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Outline 
•  Part I: Towards design principles for optimal transport 

networks G. Li, S. D. S. Reis, A. A. Moreira, S. Havlin, H. E. Stanley and J. S. Andrade, Jr., 
PRL 104, 018701 (2010); PRE (submitted) 
 Motivation: e.g. Improving the transport of New York subway system 
 Questions: How to add the new lines? 
  How to design optimal transport network? 

 
•  Part II: Percolation on spatially constrained networks 

 D. Li, G. Li, K. Kosmidis, H. E. Stanley, A. Bunde and S. Havlin, EPL 93, 68004 (2011) 
 Motivation: Understanding the structure and robustness of spatially constrained 
networks 
 Questions: What are the percolation properties? Such as thresholds . . . 
 What are the dimensions in percolation? 
   How are spatial constraints reflected in percolation properties of networks? 



Grid network 

L 

〈ℓ〉 ~ L 

D. J. Watts and S. H. Strogatz, Collective dynamics of “small-world” networks, Nature, 393 (1998). 

How to add the long-range links? 

Shortest path length ℓAB =6 

A 

B 

small-world network 
〈ℓ〉 ~log L 

Randomly add some 
long-range links: 

ℓAB =3 

Part I: Towards design principles for optimal transport networks  
G. Li, S. D. S. Reis, A. A. Moreira, S. Havlin, H. E. Stanley and J. S. Andrade, Jr., PRL 104, 018701 (2010); 
PRE (submitted) 



Kleinberg model of social interactions 

J. Kleinberg, Navigation in a Small World, Nature 406, 845 (2000). 

Rich in short-range connections 

A few long-range connections 

Part I How to add the long-range links? 



Kleinberg model continued 

P(rij) ~ rij -α  
where α ≥ 0, and rij is lattice 
distance between node i and j  

Q: Which α gives minimal average shortest distance 〈ℓ〉 ? 

Part I 

Steps to create the network: 
• Randomly select a node i 
• Generate rij from P(rij), e.g. rij = 2 
• Randomly select node j from those 8 

nodes on dashed box 
• Connect i and j 



Optimal α in Kleinberg’s model  
 

Minimal 〈ℓ〉 occurs at α=0 

d is the dimension of the lattice 

Without considering the cost of links 

Part I 



Considering the cost of links 

•  Each link has a cost ∝ length r 
 (e.g. airlines, subway) 

•  Have budget to add long-range links 
 (i.e. total cost Λ is usually ∝ system size N) 

•  Trade-off between the number Nl and length of added 
long-range links 

 From P(r) ~ r -α : 
 α=0, 〈r〉 is large, Nl = Λ / 〈r〉 is small 
 α large, 〈r〉 is small, Nl is large 

 
Q: Which α gives minimal 〈ℓ〉 with cost constraint? 
 

Part I 



With cost constraint 

ℓ is the shortest path length from 
each node to the central node 

Part I 

Minimal 〈ℓ〉 occurs at α=3 



〈ℓ〉 vs. L (Same data on log-log plots) 

For α≠3, 〈ℓ〉 ~ Lδ For α=3, 〈ℓ〉 ~ (ln L) γ 

Part I With cost constraint 

Conclusion: 



Different lattice dimensions 

Optimal 〈ℓ〉 occurs at α=d+1 
(Total cost Λ ~ N) 
when N∞ 

Part I With cost constraint 



Conclusion, part I 
For regular lattices, d=1, 2 and 3, optimal 
transport occurs at α=d+1 
 
More work can be found in thesis (chapter 3): 
1. Extended to fractals, optimal transport occurs at α= df +1 
2. Analytical approach 

Part I 

Empirical evidence 
1. Brain network: 
L. K. Gallos, H. A. Makse and M. Sigman, PNAS, 109, 2825 (2011). 
df =2.1±0.1, link length distribution obeys P(r) ~ r -α with α=3.1±0.1 
 
2. Airport network: 
G. Bianconi, P. Pin and M. Marsili, PNAS, 106, 11433 (2009). 
d=2, distance distribution obeys P(r) ~ r -α with α=3.0±0.2 
 



Part II: Percolation on spatially 
constrained networks  

P(r) ~ r -α 

α controls the strength of spatial constraint 
•  α=0, no spatial constraint  ER network 
•  α large, strong spatial constraint  Regular lattice 

Questions: 
•  What are the percolation properties? Such as the critical 

thresholds, etc. 
•  What are the fractal dimensions of the embedded 

network in percolation? 

 

D. Li, G. Li, K. Kosmidis, H. E. Stanley, A. Bunde and S. Havlin, EPL 93, 68004 (2011) 



The embedded network 

Start from an empty lattice 

Add long-range connections 
with P(r) ~ r -α until 〈k〉 ~ 4 
 
Two special cases: 
α=0   Erdős-Rényi(ER) network 
α large Regular 2D lattice 

Part II 



Percolation process 

Remove a fraction q of nodes, 
a giant component (red) exists 

Start randomly removing nodes 

Increase q, giant component 
breaks into small clusters when 
q exceeds a threshold qc, with 
pc=1-qc nodes remained 

Part II 

small clusters  giant component exists 

pc 
p 



Giant component in percolation 

α=1.5    α=2.5 

α=3.5    α=4.5 

Part II 



Result 1: Critical threshold pc 

0.33 

α 1.5 2.0 2.5 3.0 3.5 4.0 5 
pc 0.25 0.25 0.27 0.33 0.41 0.49 0.57 

ER (Mean field) 
pc=1/〈k〉=0.25 

Intermediate regime Lattice 
pc≈0.59 

Part II 



Result 2: Size of giant component: M 

M ~ N β in percolation 
β: critical exponent 
 

α 1.5 2.0 2.5 3.0 3.5 4.0 5 
β 0.67 0.67 0.70 0.76 0.87 0.93 0.94 

ER (Mean field) 
β=2/3 

Intermediate regime Lattice 
β=0.95 

Part II 

β=0.76 



Result 3: Dimensions 

Examples:  
•  ER:  df ∞, de ∞, but β =2/3 
•  2D lattice: df =1.89, de =2, β =0.95 

  
 So we compare β with df /de 

  Percolation (p=pc):    M ~ R df 

  Embedded network (p=1):  N ~ R de 

M ~ N df / de     β = df /de
   

M ~ N β in percolation 

Part II 



compare β with df /de 
In percolation Embedded network 

α 1.5 2.0 2.5 3.0 3.5 4.0 5 
df ∞ ∞ 3.92 2.12 1.92 1.89 1.87 
de ∞ ∞ 5.65 2.76 2.18 2.00 1.99 
df /de 0.69 0.76 0.88 0.94 0.94 
β 0.70 0.76 0.87 0.93 0.94 

Part II 

N
 



Conclusion, part II: Three regimes 

α ≤ d, ER 
(Mean Field) 

α  > 2d, 
Regular lattice 

Intermediate 
regime, 
depending on α 

Part II 

Transport properties 〈ℓ〉  still show three regimes. 
K. Kosmidis, S. Havlin and A. Bunde, EPL 82, 48005 (2008) 



Summary 

•  For cost constrained networks, optimal transport occurs 
at α=d+1 (regular lattices) or df +1 (fractals) 

•  The structure of spatial constrained networks shows 
three regimes: 

1.  α ≤ d, ER (Mean Field) 
2.  d < α ≤ 2d, Intermediate regimes, percolation properties 

depend on α 
3.  α > 2d, Regular lattice 


