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Abstract

Protein interaction networks have become a tool to study biological processes, either for predicting molecular functions or
for designing proper new drugs to regulate the main biological interactions. Furthermore, such networks are known to be
organized in sub-networks of proteins contributing to the same cellular function. However, the protein function prediction
is not accurate and each protein has traditionally been assigned to only one function by the network formalism. By
considering the network of the physical interactions between proteins of the yeast together with a manual and single
functional classification scheme, we introduce a method able to reveal important information on protein function, at both
micro- and macro-scale. In particular, the inspection of the properties of oscillatory dynamics on top of the protein
interaction network leads to the identification of misclassification problems in protein function assignments, as well as to
unveil correct identification of protein functions. We also demonstrate that our approach can give a network representation
of the meta-organization of biological processes by unraveling the interactions between different functional classes.

Citation: Sendiña–Nadal I, Ofran Y, Almendral JA, Buldú JM, Leyva I, et al. (2011) Unveiling Protein Functions through the Dynamics of the Interaction
Network. PLoS ONE 6(3): e17679. doi:10.1371/journal.pone.0017679

Editor: Yamir Moreno, University of Zaragoza, Spain

Received December 27, 2010; Accepted February 5, 2011; Published March 9, 2011

Copyright: ! 2011 Sendiña-Nadal et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Work partly supported by EU contract 043309 GABA, the Spanish Ministry of S&T under Project n. FIS2009-07072, and the Community of Madrid under
the R&D Program of activities MODELICO-CM/S2009ESP-1691. No additional external funding received for this study. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: irene.sendina@urjc.es

Introduction

The rapid improvements in sequencing technologies are adding
new sequences to the databases faster than the pace at which
insights into their function could be gained. As a consequence, the
vast majority of known genes and proteins have not been
characterized experimentally, and their function is yet unknown
[1]. Moreover, biological functions are not, in general, realized by
individual proteins, but, rather, by networks of intricate interac-
tions between numerous genes. The understanding of biological
processes requires, therefore, a better knowledge of the functional
organization of such networks. Indeed, the study of biological
processes increasingly relies on the analysis of biological networks
(BN), which has been used to tackle different levels of the
functional organization of the cell. On the level of individual
proteins, BN are often used to help to elucidate the molecular
function of specific proteins [2,3]. On the systems level, they are
studied to reveal modules and functional sub-networks [4,5].

An issue that has hardly been faced is that of the meta-
organization of different functions in a single, integrated, network.
Yook et al. [6] have concluded that most functional classes appear
as segregated sub-networks of the full protein interaction network
(PIN). Like most of the studies of BN, the results of Ref. [6] are
based on parsing the static network, and do not allow the
exploration of the meta-organization and the interactions of the
sub-networks. We here, instead, give evidence that a dynamical
approach to the analysis of BN based on their meta-organization

not only enhances the prediction of the function of individual
proteins, but also can reveal information on the network macro-
scale of interactions between different biological functions.

As for predicting the function of individual proteins, two main
strategies have been followed so far. The first relies on the analysis
of the protein itself: e.g. its similarity to already annotated proteins,
its structure, or its biophysical features [1,7,8]. The second one is,
instead, based on high-throughput technologies providing data
that may highlight the context in which the protein acts such as its
sub-cellular localization, interactions with other proteins, and the
conditions under which it is expressed (or the genes that are co-
expressed with it) [2,3]. High-throughput protein-protein interac-
tions detection experiments allow nowadays a representation of
the global cell functioning in terms of a network, with nodes
representing proteins and edges representing the detected mutual
interactions, with the goal of exploiting the properties of these
networks for prediction purposes on the function of specific
proteins. Notwithstanding the accomplishments of these analyses it
is important to highlight that most high-throughput methods can
suffer from high false positive and false negative rates [9] and,
therefore, functional assignments that are based on these tools may
lead to misclassifications.

