  Publishing Group ©2006



ARTICLES

Lo
g 
N B

Log (k
B (  B )/k

hub )

Fractal network
WWW

Metabolic network
PIN

Log   B

Log   B

(  
B)

BLo
g 
N B

Non-fractal network
Internet

k1

k1

k 2
k 2

1

3

10

30

100

1 3 10 30 100

1 3 10 30 100 300
1

3

10

30

100

300

102

2–1

2–2

2–3

2–4

2–5

2–6

2–7
101

100

10–1

2 4 8 16 32

a

b d

c

e

WWW
Internet

de

Log (k
B (  B )/k

hub )

0

1.0

2.0

3.0

Figure 2 Empirical results on real complex networks. Schematics showing a, that fractal networks are characterized by a power-law dependence between NB and �B and
between kB (�B )/khub and �B, whereas b, non-fractal networks are characterized by an exponential dependence. c, Plot of the correlation profile of the fractal metabolic
network of E. coli, RE. coli (k1, k2 )/RWWW(k1, k2 ), and d, the non-fractal Internet RInt (k1, k2 )/RWWW(k1, k2 ), compared with the profile of the WWW in search of a signature of
fractality. e, Scaling of E (�B ) as defined in equation (3) for the fractal topology of the WWW with de = 1.5, and the non-fractal topology of the Internet showing that fractal
topologies are strongly anticorrelated at all length scales. To calculate E (and in all of the calculations in this study) we tile the network by first identifying the nodes that are
the centre of the boxes with the largest mass and sequentially centring the boxes around these nodes.

At first glance, a qualitative classification on the basis of
the strength of the anticorrelation of different networks can
be obtained by normalizing the ratio R(k1, k2) to that of a
given network, for instance the WWW21 (see Supplementary
Information, Section S2). Figure 2c and d show the correlation
profiles of the cellular metabolic network of E. coli22, which is
known to be fractal, and the Internet at the router level23, which has
a non-fractal topology. The fractal network poses a higher degree of
anticorrelation or disassortativity; nodes with a large degree tend to
be connected with nodes of a small degree. On the other hand, the
non-fractal Internet is less anticorrelated. Thus, fractal topologies
seem to display a higher degree of hub repulsion in their structure
than non-fractals. However, for this property to be the hallmark of
fractality, the anticorrelation has to appear not only in the original
network (captured by the correlation profiles of Fig. 2c and d), but
also in the renormalized networks at all length scales. We note that
other measures of anticorrelation, such as the Pearson coefficient r
of the degrees at the end of an edge17, cannot capture the difference
between a fractal and a non-fractal network. We find that r is not
invariant under renormalization.

MATHEMATICAL MODEL

To link quantitatively the anticorrelation at all length scales to the
emergence of fractality, we next develop a mathematical framework
and demonstrate the mechanism for fractal network growth. In

the case of modular networks stemming from equation (1), we
require that

Ñ (t) = nÑ (t −1),

k̃(t) = sk̃(t −1),

L̃(t)+L0 = a(L̃(t −1)+L0),

(2)

where n > 1, s > 1 and a > 1 are time-independent constants and
L̃(t) is the diameter of the network defined by the largest distance
between nodes. The first equation is analogous to the multiplicative
process naturally found in many population growth systems24. The
second relation is analogous to the preferential attachment rule9.
It gives rise to the scale-free probability distribution of finding
a node with degree k, P(k) ∼ k−γ . The third equation describes
the growth of the diameter of the network, and determines
whether the network is small-world8 and/or fractal. Here we
introduce the characteristic size L0, the importance of which lies
in describing the non-fractal networks. As every quantity increases
by a factor of n, s and a, we first derive (see Supplementary
Information, Section SIV) the scaling exponents in terms of the
microscopic parameters: dB = lnn/lna,dk = lns/lna. The exponent
of the degree distribution satisfies γ = 1+ lnn/ lns. The dynamics
represented by equations (2) consequently leads to a modular
structure, where modules are represented by the boxes. Although
modularity has often been identified with the scaling of the
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Figure 3 Predictions of the renormalization growth mechanism of complex networks. a, Resulting topology predicted by the minimal model for e= 0.8, n= 5, a= 1.4,
s= 3 and m= 2. The colours of the nodes show the modular structure with each colour representing a different box. We also include loops in the structure as discussed in
the Supplementary Information, Section S6. b, Ratio Re=1 (k1, k2 )/Re=0.8 (k1, k2 ) to compare the hub–hub correlation emerging from the model networks generated with
e= 1 and e= 0.8, respectively. c, Plot of NB versus �B showing that Mode I is non-fractal (exponential decay) and e= 0.8 is fractal (power-law decay) according to b, and
in agreement with the empirical results of Fig. 2. d, Scaling of E (�B ) reproducing the behaviour of fractal networks for e= 0.8 and non-fractal networks Mode I, e= 1, as
found empirically in Fig. 2e.

clustering coefficient11, here we propose an alternative definition
of ‘modular network’ as one whose statistical properties remain
invariant (in particular, an invariant degree distribution with the
same exponent γ , see Supplementary Information, Section S3)
under renormalization.

