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Why transport on networks?

1) Many networks contain flow:
emails over internet
epidemics on human networks
passengers on airline networks, etc.

2) Most work done studies static properties of 
networks.

3) No general theory of transport properties of 
networks.
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Network models

Definitions:

A network with N nodes,

each node has k links.

k: Degree of the node

P(k): Degree distribution

Two types of networks:

1) Erdős-Rényi networks (ER)

P(k): Poisson distribution

2) Scale-Free networks (SF) 

P(k): Power-law distribution

P(k) ~ k -λ
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US highway network US airline network
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Resistor network
Each link is a resistor. Assign each link i with conductance σi = exp(- a xi ) (*)

a ≥ 0: strength of disorder, if a >> 0, strong disorder

0 < xi < 1: uniformly distributed random number

We study conductance distribution P(σ) as the 
transport property:

1) Randomly choose Nodes A and B as source and sink

2) Establish potential difference VA-VB=1

3) Solve Kirchhoff equations for current I, conductance 
σAB=I/(VA-VB)=I

4) Perform many realizations (>106) to determine P(σ)

A

B

(*) Y. M. Strelniker et al. Phys. Rev. E 69, 065105R 2004
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Unweighted case

Each link has conductance σi=exp(- a xi )=1, a = 0

E. López et al. Phys. Rev. Lett. 94, 248701 2005

• Erdős-Rényi narrow 
shape (exponential tail).

• Scale-free wide range
(power law tail).

• SF networks exhibit
larger values of 
conductance than ER 
networks, thus making 
SF networks better for 
transport.

σ
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Questions about weighted case

Comparing to unweighted case:

1) Is a high conductance regime 
expected?

2) How is P(σ) related with system 
size N (Number of nodes)?

3) How about the shape of the tail, 
still exponential for ER and power 
law for SF?

Each link has conductance σi=exp(- a xi ), a > 0

unweighted case a = 0
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P(σ) for weighted case (ER)

Strong disorder, a =15 and 〈k〉=3, so 〈k〉/a=0.2

Two regimes:

1) low conductance regime 
independent of N

2) high conductance regime with 
strong N dependence

• For σ < e – a pc, where pc=1/〈k〉 is 
the critical percolation threshold:

P(σ) ~ σ - δ, where δ =1- 〈k〉/a

(In this figure, - δ = - (1-0.2)= - 0.8)

• For σ > e – a pc, we find

P(σ) ~ f (σ, apc/N1/3)
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P(σ) for weighted case (SF)

a=20 and 〈k〉≈3.33, so 〈k〉/a=0.17

• For σ < e – a pc, where pc=1/〈k〉 is the 
critical percolation threshold:

P(σ) ~ σ - δ, where δ =1- 〈k〉/a

(In this figure, - δ = - (1-0.17)= - 0.83)
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P(σ) only depends on 〈k〉/a

P(σ) ~ σ - δ, where δ =1- 〈k〉/a
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Iterative algorithm

1) Simple and fast

2) It gives us N→∞ result
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Steps:

1) Ignore loops because of low 
probability when N→∞

2) Randomly select branch i 
connecting A with infinitely 
distant nodes C, then calculate 
the resistance Ri at step n+1 
based on pre step:

where Ri
(0)=0

3) Calculate until Ri converges

(n > 106)
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Results of iterative algorithm

Red solid lines are iterative algorithm results.

Agrees with solving Kirchhoff eqs. method.
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Why does P(σ) exhibit two 
conductance regimes?
For strong disorder a >>0, current I
follows the minimal resistance path (MR 
path, the red line),

the resistance between A and B is 
dominated by e a xmax, where xmax is the 
max x in the MR path.

The MR path problem can be mapped onto 
a percolation problem (*)

Theoretical approach

A Bx1
x2

x3

xmax

(*) by L. A. Braunstein et al. 2005

ri = e a xi

MR path
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Percolation process

If both nodes belong to IIPC, we can 
always find a minimal resistance path in 
which xmax < pc , these nodes contribute 
to high conductance regime.

Since size of IIPC ∝ N 2/3 (*), the 
probability of both nodes inside IIPC is 
(N2/3/N)2=N-2/3, we find that indeed:

(*) by L. A. Braunstein et al. 2005

Start with isolated nodes, randomly connect any two nodes with probability p
(0<p<1), when p=pc , a giant component cluster appears.

This giant component cluster is called Incipient Infinite Percolation Cluster (IIPC)

3/2~)( −∞

∫ −
NdP

cape
σσ

IIPC



15/16

Analytical results (strong disorder)

For e-a ≤ σ << e-a pc with pc=1/〈k〉

1/2)( −〉〈〉〈
≈ ak
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For σ > e-a pc
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where Pp(σ) is the conductance 
distribution for the pairs on the IIPC
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Conclusions

1) Both analytically and numerically, P(σ) exhibit two regimes:

(i) A low conductance regime σ < e –a pc, P(σ) ~ σ -δ, where δ =1- 〈k〉/a

(ii) A high conductance regime σ > e –a pc, P(σ) ~ f (σ, apc/N1/3)

2) We developed an iterative algorithm to give N→∞ result.

3) Compared to the unweighted resistor networks, the 
conductance is much smaller, and both ER and SF networks 
exhibit similar distributions.


