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Suppressing epidemics with a limited amount of immunization units
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The way diseases spread through schools, epidemics through countries, and viruses through the internet
is crucial in determining their risk. Although each of these threats has its own characteristics, its underlying
network determines the spreading. To restrain the spreading, a widely used approach is the fragmentation of these
networks through immunization, so that epidemics cannot spread. Here we develop an immunization approach
based on optimizing the susceptible size, which outperforms the best known strategy based on immunizing
the highest-betweenness links or nodes. We find that the network’s vulnerability can be significantly reduced,
demonstrating this on three different real networks: the global flight network, a school friendship network, and
the internet. In all cases, we find that not only is the average infection probability significantly suppressed, but
also for the most relevant case of a small and limited number of immunization units the infection probability can
be reduced by up to 55%.
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I. INTRODUCTION

Every few years a potential global pandemic like severe
acute respiratory syndrome (SARS) or swine flu occurs [1].
Nowadays there is a possibility to reach every city in the world
within at most a day, which allows for the evolution of a local
disease to a global pandemic [2–8]. Crucial for fast global
disease spreading is the international flight network [9,10].
To avoid spreading through this network, significant effort
is made by, e.g., screening passengers or canceling flights.
Since it is unrealistic to examine all passengers, it is vital to
apply the best possible immunization strategy in order to most
effectively exploit limited resources, like available vaccines
and manpower.

Different strategies to immunize nodes or links of a network
have been studied in the past [11–16]. Targeted immunization
strategies, in which nodes or links playing a special role in the
network architecture are immunized first, have proven to be
very effective [17–20]. The strategy believed to be the most
efficient is the targeted immunization based on immunizing
the highest-betweenness-centrality nodes or links [17]. The
adaptive betweenness centrality is the number of shortest
paths passing through the node or the link, recalculated for
the network of nonimmunized nodes at each step of the
immunization process.

Here we show that in fact this strategy is not optimal and a
significantly more efficient immunization strategy exists. This
is important since improving the effectiveness of immunization
strategies even by a small amount can result in saving
thousands of human lives.

Based on percolation we developed a more efficient
immunization strategy using the betweenness centrality mea-
sure [17]. We studied quantitatively the effectiveness of the
improved strategy on real networks, the global airport network
[21], the friendship network in American schools [22], and the
internet at the level of service providers (point of presence,
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PoP) [23], as well as on model networks. We study both
cases of immunization, the immunization of nodes, which
models, for instance, immunization of people or airports, and
the immunization of links, modeling, for instance, prevention
of direct contact between people or the performance of special
checks and vaccinations on all flights between two specific air-
ports. We find that, although very effective, the immunization
strategy based on immunizing nodes or edges with the highest
values of dynamically recalculated betweenness is not optimal.
Starting from such a strategy, our approach reduces the risk of
becoming infected on average by more than 10%, independent
of the amount of immunization units for the real examples
of airport, friendship, and internet networks. Moreover, for
specific numbers of immunization units the improvement is
even up to 55%. For model networks, the improvement is
close to 30% on average, and a maximal improvement of over
80% can be obtained or up to 29% of immunization units can
be saved.

The effectiveness of our approach is illustrated in Fig. 1,
where we compare the disease spreading [based on the
susceptible-infected-recovered (SIR) model [2]] in the global
airport network immunized at random (left), using the high-
betweenness-based link immunization strategy (middle) [17],
which is already significantly better, and finally using our
developed strategy (right), which is more than 40% more
effective than the recalculated high-betweenness method. In all
cases the same number of links (flights) are immunized. The
color code represents the probability that the node becomes
infected, going from green (dark gray, right) for low probability
over yellow (light gray, right) and orange (gray, middle) to red
(dark gray, left) for very high probability of infection. While
for the random case many immunization units are wasted,
the betweenness-based strategy suppresses the spreading from
certain regions to the backbone of the network. Nevertheless,
our improved strategy is more efficient in identifying these
regions and thus more efficient in suppressing diseases. For
example the two large jumps at 9% and 12% of immunized
edges in Fig. 2(a) correspond to the decoupling of East Asia
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FIG. 1. (Color online) The simulation of an epidemic using the SIR model with α = 0.2 and β = 0.05 for the global airline network, starting
from a single randomly infected node. To suppress the spreading of the disease, a small number of q = 0.09 flights are immunized according to
a random (left), betweenness (middle), and improved (right) strategy. The color code represents the probability of becoming infected. Note that
the average probability of becoming infected is 84% for random, 34% for betweenness, and 20% for our improved immunization method. The
reduction of the infection probability is due to the efficient decoupling of the regions; thus passengers are screened on their journey between
these regions, e.g., from China to Europe. The picture is created with PAJEK [24].

from Central America, Europe, and the United States (2336 vs
2503 immunized edges) and the decoupling of Europe from
America (3169 vs 3192 immunized edges), respectively.

