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Abstract. The dynamical processes on interdependent spatial networks have attracted
increasing interest in recent years, but the studies related to the complex contagions are
relatively lack. Based on a general social contagions model, we numerically study how the
interdependent spatial systems composed of two interdependent planar lattices influence the
dynamics of social contagions. Once the rate of information transmission or the probability
of behavior adoption is settled, the strong interdependent lattices could easily stimulate
the contagion process and improve the final density of adopted individuals significantly.
We perform finite-size analysis and confirm that the phase transition of prevalence with
transmission rate is second-order, but even for the relatively small transmission rate, the
phase transition of prevalence versus the adoption probability is first-order. Although the
large transmission rate or the large adoption probability could promote the final adopted
density in the weak interdependent lattices, phase transition of prevalence remains second-
order. These findings provide us with a deep understanding of the social contagion dynamics
in interdependent lattices.
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1. Introduction

Many real-world networks are often interdependent and exhibit spatial structures [1, 2, 3, 4].
As a typical example, the nodes in a communications network strongly depend on the
nodes in the power grid network for electricity while the power stations depend on the
communication nodes for control, where both networks are embedded in the two-dimensional
space [2]. Previous studies have revealed that the interdependent spatial networks can
significantly influence the dynamical processes in them [3, 4, 5, 6, 7, 8, 9]. For example,
reducing the spatial distance between the interdependent nodes can cause different types of
phase transition in the percolation process [10], and the system can collapse in an abrupt
transition when the fraction of dependency links increases to a certain value [11]. The
propagation of cascading overloads is characterized by a finite linear propagation velocity
on spatially embedded networks [12]. In particular, a localized attack can cause substantially
more damage to spatially embedded systems with dependencies than an equivalent random
attack [13]. Spatial networks are typically described by lattices [14, 15]. The related studies
have found that asymmetric coupling between interdependent lattices can greatly promote
collective cooperation [16], and the epidemic threshold in interconnected lattices decreases as
the spatial length of interconnected links increases [17].

Unlike the epidemic dynamics, the dynamics of social contagions [18, 19, 20, 21, 22, 23]
range from the adoption of social innovations [24, 25, 26, 27, 28] to the prevalence of healthy
behaviors [29]. The related studies showed that multiple affirmations of the credibility and
legitimacy of a piece of news or a new trend are ubiquitous in social contagions. The
individual’s probability of adopting a new social behavior depends upon the accumulative total
number of effective contacts within neighbors, which is described by the social reinforcement
effect [29, 31, 32, 33, 34, 35]. Assuming that a susceptible individual will adopt the social
behavior once the number or fraction of its adopted neighbors exceeds an adoption threshold,
the threshold model has been widely used to describe the social reinforcement effect [36].
Using the threshold model, network characteristics related to social contagions such as the
clustering coefficient [37], community structure [38, 39], and multiplexity [40, 41, 42, 43]
have been explored, but less study was focused on the social contagions in interdependent
spatial networks. Moreover, the social enforcement effect in traditional threshold model
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usually enables multiple passes on the information between an adopted individual and its
susceptible neighbors. In some social contagion processes, such as the spread of high-
risk social movements, avant garde fashions, and unproven technologies [34], redundant
transmission of related information between two individuals is unnecessary because a
susceptible individual can guarantee the credibility and legitimacy of the behavior only to
some extent [29]. Wang et al. investigated the non-redundant threshold model in random
networks and found the crossover in phase transition [19], but the systematic study on this
aspect is still rare, especially scarce in interdependent spatial networks.

In this work we study the non-redundant social contagions on interdependent lattice
networks using a novel spatial social contagion model. We show numerically how the
individuals’ memory and dependency infection influence the prevalence of social contagions
in interdependent lattice networks. More importantly, we find out the important roles
of individuals’ memory and dependency infection in the phase transitions. The paper is
organized as follows. In Sec. 2, we describe the interdependent spatial network and the
social dynamical process on it. In Sec. 3, we investigate the prevalence and the type of phase
transition using finite-size analyses. Finally, we draw conclusions in Sec. 4.