To incorporate different growth modes in the dynamical
equations (2) we consider, without loss of generality, two modes
of connectivity between boxes, whose relative frequencies of
occurrence are controlled by the probability e representing the
hub–hub attraction: Mode I with probability e (Fig. 1b): two boxes
are connected through a direct link between their hubs leading
to hub–hub attraction; Mode II with probability 1 − e (Fig. 1c):
two boxes are connected through non-hubs leading to hub–hub
repulsion or anticorrelation. We will show that Mode I leads to
non-fractal networks, whereas Mode II leads to fractal networks.
In practice, although equations (2) are deterministic, we combine
these two modes according to the probability e, which renders our
model probabilistic.

Formally, for a node with k̃(t −1) links at time t −1, we define
ñh(t) as the number of links that are connected to hubs in the next
time step (see Fig. 1a). Then the probability e satisfies:

ñh(t) = ek̃(t −1).

Using the analogy between time evolution and renormalization,
we introduce the corresponding quantity, nh(�B), and define the
ratio E (�B) ≡ nh(�B)/kB(�B). The nonlinear relation between t

and �B leads to the �B dependence on E (see Supplementary
Information, Section S4). In the extreme case of strong hub
attraction, where the hubs of the boxes are connected at all length
scales, we have E (lB) ∼ constant. On the other hand, hub repulsion
leads to decreasing E (�B) with �B. From scaling, we obtain a
new exponent de = − lne/ lna characterizing the strength of the
anticorrelation in a scale-invariant way:

E (�B) ∼ �−de
B . (3)

Figure 2e shows E (�B) for two real fractal and non-fractal
networks: a map of the WWW domain (http://www.nd.edu)
consisting of 352,728 websites21, and a map of the Internet at
the router level consisting of 284,771 nodes23. We find that
for the fractal WWW, de = 1.5, indicating that it has strong
anticorrelation. On the other hand, the non-fractal Internet shows
E (�B) ∼ constant.

These results confirm that fractal networks, including the
protein interaction network25 (with de = 1.1) and the metabolic
network of E. coli22 (with de = 4.5), do have strong hub repulsion
at all length scales, and non-fractal networks have no, or weak,
hub repulsion.

A general limitation when analysing the scaling behaviour of
complex networks is the small range in which the scaling is valid.
This is due to the small-world property that restricts the range
of �B in Fig. 2. As an attempt to circumvent this limitation, we
offer not only the empirical determination of the exponents, but
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also scaling theory and models where the exponents can be further
tested. We should also point out that large exponents (such as
de = 4.5 for E. coli) may not be distinguishable from exponential
behaviour (infinite exponent). In this case, however, the large
exponent de for E. coli agrees with our theoretical framework,
because it corresponds to a network with large anticorrelation in
the connectivity and the subsequent small fractal dimension. In
terms of the model, this corresponds to the limit of e → 0.

Next we show how the different growth modes reproduce the
empirical findings. Although each mode leads to the scale-free
topology, they differ in their fractal and small-world properties.
Mode I alone (e =1) shows the small-world effect, but is not fractal
due to its strong hub–hub attraction (see Fig. 1b). On the other
hand, Mode II alone (e = 0, Fig. 1c) gives rise to a fractal network.
However, in this case, the anticorrelation is strong enough to push
the hubs far apart, leading to the disintegration of the small world.
Full details of the implementation of Mode I and Mode II are given
in the Supplementary Information, Section S4A and 5.

These results suggest that the simultaneous appearance of both
the small-world and fractal properties in scale-free networks is due
to a combination of the growth modes. In general, the growth
process is a stochastic combination of Mode I (with probability e)
and Mode II (with probability 1 − e). For the intermediate
(0 < e < 1), the model predicts finite fractal exponents dB and dk,
and also bears the small-world property due to the presence of

Mode I. Such a fractal small-world and scale-free network is shown
in Fig. 3a for e = 0.8. Supporting evidence is given by (1) Fig. 3b,
which shows that the model with e = 0.8 is more anticorrelated
than the e = 1 model (Mode I); (2) Fig. 3c, which shows the power-
law dependence of NB on �B for the fractal structure (e = 0.8), and
the exponential dependence of the non-fractal structure (e = 1);
and (3) Fig. 3d which shows that Mode I reproduces E (�B) ∼
constant, whereas the e = 0.8 model gives E (�B) ∼ �

−de
B , which

is in agreement with the empirical findings of Fig. 2e on real
networks (the exponent de = −ln 0.8/ ln1.4 = 0.66 is predicted by
the analytical formula according to Supplementary Information,
Section S4). Furthermore, in Section S4A of the Supplementary
Information, we show that the predicted scale-free distribution
is invariant under renormalization. Although simplistic, this
minimal model clearly captures an essential property of networks:
the relationship between anticorrelation and fractality (see the
Methods section for more details). We have also considered the
contribution of loops, which we find does not change the general
conclusions of this study.