II. METHODS

We use the susceptible size of the network that could be
infected as the performance measure of the immunization
procedure. A good immunization strategy should make such
a susceptible size as small as possible. The susceptible size
R is defined here as the sum of the sizes of the largest
connected clusters S(q) of the networks of nonimmunized
nodes remaining after immunization of q nodes or edges:

R = 1
(N + 1)N

N∑

q=0

S(q), (1)

where N is the size of the network [25]. This measure
captures the network response to immunization throughout the
whole immunization process, and not only on the percolation
threshold at which the network of nonimmunized nodes
becomes disconnected.

In our search for a more efficient immunization strategy of
nodes or edges, we start from the efficient known strategy of
high betweenness. First, we calculate the sequence in which
nodes or edges would be immunized if the high-betweenness
adaptive (HBA) immunization strategy [17] was used. To
this end, we calculate the shortest path between all pairs of
nodes and count how often a node or edge lies on a shortest
path. This number defines its betweenness centrality. The node
or edge with the highest contribution to the shortest paths is
identified and immunized. Repeating this procedure with the
remaining network of nonimmunized nodes until it vanishes
leads to the high-betweenness immunization sequence.

To improve this immunization strategy, we modify the
initial, high-betweenness-based, immunization sequence using
the following algorithm. We choose two nodes or edges
randomly, switch the order in which they are immunized, and
recalculate the susceptible size R, Eq. (1), according to the
new sequence. If the susceptible size does not increase when
the new immunization sequence is used, the change in the
sequence is accepted. The sequence is further improved by
repeating the same procedure many times.
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FIG. 2. (Color online) Comparison between the two edge immunization strategies, betweenness based (full line) and our improved
immunization (dashed line). Plotted is the probability of becoming infected, p, for (a) the global airline network (N = 3666 and M = 27 235),
(b) a school friendship network (N = 1461 and M = 3875), and (c) the PoP internet network (N = 1098 and M = 6089) as a function
of the immunized edge fraction q. Both betweenness-based and improved immunization can reduce the spreading of diseases significantly.
Nevertheless, for practical cases of small fractions of immunized edges, the improved strategy is significantly more efficient. In the insets the
savings of immunization units obtained from our immunization strategy are shown. We compare the number of immunization units required
to keep the fraction of affected nodes under a certain value and plot the relative number of saved units vs the maximal size of the spreading, s.
The average savings are 17.8%, 9%, and 21.2% for the airline, school, and internet networks, respectively.

061911-2



SUPPRESSING EPIDEMICS WITH A LIMITED AMOUNT . . . PHYSICAL REVIEW E 84, 061911 (2011)

FIG. 3. (Color online) Illustration of improving the edge immu-
nization strategy. Starting from an initial immunization sequence
(based on betweenness centrality), two randomly chosen edges (in
this case the edge between nodes 5 and 9 and the edge between
3 and 7) are swapped in the immunization sequence. If the swap does
not increase the susceptible size R of the network, it is kept; otherwise
the swap is withdrawn.

To further improve our strategy, we use in addition an
improving algorithm employing a population of immuniza-
tion sequences. We start from 1000 equal high-betweenness
immunization sequences and choose one of them randomly
to perform a swap. If the susceptible size of the network after
immunizing with the new sequence is not increased, it replaces
the sequence from the population for which the network has
the highest susceptible size. The final immunization sequence
is the one with the lowest susceptible size. The basic algorithm
for improving edge immunization sequences is demonstrated
in Fig. 3.

Note that the algorithm uses the global knowledge of
the network to achieve the final immunization sequence. The
calculation of the initial sequence, which is based on the
betweenness centrality, and the optimization strategy are com-
putationally costly; thus our algorithm scales usually much
more slowly than linearly with system size. Nevertheless, we
are able to obtain immunization sequences for networks with
up to N = 8000 nodes and M = 16 000 edges in a reasonable
time.