2. Model

2.1. Interdependent spatial network

The interdependent spatial network is made up of two identical planar lattices A and B of
linear size L and N = L × L nodes with periodic boundaries. In each lattice all nodes are
arranged in a matrix of L × L, and each node is connected to its four neighbors in the same
lattice via connectivity links (i.e., links between two nodes in the same lattice). The p fraction
of nodes in lattice A are randomly selected as dependency nodes. Each dependency node Ai

in lattice A will be connected to one and only one node Bj randomly selected in lattice B via
a dependency link (i.e., the link between a nodes in lattice A and a node in lattice B). Thus,
each dependency node has only one dependency link. The total number of dependency links
in the interdependent spatial network is determined by the parameter p. Obviously, the more
the dependency links are, the more interdependent the two lattices become. For simplicity,
the networks with a large p value are defined as the strong interdependent networks, and those
with a small p value are defined as the weak ones.

2.2. Dynamics of spatial social contagion

The population in the interdependent spatial networks are grouped into susceptible (S),
adopted (A) and recovered (R) compartments. The susceptible individuals have not adopted
the behavior and are susceptible to the behavior information. The adopted individuals have
adopted the behavior and are able to transmit the information to its susceptible neighbors. The
recovered individuals become immune to the behavior and are no longer involved. Within the
same lattice, individuals can retain their memory of previous behavior information received
from neighbors. A susceptible individual adopts the new behavior with a specified probability
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Figure 1. (Color online) Sketch of the ways of adopting the social behavior on
interdependent lattices. (a) connected propagation: At t = 1, the individual Ai is
successfully exposed to one adopted neighbor, and now the number of new received
information is mi(1) = 1 and mi increases by 1. There are no more new adopted neighbors
over the next k − 2 time steps, and mi remains unchanged. At t = k, two new adopted
neighbors successfully transmit the information to i, and now mi(k) = 2. The individual Ai

becomes adopted with probability π(mi), where mi =
∑t=k

t=0 mi(t) = 3. (b) dependency
propagation: At t = k, Ai’s dependency node Bi becomes adopted immediately due to the
dependency propagation.

dependent of the cumulative pieces of information from its adopted neighbors [see Fig. 1(a)].
We designate this type of behavior adoption connected propagation. Considering the non-
redundant information diffusion in some social contagion processes [34], here we assume that
a susceptible individual i adopts the behavior with probability

π(mi) = 1− (1− ϵ)mi , (1)

where mi is the susceptible individual’s cumulative number of information received from its
distinct neighbors, and ϵ is the unit adoption probability. A susceptible individual can also
adopt the new behavior when its corresponding dependency node in another lattice becomes
adopted. We designate this type of behavior adoption dependency propagation [see Fig. 1(b)].

The simulations of the social contagion dynamics are implemented as follows. Initially,
only 0.05% of individuals are randomly selected to be adopted, and we leave all other
individuals in the susceptible state. Each individual has a record mi of accumulative
numbers of information received from adopted neighbors till now, and mi is initially set
to 0 for every individual. At each time step, each adopted individual tries to transmit the
behavior information to its susceptible neighbors in the same lattice with probability β via
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Figure 2. (Color online) The prevalence R as a function of λ within different parameters
in lattice A (a) and lattice B (b), respectively. We perform the experiments on 102 different
networks with N = 104, each of which are tested in 103 independent realizations.

the connectivity links. If a susceptible node i is successfully exposed to the information
from an adopted neighbor for the first time, its mi increases by one and here the adoption
probability becomes π(mi + 1). Once the node i becomes an adopted one, its susceptible
dependency node becomes adopted immediately because of the dependency infection. At
the same time, infected nodes may lose interest in the social behavior and become recovered
with a probability µ. When an adopted node becomes recovered, it no longer takes part in
the propagation of the social behavior. The recovery probability µ is set to 1 unless was
specific explained. The time step is discrete and increases by ∆t = 1. The dynamics of social
contagion evolve until there are no more adopted nodes throughout the network.