Several past studies attempted already to determine to what
extent the function of a protein depends on the way it is interacting
with the others in the PIN. However, the use of such network
representation for prediction requires the determination of the
specific scale of the PIN that one has to consider for unveiling the
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individual protein’s function. And, in this latter framework, the
current state of the art includes, again, two types of approaches.
From one side, several direct annotation schemes have been
devised [10–14], with the common inspiration of analyzing the
local scale features of the PIN, i.e. either basing the function
prediction on the information that can be directly extracted from
the protein neighborhood, or statistically assessing a probability for
a protein to be assigned to a given function, depending on the
actual number of its neighbors that are (or are not) pertinent to the
same function. From the other side, more recent module assisted
techniques [15–17] have attempted to make use of the extra
knowledge arising from the meso-scale of clustered structures of
the PIN, with first identifying dense agglomerates in the network
that are loosely connected to other areas of the graph, and then to
use this topological information for predictions on the protein
specific function.

The approach we lay out constitutes a third, novel, strategy. We
provide evidence that an alternative source of information is, in
fact, the one arising from the analysis of how the modular PIN
structure actually organizes the synchronization dynamics of an
ensemble of oscillators. In particular, we show how the
combination of synchronization features emerging in the PIN
structure with a rudimentary classification of proteins based on
expert manual assignment, allows, indeed, to gather information
on misclassification problems, as well as to offer a more accurate
function assignment that is consistent with more recent (and better
refined) manual annotation of these proteins’ function. Not less
important is the ability of the approach we introduce to assess the
coupling of different functional categories, to determine how
closely associated they are, and which proteins participate in both
of them.

Materials and Methods

Data
For our research we have used a typical and important network

with rudimentary functional assignments derived from a Saccha-
romyces cerevisiae PIN, as reported in [18]. The data set is based on
the work by von Mering et al. [9] who scored the reliability of
80,000 reported protein-protein interactions in the yeast. These
were based on high-throughput interaction detection methods,
such as i) yeast two-hybrid systems [19,20], ii) protein complex
purification techniques using mass spectrometry [21,22], iii)
correlated messenger RNA expression profiles [23,24], iv) genetic
interaction data [25,26], and v) ‘‘in silico’’ interaction predictions
derived from gene context analysis. From this set, Bu et al. [18]
focused on 11,855 interactions (those featuring high and medium
confidence levels) among 2,617 proteins. We here focus on the
giant connected component of the PIN given in Bu et al. [18],
consisting of N~2,375 proteins and L~11,693 interactions.

As for the modular structure of the PIN, we initially refer to the
partition in 13 functional categories given by the yeast protein
catalog at the Munich Information Center for Protein Sequences
(MIPS) [26]. Particularly, we use the data set in which each given
protein is assigned to one of the functional categories (with
proteins in multiple categories manually assigned by Bu et al. [18]
to only one).

In order to test the validity of our findings, we will use the
classification provided by the Gene Ontology consortium (GO)
[27]. While MIPS attempts to provide a simple hierarchy with
intuitive category structure that allows for manual browsing, GO
aims at representing a fine granular description of proteins that
provides annotation with a wealth of detailed information. Thus,
MIPS gives a very rough division into a couple of dozens of

categories and several hundreds of subcategories, whereas GO
includes 29,983 different functional terms (as of March 2010). GO
also provides a reduced version of its ontology (GOslim) that
allows one to trace the detailed terms into more coarse-grained
categories. In our analysis, we start with the single MIPS
classification for each protein, and use the dynamical overlap
method for identifying those proteins that are likely to be involved
in more than one of the functional categories in our data (those
ones forming the overlapping structures). As a validation, we refer
to the classification of these proteins in GOslim, Namely, by
manually mapping each GOslim term to one of the 13 MIPS
categories, one is able to verify whether or not the assignment of
the second function (provided by our method for each one of the
proteins in the overlapping sets) is consistent with the functional
annotation in GO.