III. RESULTS: REAL NETWORKS

To study our improved immunization strategy, we analyze
its efficiency on two real network examples through which
epidemics are spread, namely, the global airline network [9,21]
and school friendship networks [22]. We also analyze the case
of the internet at the level of point of presence as well as
two models, the Erdős-Rényi networks [26] and scale-free
networks [27] generated using the configurational model [28].
For a typical friendship network we show the results for a single
school, since we found that the other 81 school networks we
studied all behave in a qualitatively similar way. For all real
networks we demonstrate the efficiency of our method for both
link (Fig. 2) and node immunization (Fig. 5).

For the airline network, an infected airport implies that sick
people arrive at or depart from it. Consequently immunization
means identifying sick people and inhibiting their travel.

For example, link immunization can be done by screening
people on specific flights—as done in several countries
(including Japan and China) during the SARS and swine
flu epidemics—while in the case of node immunization all
people at an airport are screened. A more drastic immunization
would be the canceling of flights or even the shutdown of
entire airports. For the school network, link immunization
corresponds to preventing direct contacts between students and
node immunization can be performed by immunizing students
or temporarily removing them from classes. For the internet,
the screening of traffic between routers is equivalent to link
immunization and the upgrade of the router soft- or hardware
to node immunization.

The efficiency of our method for improving immunization
is evaluated by three different measures: modeling epidemic
spreading using the SIR model, the saved immunization doses,
and the susceptible size, which represents the upper limit of
the number of infected individuals.

First we analyze the probability for a single node (airport,
student, router) to become infected. To study this probability
we simulate a disease spreading model (SIR) on the global air-
line transportation network with N = 3666 airports and M =
27 235 flight connections, a typical friendship network with
N = 1461 students and M = 3875 friendship connections,
and the internet with N = 1098 and M = 6089 connections.
We simulate the SIR model [2,5] with the parameters α = 0.2
(probability that the infection spreads from an infected node
to its neighbor in one time step) and β = 0.05 (probability
that a node recovers in a unit time step) starting from a single
random infected node and averaging over 10 000 independent
runs.

In Fig. 2(a) we show the dependence of the infection
probability on the fraction of immunized flights for airports.
The full line is the probability of becoming infected in
the largest connected cluster after immunizing or removing
a fraction q of edges, according to the high-betweenness
immunization strategy. The dashed line corresponds to our
improved immunization strategy. Thus, the green (light gray)
area represents the improvement. For the most practical case
of a small number of immunized flights, the improved immu-
nization strategy is significantly more efficient, while for large
q the two strategies have nearly similar effects. Figure 2(b)
shows the probability that a student becomes infected as
a function of the percentage of suppressed contacts, and
Fig. 2(c) shows the dependency of the probability that a router
becomes infected on the percentage of controlled connections.
Qualitatively, in all cases a similar improvement is observed for
improved immunization. For the airline network, the average
improvement is about 15% for immunization fractions less
than 20%, while the maximal improvement is about 55% for
q ≈ 11.9%. For the school network an average improvement of
about 7% for immunization fractions less than 20% is obtained
with a maximal improvement of 45% for q ≈ 9.4%. In the case
of the internet the average improvement is 15% for fewer than
20% controlled connections and the maximal improvement is
24% for q ≈ 8%. Note that the simulations are for a highly
contagious illness or virus. Results for less contagious ones
are shown for the airline network in Fig. 4.

Not only is the probability for a single person to become
infected of interest, but also the maximal possible spreading
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FIG. 4. (Color online) Comparison between the two immunization strategies, betweenness based (full line) and our improved immunization
(dashed line), for different infection parameters α. Plotted is the probability of becoming infected, p, for link immunization in the global airline
network as a function of the immunized fraction q for (a) α = 0.1, (b) α = 0.025, and (c) α = 0.0125. For the practical cases of low fractions
of immunized edges or nodes, our improved strategy is more efficient for all studied α values. In the insets the relative improvement of our
method is shown.

size is crucial. Therefore, we analyze the change of the
largest connected cluster of nonimmunized nodes during the
immunization process, a measure of the network’s susceptible
size. The size of this cluster gives the upper limit of the number
of people that could become infected if the disease spreading
starts on a node in this cluster. An efficient immunization
strategy should keep this number as small as possible in all
steps of the immunization process.

In the insets of Fig. 2 we show the possible savings of
immunization units with our strategy. To reduce the maximal
spreading size to a certain value s, our strategy needs
significantly fewer units than the betweenness-based strategy.
On average the potential savings are 9% (school), 17.9%
(airline), and 21.2% (PoP).