MODULARITY

The scale-invariant properties naturally lead to the appearance of a
hierarchy of self-similar nested communities or modules. In this
novel point of view, boxes represent nested modules of different
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length scales. The importance of modular structures is stressed in
biological networks, where questions of function and evolutionary
importance are put to the test10–13. The relevant question is whether
the self-similar hierarchy of boxes encodes the information about
the functional modules in biological networks. To answer this
question we analyse the fractal metabolic network of E. coli22 which
has previously been studied using standard clustering algorithms11.
Here we show that by repeatedly applying the renormalization,
we produce a tree with branches that are closely related to the
biochemical annotation, such as carbohydrates, lipids, amino acids,
and so on11. We renormalize the network at a given box size and
cluster the substrates that belong to the same box, and repeat
the procedure to generate the hierarchical tree shown in Fig. 4a.
In Fig. 4b (the bottom-right scheme), we see a subnet of the
original metabolic network with 14 nodes. They correspond to the
bottom-most layer of the hierarchical tree in the left. The box-
covering method with �B = 3 indicates that this subnet contains
four modules. The coarse-grained network is shown in the middle-
right with 4 nodes: A, B, C and D. The next stage of renormalization
combines these four nodes into one single node or class. Following
this algorithm, we coarse-grain the network and classify the nodes
at different levels. In Fig. 4a, we show this classification for the
entire metabolic network. The different colours correspond to
distinct functional modules, as we note in the bottom of the tree
(carbohydrates, lipids, and so on). The clear division of biological
functions in the hierarchical tree suggests that the metabolic
network is organized in a self-similar way.

The main known biochemical classes of the substrates emerge
naturally from the renormalization tree, indicating that the boxes
capture the modular structure of the metabolic network of E. coli.
The same analysis reproduces the modular structure of the protein
interaction network of the yeast, further supporting the validity of
our analysis18.

ROBUSTNESS

Finally, our results suggest the importance of self-similarity in the
evolution of the topology of networks. Understanding the growth
mechanism is of fundamental importance as it raises the question
of its motivation in nature. For instance, considering that systems
in biology are fractal, there could be an evolutionary drive for the
creation of such networks. A parameter relevant to evolution is the
robustness of the network, which can be compared between fractal
and non-fractal networks.

Non-fractal scale-free networks, such as the Internet, are
extremely vulnerable to targeted attacks on the hubs15. In such
non-fractal topologies, the hubs are connected and form a central
compact core (as seen in Fig. 2b), such that the removal of a few
of the largest hubs (those with the largest degree) has catastrophic
consequences for the network15,26. Here we show that the fractal
property of networks significantly increases the robustness against
targeted attacks because the hubs are more dispersed in the network
(see Fig. 2a). Figure 4c shows a comparison of robustness between
a fractal and non-fractal network. The comparison is carried out
between model networks of the same γ = 2.8, the same number
of nodes (74,000), the same number of links, the same amount
of loops and the same clustering coefficient (see Supplementary
Information, Section S6). Thus the difference in the robustness
seen in this figure is attributed solely to the different degree of
anticorrelation. We plot the relative size of the largest cluster, S,
and the average size of the remaining isolated clusters, 〈s〉, after
removing a fraction f of the largest hubs for both networks15.
Although both networks collapse at a finite fraction fc, shown
by the decrease of S towards zero and the peak in 〈s〉, the

fractal network has a significantly larger threshold (fc ≈ 0.09)
compared with the non-fractal threshold (fc ≈ 0.02), suggesting
a significantly higher robustness of the fractal modular networks
to failure of the highly connected nodes. This could explain why
evolutionary constraints on biological networks have led to fractal
architectures. It is important to note that the comparison in Fig. 4c
is between two networks that preserve the modularity. Our results
should be understood as follows: considering that a network has a
modular structure, then the most robust network is the one with
fractal topology. There are other ways to increase robustness, for
instance by fully connecting the hubs in a central core27, but this
arrangement does not preserve the modularity.

METHODS

MODE I AND MODE II GROWTH IN THE MINIMAL MODEL

Mode I: To each node with degree k̃(t −1) at time t −1, mk̃(t −1) offspring
nodes are attached at the next time step (m = 2 in the example of Fig. 1b). As a
result, we obtain a scale-free non-fractal network:
NB(lB)/N ∼ exp(−(lnn/2)�B) and kB(lB)/khub ∼ exp(−(lns/2)�B),
implying that both exponents dB and dk are infinite (because a → 1 then
dB = lnn/ lna → ∞ and dk = lns/ lna → ∞). This is a direct consequence of
the linear growth of the diameter L̃(t). Moreover, the additive growth in the
diameter with time implies that the network is small world. This mode is
similar to a class of models called pseudo-fractals28,29. Mode II: Gives rise to a
fractal topology but with a breakdown of the small-world property. The
diameter increases multiplicatively leading to an exponential growth with time,
and consequently to a fractal topology with finite dB and dk .
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