Dynamical Overlap Formalism
The method is based on the inspection of how oscillators

organize in a modular network of dynamical interactions [28], by
forming synchronization interfaces and overlapping communities
[29,30]. Here, we will consider a network of phase oscillators on
top of the PIN. Thus, the transfer of function between neighboring
proteins is performed through the synchronization of coupled
oscillators. In order to explain how the method works, let us
assume the PIN of the yeast is topologically divided into two main
modules, M1 and M2, each one of them associated to a specific
protein function. Every node (protein) in the network is an
oscillator whose frequency vi is set to v1 (v2) whenever the node i
belongs to M1 (M2), with v1wv2. The phase dynamics of this
network of N coupled oscillators can be described by

_wwi~viz
d

Ki

XN

j~1

aij sin (wj{wi) ð1Þ

where dot denotes temporal derivative, wi(t) is the phase of the i-th
oscillator, Ki is the number of interactions that the i-th protein has
with the rest of proteins, d is some coupling strength, and (aij) are
the elements of the adjacency matrix representing the PIN [28],
with (aij)~1 if there is an interaction between proteins i and j, and

(aij~0) otherwise.

In the extreme case of fully separated modules the network
dynamics would eventually (at large coupling strength d) result in
the clusters M1 and M2 oscillating synchronously at a constant,
different, frequency. If, however, there are just a few interactions
between proteins of the two modules, the onset of a synchronization
interface overlapping the two modules occurs, made of all those
nodes displaying an instantaneous frequency that are actually
oscillating in time around the mean value of the two frequencies
characterizing the clusters [29]. The rest of nodes, out of the
synchronization interface, oscillate at the frequency of the module
they belong to. To quantify this behavior, we monitor the
instantaneous frequency of each oscillator and we calculate the
indicator Ci,

Ci : ~sgn½min
t
f _wwi(t){!vvg$min

t
fj _wwi(t){!vvjg ð2Þ

which accounts for how close in time the frequency associated to
protein i is to the average frequency !vv of the two clusters, v1 and
v2. By fixing a confidence threshold 0ve%v1{v2, those
proteins belonging to module M1 (M2) have Ciwe (Civ{e) as
they were assigned initially the frequency v1 (v2), while jCijve is
the signature of a protein whose module membership is not clear,
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belonging to the synchronization interface between M1 and M2.
This behavior is graphically sketched in Fig. 1. There, a small
graph composed of 8 nodes (Fig. 1A) clearly has two densely
connected modules that do not coincide with the given functional
classification denoted by the color of the nodes. Actually, node 8
does not have any link within its functional module, the yellow
one, while node 4 is classified within the blue functional module
but shares the same number of links with the other functional
module. After solving Eq. (1) by assigning vi~v1 to nodes 1–3
and 8 (functional module M1), and vi~v2 to nodes 4–7
(functional module M2), the corresponding Ci values extracted
from Eq. (2) indicate that nodes 1–3 really belong to module M1

(as Ciwe), nodes 5–7 belong to module M2 (as Civ{e), while
nodes 4 and 8, whose jCijve, are the ones candidates to be
overlapping between M1 and M2. To solve this uncertainty, nodes
4 and 8 are reassigned to M2 (blue) and M1 (yellow) respectively
(Fig. 1B) and we observe that whereas C8 falls now within the area
of module M2, increasing the cohesion of the functional module,
node 4 still lies within the synchronization interface (jC4jve)
overlapping between both modules.

For the real situation of a PIN with 13 different functional
modules (M1,M2, . . . ,Mn), this can be done by integrating n~13
times the network dynamics described by Eq.(1). In each trial, the
k-th module (k~1, . . . ,n) is assigned to the cluster frequency v1,
whereas the rest of the PIN is given the second cluster frequency
v2, resulting in a series of Ci(Mk) values. This time all those
proteins initially assigned to Mk whose Ci(Mk)we, actually belong
to module Mk, while if Ci(Mk)v{e belong to another module

different from Mk. All those nodes whose jCi(Mk)jve are labeled
as belonging to the Sk synchronization interface between module
k and the rest of the network. Then, a node is identified as an
overlapping node between modules Mk and Ml if, being a node
from either Mk or Ml , is in both Sk and Sl , that is

Skl : ~(Mk|Ml)\(Sk\Sl):

Finally, the set of nodes of module k overlapping with module l,
with k=l, is

Rkl : ~Mk\(Sk\Sl), ð3Þ

which has two implications: i) while Skl is symmetric in the
indexes, Rkl is not, and ii) Skl~Rkl|Rlk and, since
Rkl\Rlk~1, jSkl j~jRkl jzjRlkj.