Our strategy is more efficient not only for edge immu-
nization, but also for immunization of nodes. The results for
node immunization for the same three networks are shown
in Fig. 5. For the airline network, the average improvement
is about 11% for immunization fractions less than 7%, while
the maximal improvement is about 49% for q ≈ 3.3%. For
the school network, an average improvement of about 8%
for immunization fractions less than 20% is obtained with a

maximal improvement of 34% for q ≈ 18.5%. In the case of
the internet the average improvement is 12% for fewer than
10% controlled connections and the maximal improvement
is 34% for q ≈ 8%. The average possible savings are 18%,
7.2%, and 9.6% for the airline, school, and internet network,
respectively.

IV. RESULTS: MODEL NETWORKS

To verify that the improvements are not only finite size
effects, we study different model networks with different
numbers of nodes and edges. In Fig. 6(a), the efficiency of
our method is shown on the example of Erdős-Rényi networks
with N = 8000 nodes and M = 16 000 edges (〈k〉 = 4). The
full line is the fraction of nodes in the largest connected
cluster after removing a fraction q of edges, according to
the high-betweenness immunization strategy and the dashed
line corresponds to our improved immunization strategy. Not
only is the overall improvement of R about 30% [see inset
of Fig. 6(a)], but also the largest component that can be
infected is reduced by up to a factor of 5 compared to
high-betweenness immunization for the practical case of a
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FIG. 5. (Color online) Comparison between the two node immunization strategies, betweenness based (full line) and our improved
immunization (dashed line). Plotted is the probability of becoming infected, p, for (a) the global airline network (N = 3666 and M = 27 235),
(b) a school friendship network (N = 1461 and M = 3875), and (c) the PoP internet network (N = 1098 and M = 6089) as a function
of the immunized node fraction q. Both betweenness-based and improved immunization can reduce the spreading of diseases significantly.
Nevertheless, for practical cases of small fractions of immunized nodes, the improved strategy is significantly more efficient. In the insets the
savings of immunization units obtained using our immunization strategy are shown. We compare the number of immunization units required
to keep the fraction of affected nodes under a certain value and plot the relative number of saved units vs the maximal size of the spreading, s.
The average savings are 18%, 7.2%, and 9.6% for the airline, school, and internet networks, respectively.
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FIG. 6. (Color online) Demonstration that betweenness-based immunization can be significantly improved for (a) Erdős-Rényi (ER)
network with N = 8000 and M = 16 000 where the links are immunized and (b) a scale-free (SF) network with N = 4000 and γ = 2.5 where
the nodes are immunized. We plot the fraction of the largest connected cluster of nonimmunized nodes (which potentially can be infected),
s(q) = S(q)/N , vs the fraction of the immunized nodes or edges, q, for both immunization strategies according to their betweenness (full lines)
or according to our improved immunization sequence (dashed lines). Note that the area below the curves represent our measure for susceptible
size, R [Eq. (1)]. The network size dependences are shown in the insets as well as the results for the three real networks (RN). Our results show
that the bigger the network the larger the improvement of our approach.

small number of available immunization doses. In the inset,
the size dependence of the improvement of edge immunization
is shown for the three real networks, Erdős-Rényi networks,
and scale-free networks with γ = 2.5. The improvement
is calculated by the relative reduction of the susceptible
size. Interestingly, the larger the system, the better the
improvement.

In Fig. 6(b) we demonstrate the efficiency of our method on
a scale-free network with N = 4000 nodes and an exponent
γ = 2.5. Here we immunize the nodes of the network instead
of the edges among them. Although, in general, the efficiency
of our method is higher in the case of edge immunization,
the overall improvement of R, in this case, is about 6%.
The size dependence, shown in the inset, is similar to that
for edge immunization for both model and real networks.
We have also investigated the effect of the density of edges
(degree) in Erdős-Rényi networks on the improvement and
found that it has no major impact on the efficiency of our
strategy.

V. CONCLUSIONS

In summary, we introduced a different approach for
determining an efficient immunization strategy. We showed
that our method is significantly more efficient in preventing
disease spreading compared to the high-betweenness method,
which was so far believed to be the most efficient. Our method
outperforms other immunization strategies for both node and
link immunization. We showed this by studying three different

performance measures, the average infection probability of
SIR model diseases, the susceptible size, and the relative
number of saved immunization doses. All of these three
measurements indicate that the immunization significantly
improves with our strategy for all networks studied. Such
improvement could result in the saving of many human lives
and resources. For the most important network responsible
for global disease spreading, the global airline network, we
showed that with our approximated approach the disease
spread may be reduced significantly with a relatively small
effort. Moreover, we found that the efficiency of our strategy
increases with system size.
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