Transport and Percolation in Complex Networks

Guanliang Li

Advisor: H. Eugene Stanley Collaborators: Shlomo Havlin, Lidia A. Braunstein, Sergey V. Buldyrev and José S. Andrade Jr.

Outline

- Part I: Towards design principles for optimal transport networks G. Li, S. D. S. Reis, A. A. Moreira, S. Havlin, H. E. Stanley and J. S. Andrade, Jr., PRL 104, 018701 (2010); PRE (submitted)
 Motivation: e.g. Improving the transport of New York subway system Questions: How to add the new lines?
 → How to design optimal transport network?
- Part II: Percolation on spatially constrained networks

 D. Li, G. Li, K. Kosmidis, H. E. Stanley, A. Bunde and S. Havlin, EPL 93, 68004 (2011)
 Motivation: Understanding the structure and robustness of spatially constrained networks

Questions: What are the percolation properties? Such as thresholds . . .

What are the dimensions in percolation?

 \rightarrow How are spatial constraints reflected in percolation properties of networks?

Part I: Towards design principles for optimal transport networks G. Li, S. D. S. Reis, A. A. Moreira, S. Havlin, H. E. Stanley and J. S. Andrade, Jr., PRL 104, 018701 (2010); PRE (submitted)

Grid network

Shortest path length $\ell_{\rm AB}$ =6

 $\langle \ell \rangle \sim L$

Randomly add some long-range links:

How to add the long-range links?

D. J. Watts and S. H. Strogatz, Collective dynamics of "small-world" networks, Nature, 393 (1998).

How to add the long-range links?

Kleinberg model of social interactions

Part I

Rich in short-range connections

A few long-range connections

J. Kleinberg, Navigation in a Small World, Nature 406, 845 (2000).

Kleinberg model continued

Part I

 $P(r_{ij}) \sim r_{ij}^{-\alpha}$

where $\alpha \ge 0$, and r_{ij} is lattice distance between node *i* and *j*

Steps to create the network:

- Randomly select a node *i*
- Generate r_{ij} from $P(r_{ij})$, e.g. $r_{ij} = 2$
- Randomly select node *j* from those 8 nodes on dashed box
- Connect *i* and *j*

Q: Which α gives minimal average shortest distance $\langle \ell \rangle$?

Optimal α in Kleinberg's model

d is the dimension of the lattice

Minimal $\langle \ell \rangle$ occurs at $\alpha = 0$

Without considering the cost of links

Considering the cost of links

- Each link has a cost ∝ length r (e.g. airlines, subway)
- Have budget to add long-range links
 (i.e. total cost Λ is usually ∝ system size N)
- Trade-off between the number N_l and length of added long-range links

From $P(r) \sim r^{-\alpha}$: $\alpha = 0, \langle r \rangle$ is large, $N_l = \Lambda / \langle r \rangle$ is small α large, $\langle r \rangle$ is small, N_l is large

Q: Which α gives minimal $\langle \ell \rangle$ with cost constraint?

With cost constraint

 ℓ is the shortest path length from each node to the central node

Minimal $\langle \ell \rangle$ occurs at $\alpha=3$

Conclusion:

For
$$\alpha \neq 3$$
, $\langle \ell \rangle \sim L^{\delta}$

For $\alpha=3$, $\langle \ell \rangle \sim (\ln L)^{\gamma}$

Conclusion, part I

For regular lattices, d=1, 2 and 3, optimal transport occurs at $\alpha=d+1$

More work can be found in thesis (chapter 3):

1.Extended to fractals, optimal transport occurs at $\alpha = d_f + 1$

2. Analytical approach

Empirical evidence

1. Brain network:

L. K. Gallos, H. A. Makse and M. Sigman, PNAS, **109**, 2825 (2011). $d_f=2.1\pm0.1$, link length distribution obeys $P(r) \sim r^{-\alpha}$ with $\alpha=3.1\pm0.1$

2. Airport network:

G. Bianconi, P. Pin and M. Marsili, PNAS, **106**, 11433 (2009). *d*=2, distance distribution obeys $P(r) \sim r^{-\alpha}$ with α =3.0±0.2

Part II: Percolation on spatially constrained networks

D. Li, G. Li, K. Kosmidis, H. E. Stanley, A. Bunde and S. Havlin, EPL 93, 68004 (2011)

$$P(r) \sim r^{-\alpha}$$

 $\boldsymbol{\alpha}$ controls the strength of spatial constraint

- α =0, no spatial constraint \rightarrow ER network
- α large, strong spatial constraint \rightarrow Regular lattice

Questions:

- What are the percolation properties? Such as the critical thresholds, etc.
- What are the fractal dimensions of the embedded network in percolation?

The embedded network

Start from an empty lattice

Add long-range connections with $P(r) \sim r^{-\alpha}$ until $\langle k \rangle \sim 4$

Two special cases: $\alpha=0 \rightarrow \text{Erdős-Rényi(ER)}$ network $\alpha \text{ large} \rightarrow \text{Regular 2D lattice}$

Percolation process

Start randomly removing nodes

Remove a fraction *q* of nodes, a giant component (red) exists

Increase q, giant component breaks into small clusters when q exceeds a threshold q_c , with $p_c=1-q_c$ nodes remained

Giant component in percolation

α=1.5

α=2.5

Result 1: Critical threshold p_c

α	1.5	2.0	2.5	3.0	3.5	4.0	5
p_c	0.25	0.25	0.27	0.33	0.41	0.49	0.57
	ER (M $p_c=1/$	lean field) $\langle k \rangle = 0.25$		Lattice $p_c \approx 0.59$			

Result 2: Size of giant component: *M*

α	1.5	2.0	2.5	3.0	3.5	4.0	5
β	0.67	0.67	0.70	0.76	0.87	0.93	0.94
	ER (Μ β	lean field) $=2/3$	Intermediate regime				Lattice β=0.95

Result 3: Dimensions

 $M \sim N^{\beta}$ in percolation

- □ Percolation ($p=p_c$): $M \sim R^{d_f}$
- □ Embedded network (p=1): $N \sim R^{d_e}$
- $\longrightarrow M \sim N^{d_f/d_e} \qquad \qquad \implies \beta = d_f/d_e$

Examples:

- ER: $d_f \rightarrow \infty$, $d_e \rightarrow \infty$, but $\beta = 2/3$
- 2D lattice: $d_f = 1.89$, $d_e = 2$, $\beta = 0.95$

So we compare β with d_f/d_e

Conclusion, part II: Three regimes

Transport properties $\langle \ell \rangle$ still show three regimes.

K. Kosmidis, S. Havlin and A. Bunde, EPL 82, 48005 (2008)

Summary

- For cost constrained networks, optimal transport occurs at α=d+1 (regular lattices) or d_f+1 (fractals)
- The structure of spatial constrained networks shows three regimes:
- 1. $\alpha \leq d$, ER (Mean Field)
- 2. d < $\alpha \le 2d$, Intermediate regimes, percolation properties depend on α
- 3. $\alpha > 2d$, Regular lattice