Eventually, the degree of overlapping between two modules is
then given by:

Okl : ~
jSkl j

jMkjzjMl j
~
jRkl jzjRlkj
jMkjzjMl j

, ð4Þ

which, therefore, provides a measure of how many nodes out of
the clusters k and l are forming the corresponding overlapping
structure.

The main result of our method is, therefore, an index Ci(Mk)
accounted by Eq.(2), that, for each protein i, measures its degree of
membership to module Mk (i.e. a protein function). A value
Ci(Mk)v{e indicates that the protein exhibits a dynamical
behavior different from that of the majority of proteins in Mk, thus
clearly belonging to other module. On the other hand, Ci(Mk)we
occurs when the protein performs as the rest of proteins assigned
to the same module Mk, and this confirms that it is certainly
member of Mk. Finally, a value of Ci(Mk) close to zero is the
signature of a protein whose module membership requires further
analysis as it could be the case of a protein belonging to two or
more functional modules. Therefore, we are introducing an index
that allows to check the accuracy of the initial functional
assignment as well as predicting a second (or more) function of a
protein.

Results and Discussion

The application of the method given by Eq. (1) to the PIN and
modular classification with N~2,375, v1~0:8, v2~0:2, and
d~0:3, as described in the Materials and Methods section leads to
13 different series for Ci(Mk) (being k~1, . . . ,13 the functional
module index and i~1, . . . ,2,375 the protein index). In order to
proceed with the full analysis of this data, we have to consider all
possible combinations of these series to check whether a protein
belongs to the functional module initially assigned or whether it is
involved in more than one functional module. This can be done
efficiently, as shown in the Figure S1, but, to illustrate the
principles underlying the method, we will just focus on a single
pair of functions.

Figure 2A shows the values of the indexes Ci(M4) and Ci(M8),
being M4 and M8 the Cellular fate/organization and Genome
maintenance functional modules. We plot proteins initially assigned
to M4 (M8) in blue (red), while the rest of proteins are plotted in
black. Notice that most of the black points are concentrated
around ({0:3,{0:3), as the corresponding proteins neither
belong to M4 nor M8. The majority of proteins in M4 (blue)
and M8 (red) are located close to (0:3,{0:3) and ({0:3,0:3),

Figure 1. Graphical description of the dynamical overlap
method. (A) A two module small graph composed of 8 nodes colored
according to their membership to the functional module M1 (yellow) or
M2 (blue), and corresponding Ci values after solving Eq. (1) with
vi~v1~0:8 for M1 and vi~v2~0:2 for M2 . Nodes 4 and 8 have
Ci*0 with this functional classification. (B) Same as in (A) but nodes 4
and 8 has been reassigned to modules M2 and M1 respectively. Now,
node 8, behaves as a node truly from M2 while node 4 behaves as an
overlapping node between M1 and M2 as Ci is again close to zero. All
the network representations in this manuscript were produced with
Cytoscape.
doi:10.1371/journal.pone.0017679.g001
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respectively. The blue points inside the ellipse correspond to
proteins initially classified as M4 that are not belonging to M8 (as
Ci(M8)v0), but for the very same to M4 is under question
(Ci(M4)*0). When examining the indexes for the rest of modules,
one finds out Ci(Ml)v0 Vl=4. Therefore, we infer that these
proteins do, indeed, belong to M4 although weakly. The same
arguments apply for the red points lying within the other ellipse:
they are proteins weakly ascribed to M8. A completely different
situation is that of those points distributed around (0,0) (inside the
circle, mostly of the points superimposed). They correspond to 15
proteins whose unique membership to M4 and M8 cannot be
asserted. When checking the rest of Ci values, one finds that none
of these proteins can be assigned to modules other than M4 and
M8, thus again they are weakly associated to both functions M4

and M8 (one of them being the initially assigned function, and the
other the predicted one). The novelty here is that there is a twofold
assignation, which could be considered as the trace of multi-
functional proteins.

