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Why transport on networks?

1) Many networks contain flow:
emails over internet
epidemics on human networks
passengers on airline networks, etc.

2) Most work done studies static properties of
networks.

3) No general theory of transport properties of
networks.
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Network models

Definitions:

A network with N nodes,
each node has £ links.

k: Degree of the node
P(k): Degree distribution

Two types of networks:
1) Erdés-Renyi networks (ER)

P(k): Poisson distribution

(ot e

P(k)~~

2) Scale-Free networks (SF)

P(k): Power-law distribution

P(k) ~ k-
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Resistor network

Each link is a resistor. Assign each link i with conductance o; = exp(- a x;) (*)

a > 0: strength of disorder, if @ >> 0, strong disorder
0 <x; < l: uniformly distributed random number

y We study conductance distribution P(o) as the
transport property:

1) Randomly choose Nodes A and B as source and sink
2) Establish potential difference V,-Vz=1

B 3) Solve Kirchhoff equations for current /, conductance
o xg=l/(V\-Vy)=I

4) Perform many realizations (>10°) to determine P(0)

(*) Y. M. Strelniker et al. Phys. Rev. E 69, 065105R 2004 5/16



Unweighted case

Cumulative Distribution

Each link has conductance o=exp(- a x;)=1,a=0

e Erds—Rényi
.~ (A=2.5)SF
N (A=3.3) SF

10° 10’ 10°

Conductance o

E. Lopez et al. Phys. Rev. Lett. 94, 248701 2005

* Erd6s-Rény1 narrow
shape (exponential tail).

* Scale-free wide range
(power law tail).

» SF networks exhibit
larger values of
conductance than ER
networks, thus making
SF networks better for
transport.



Questions about weighted case
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Cumulative Distribution

Each link has conductance o=exp(- a x; ), a >0
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Comparing to unweighted case:

1) Is a high conductance regime
expected?

2) How 1s P(o) related with system
size N (Number of nodes)?

3) How about the shape of the tail,
still exponential for ER and power
law for SF?
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P(o) for weighted case (ER)

Strong disorder, a =15 and (k)=3, so (k)/a=0.2
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P(o) for weighted case (SF)

a=20 and {(k)~3.33, so (k)/a=0.17
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* For o<e ™~ “Pc, where p =1/(k) 1s the
critical percolation threshold:

P(0) ~ 0 " °, where 5=1- (k)/a
(In this figure, - 0= - (1-0.17)=- 0.83)
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P(c) only depends on (k)/a

P(o) ~ o -2, where 0=1-{k)/a
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Iterative algorithm
Steps:

1) Ignore loops because of low

1) Simple and fast probability when N— oo

2) Randomly select branch 1
2) It gives us N— oo result connecting A with infinitely
distant nodes C, then calculate
the resistance R. at step n+1
-------- Ignored loop lines based on pre step:

1
1/ R™

j=

RO =y 4

where R (0=0

3) Calculate until R; converges

(n > 109)
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Results of iterative algorithm

Red solid lines are iterative algorithm results.

Agrees with solving Kirchhoff egs. method.
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Theoretical approach
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(*) by L. A. Braunstein et

al. 2005

Why does P(o) exhibit two
conductance regimes?

For strong disorder a >>0, current /
follows the minimal resistance path (MR
path, the red line),

the resistance between A and B is

dominated by € ¢ *max where x,___ is the
max x in the MR path.

The MR path problem can be mapped onto
a percolation problem (*)
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Percolation process

Start with isolated nodes, randomly connect any two nodes with probability p
(0<p<l), when p=p,., a giant component cluster appears.

This giant component cluster is called Incipient Infinite Percolation Cluster (ITPC)

If both nodes belong to IIPC, we can
always find a minimal resistance path in
which x_, <p., these nodes contribute
to high conductance regime.

Since size of IIPC oc N 23 (¥), the
probability of both nodes inside IIPC is
(N?3/N)>=N-*3, we find that indeed:

ﬁpc P(o)do ~N~>"

(*) by L. A. Braunstein et al. 2005 14/16



Analytical results (strong disorder)

For e < o << ePe with p =1/(k)

oy ~2 B o
a

For o> e@p:

o ap,

(o) P,(c) = f( o) N3

)

where P ,(0) is the conductance
distribution for the pairs on the [IPC
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Conclusions

1) Both analytically and numerically, P(o) exhibit two regimes:
(i) A low conductance regime o< e ~4P¢, P(o) ~ 0%, where 6=1- (k)/a
(ii) A high conductance regime o> e ~4P<, P(o) ~ f (o, ap,/N'?)

2) We developed an iterative algorithm to give N—oo result.

3) Compared to the unweighted resistor networks, the
conductance 1s much smaller, and both ER and SF networks
exhibit similar distributions.
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