Before claiming for multi-functionality, it is mandatory to check
if such a multi-assignment holds when the initial modular structure
changes. This is tantamount to reassign each one of these proteins
to the predicted function and check whether the corresponding
protein is still located around (0,0), otherwise the multi-
functionality is simply an artifact. The new Ci values for the 15
proteins (after reclassification) are shown in Fig. 2A as circles
bordered with the color of the predicted function. The remarkable
result is that the emerging dynamics behavior agrees with the new
classification, as the 15 proteins are no longer overlapping and
move now to the areas corresponding to the predicted function. If
we take into account the number of connections a given protein is
forming with elements belonging to any one of the other modules
in the graph, Kout

i , the emerging dynamics is reflecting the fact that
the original and predicted assignments correspond, respectively to
Kout

i ~Ki and Kout
i ~0, that is, the predicted classification makes

the functional module more cohesive (see Fig. S2B). For the sake of
visualization, Fig. 2B shows the backbone of the original PIN
made of the 15 proteins and all their neighboring proteins. While
the original function assignment classified the proteins in modules
in which they do not have physical interactions, the reclassification
is able to unveil the participation of the proteins to the correct
module. For example, according to GO, YHR172W is not
involved in Cellular fate/organization but in Genome mainte-
nance (see Table S1), which is in agreement with the classification
pointed by our method.

Notice that, in the full analysis, the number of proteins featuring
an overlapping behavior is 418 (see the full list L1 in Table S1 and
Fig. S2) out of which 103 proteins have no functional annotation
in GO and 200 had two or more different function annotations in
GOslim. For these latter ones, a comparison with the functions
assigned by GO reveals that in 87 cases the predicted function is in
agreement with one of the GO assignments. The expected average
number of matching of the proteins in L1 for a random function
assignment is 25. The p-value for the significance of this result is
0.0001, and it can be established by performing 1,000 random
reshuffles of function assignment, and verifying the average
number of matches (which in this case was 25). The highest
number of random matches was 50 (in 1/1,000 cases), well below
the observed 87. As a result, one can claim an original
misclassification and, consequently, the method can be used to
cure errors in a given protein function classification.

With the guidance of the information obtained so far, we have
reclassified all proteins of L1 to the corresponding predicted
functions, and extracted the subgraph of the original PIN for
which each functional module corresponds to a connected
component (i.e. we pruned out all those other proteins that were
assigned a given function in the MIPS classification, but did not
have any interaction with other elements of the same function).
The result is a new interaction network made of 2,049 nodes and

Figure 2. Identification of misclassified proteins. (A) Ci(M4) and Ci(M8) values for all proteins in the PIN of the yeast. The color indicates the
functional module initially assigned to each protein (blue for M4 , red for M8 and black for the rest). The method identifies 15 proteins (within the
circle) with a twofold assignation (the initial and the predicted one). After re-assignation to the predicted function, the new Ci values of the 15
proteins are depicted as circles bordered with the color of that function, and lie together with those other proteins of the same function, indicating
an original misclassification. (B) Visualization of the network backbone, made of the 15 misclassified proteins and their neighbors. Same color code as
for (A).
doi:10.1371/journal.pone.0017679.g002
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9,941 links, that we take for a new set of numerical trials, resulting
in a second list L2 of 211 potentially multi-functional proteins
(reported in Table S2). The situation, is now radically different: at
variance with the results of Fig. 2, Fig. 3 shows that the multi-
functional nature of the 30 proteins inside the circle (the subset of
L2 obtained when comparing M1 (Transcription) and M6

(Translation), is indeed genuine, as the final outcome does not
depend on whether the proteins are classified according to the
assigned or predicted functional modules (see Fig. S3A). This is
further confirmed by the simultaneous reclassification of each one
of the proteins of L2 into the predicted function, and by
monitoring the change in the out-degree, Kout

i , calculated with
the predicted and the original classification (shown in Fig. S3B).

An independent test of the validity of that assignment is to assess
the multi-functionality character of the proteins in L2 by
comparison with the more accurate GO classification scheme.
One can count the number of different GO annotations for each

of the proteins in L2, and the corresponding distribution of multiple
assignments in the rest of the data. The difference between the two
distributions (see Figure 4) is significant (p-valuev0:01, as for
conventional t-test). Namely, the average number of different
function assignments in L2 is 6.7, with mode 4, while in the other
proteins one finds 4.9 and 3 respectively. Moreover, the standard
deviation of the distribution of functions in L2 is significantly greater
than that of the other proteins. This confirms that the proteins in L2

come from a population with higher multi-functionality with respect
to the population of other proteins.

Finally, the method allows also to assess a coarse-grain
representation of the PIN, showing the way each biological
function is interacting with the others. In Figure 5, each specific
cell function is represented by a node whose size is proportional to
the total number of proteins participating in that function. The
width of each link is proportional to the number of multi-
functional proteins provided by our method (Equation (4)). The
resulting network representation of the full cell functioning
suggests numerous insights about the organization and control of
biological functions. As one might expect, there is a strong link
between Transcription, Translation and Transcriptional control.
But these functions have almost no common proteins to functions
like Genome maintenance, Cellular organization or Metabolism.
Interestingly, the results show that there are no shared proteins
between Amino-acid metabolism and Protein fate, suggesting that
even though these two processes may seem related there are no
known common mechanisms that control both functions.

We have then given evidence that a proper inspection on the
meso-scale interactions of a generated network of dynamical
systems can provide useful information on the micro- and macro-
scale processes through which biological processes are organized in
a cell. The method is not only able to predict and reassign the
function of a given protein, but also to describe qualitatively the
main functional interactions that lead to the global functioning of
the organism. It is worth highlighting that the present application
only focused on unveiling proteins with double functionality, while
the method can be easily applied to gather information also on
proteins bridging among more than two different biological
functions (such an evidence will be reported elsewhere). The core
of the presented results gives insights on how molecular functions
are networking at different scales, as well as on how to design (or
engineer) proper drugs, or mechanisms to control (or regulate) the

Figure 3. Identification of multi-functional proteins. (A) Ci(M1) and Ci(M6) values for the 2,049 proteins in the PIN of the yeast after curation.
The color indicates the functional module initially assigned to each protein (orange for M1, green for M6 and black for the rest). The 30 proteins
located inside the circle remain there after re-assignation to the predicted function, and are depicted as circles bordered with the color of that
function. (B) Visualization of the network backbone made of 6 (out of 30) of the multi-functional proteins in (A).
doi:10.1371/journal.pone.0017679.g003

 

 

Figure 4. Statistical assessment of protein multi-functionality.
Probability density function of the number of different GO annotations
(see Materials and Methods section) of the 211 overlapping proteins in
L2 (blue diamonds), as compared to the probability of other proteins in
the rest of the data (red squares). Continuous lines are shape-preserving
interpolations.
doi:10.1371/journal.pone.0017679.g004
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biological interactions responsible for the functioning, or malfunc-
tioning, of a cell.

Supporting Information

Figure S1 Identification of misclassified proteins. The
proposed tool is providing the behavior of each protein in the PIN
through the indicator Ci(Mk), that crucially depends on its
original functional classification. Each panel corresponds to the
competition trial between module Mk at frequency v1 (in black
symbols) and the rest of modules Ml=k at frequency v2 (in
different symbols and colors). The size of each module is written
between brackets. Nodes belonging to the corresponding synchro-
nization interface (jCi(Mk)jv0:05, gray band) are marked in full
face. Those nodes corresponding to overlapping proteins (those
appearing in two synchronization interfaces, jCi(Mk)jv0:05 and
jCi(Ml)jv0:05) are encircled with the color of the corresponding
overlapping function. Parameters used in Equation (1): N~2,375,
v1~0:8, v2~0:2 and d~0:2 (A), d~0:3 (B). M1 (Transcription),
M2 (Other metabolism), M3 (Uncharacterized), M4 (Cellular fate/
organization), M5 (Protein fate), M6 (Translation), M7 (Amino-
acid metabolism), M8 (Genome maintenance), M9 (Cellular
organization), M9 (Energy production), M10 (Stress and defence),
M11 (Transcriptional control), M12 (Transport and sensing), and
M13 (Transport and sensing).
(EPS)

Figure S2 Identification of misclassified proteins. (A)
Dynamical behavior of the 418 overlapping nodes. In blue when
the modules are defined according to the original classification
(MIPS). Given that the overlapping node i[Rkl is simultaneously
in Sk and Sl , we represent with a circle its Ci value in Sk and with
a square its Ci value in Sl . In red we represent the same values as
before but when the modules are modified to take into account the
function predicted by our method for the overlapping nodes. Same
parameters as in Fig. S1B. (B) Topological behavior.
D(Kout

i )=Ki:½(Kout
i )predicted{(Kout

i )original $=Ki, change in the ratio

between out-degree (Kout
i , number of connections a given protein

is forming with elements belonging to any one of the other
modules in the graph, and the underscores predicted/original stay
for the calculation of Kout

i in the corresponding annotation) and
total degree (Ki, degree of the protein, independent on the specific
classification of the protein) of the proteins in L1 (green dots) and
the rest of the proteins (black dots) when reassigning the function
given by MIPS to the predicted one. The results show that, while
all non overlapping proteins (black points) are grouped around
D(Kout

i )=Ki~0 (i.e. they do not substantially change their in-out
connections due to the change in the classification of the
overlapping proteins), the members of L1 (green points) appear
grouped around D(Kout

i )=Ki~{1, thus reflecting the fact that the
original and predicted assignments correspond, respectively to
Kout

i ~Ki and Kout
i ~0. This indicates that in the original

classification of the proteins in L1 they did not have interactions
with other elements of the original functional module, whereas the
predicted classification assigns them to the proper functional class.
(EPS)

Figure S3 Identification of multi-functional proteins.
(A) Dynamical behavior of the new set L2 of overlapping proteins.
In blue, Ci values of the set of overlapping proteins between
modules Mk and Ml with the new cured classification (same as in
Fig. 3). As in Fig. S2, we plot the Ci value of the overlapping node
i[Rkl with circles when is in Sk and with squares when in Sl . In
red we represent the same values as before but when the modules
are modified to take into account the function predicted by our
method for the overlapping nodes. (B) Topological properties of
the cured PIN. Change in the ratio between out-degree (Kout

i ) and
total degree (Ki) of the proteins in L2 (green dots) and the rest of
the proteins (black dots) when reassigning the function given by
MIPS to the predicted one. Parameters used in Eq. (1): N~2,049,
v1~0:8, v2~0:2 and d~0:7.
(EPS)

Table S1 List L1 of proteins. Full list L1 with the 418
overlapping proteins resulting from the first iteration of the
dynamical overlap method for the PIN of the yeast (see Materials
and Methods and Fig. 2). For each protein, we provide the OLN
(Ordered Locus Names), the MIPS classification, whether or not
this function is annotated in GOslim, the predicted function and
whether or not this predicted function is also provided by GOslim.
The first 87 proteins correspond to cases in which the predicted
function is in agreement with one of the GO assignments.
(PS)

Table S2 List L2 of proteins. Full list L2 with the 211
overlapping proteins resulting from the second iteration of the
dynamical overlap method for the curated PIN of the yeast (see
Text and Fig. 3). The curation of the PIN consists in exchanging
the annotated function by MIPS of the 418 proteins from L1 with
the function predicted by the overlap and removing those proteins
that become isolated within the functional module. Again, for each
protein, we provide the OLN (Ordered Locus Names), the MIPS
classification and the predicted function.
(PS)

Table S3 Multifunctional distribution of proteins in L2.
%Module index. {Number of proteins within the k-module.
{Overlapping nodes belonging to Mk. }Number of proteins
belonging to the k-module overlapping with module l.
(PS)

Figure 5. Coarse grained representation of the PIN in terms of
cell functioning and coordination. The size of nodes is proportional
to the total number of proteins participating to the corresponding
function, the width of the links is proportional to the size of the
corresponding overlapping interface. The full picture of the structure of
these overlaps is reported in the Table S3.
doi:10.1371/journal.pone.0017679.g005
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