3. Results

In this section, we perform extensive numerical simulations of the interdependent spatial
contagion process. The spreading probability λ-dependent of the prevalence (i.e., the average
density of final recovered individuals) in lattice A is analyzed in Fig. 2 (a). In the given
network, the large adoption probability could ensure a high information adoption rate and
advance the prevalence obviously. Compared with the cases in networks with small p, the
behavior occurs more easily in the networks with large p due to the effect of abundant
dependency infection. Fig. 2 (b) shows the analyses in lattice B, where the results are almost
the same because of the symmetrical characteristic of the social contagions on interdependent
lattice networks. Unless otherwise specified, the following analyses will use lattice A as an
example.

In Fig. 3, we further perform the finite-size analysis by computing the the normalized size
of first giant connected component (i.e., G1 ) for different lattice size L. In each subgraph,
the G1 curves begin to converge after some λ. For example, the converge point is λ ≈ 0.73

for p = 0.1, ϵ = 0.5. The results show that although the parameters p and λ have significant
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Figure 3. (Color online) The prevalence R as a function of λ within different L. In
subfigures (a)-(d), the parameters are respectively chosen as p = 0.1, ϵ = 0.5, p = 0.1, ϵ =

0.8, p = 0.9, ϵ = 0.5 and p = 0.9, ϵ = 0.8. We perform the experiments on 102 different
networks, each of which are tested in 103 independent realizations.

effects on the prevalence as a function of spreading probability λ, we always observe the
second-order phase transition [44].

For the given spreading probability λ and the ratio of dependency node p, we plots
the prevalence as a function of ϵ in Fig. 4 (a). For the small λ and p, both the connected
propagation and the dependency propagation are suppressed. Under such circumstances,
it’s difficult for the social contagion to break out, although the adoption probability is large
enough. The large λ improves the success rate of information transmission among neighbors
in the same lattice, which stimulates further the adoption of the social behavior, especially
in the case of large p. Moreover, we plot the normalized size of the first largest components
(i.e., G1) for the recovered nodes in Fig. 4 (b). The results again demonstrate that the large
spreading probability or strong interdependent networks could obviously promote the social
contagion. Remarkably, the G1 has an abrupt change from the value close to zero to the finite
value in the case of p = 0.9, λ = 0.7.

To have a deep understanding of the above phenomena, we perform the finite-size
analysis in Fig. 5. The G1 curves begin to converge after some ϵ in Figs. 5 (a) and (b).
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Figure 4. (Color online) Comparison of the prevalence (a) and normalized size of the first
largest components for recovered nodes (b) as a function of ϵ within different parameters.
We perform the experiments on 102 different networks with N = 104, each of which are tested
in 103 independent realizations.

In Figs. 5 (c) and (d), we see that all the curves intersect at one point. The intersect points
are ϵ ≈ 0.476 and ϵ ≈ 0.228 respectively for p = 0.9, λ = 0.4 and p = 0.9, λ = 0.7.
These numerical results demonstrate that the parameter p plays an important role in both the
prevalence versus ϵ and the spreading form of the social behavior. When p assumes a relatively
large value, even a small fraction of initial spreaders are able to stimulate the propagation in
the form of a first-order phase transition, while for a relatively small value, the social behavior
spreads in the form of a second-order phase transition [44].

In order to locate the critical point of transition [45, 46] accurately to further support
our findings, we use the method developed by Parshani et al [47]. For the first-order phase
transition, we calculate the number of iterations (i.e., NOI) in the contagion process required
for the system to reach a steady state. For the second-order phase transition, we calculate
the normalized size of second largest components (i.e. G2) after the contagion process is
complete. The two quantities tend to exhibit exceptionally large values at a critical parameter
value in the finite network [44]. Fig. 6 shows these as typical of p = 0.1, λ = 0.4 and
p = 0.9, λ = 0.7. Fig. 6 (a) shows that when p = 0.1, λ = 0.4, the peak of G2 versus
ϵ gradually shifts to the right as L increases. The value of ϵ corresponding to the peak
for each L is determined as the critical point λII

c (L). To give the scaling relation near the
critical points [48], we fit ϵIIc − ϵIIc (L) versus 1/L by using the least-squares-fit method in
Fig. 6 (b), and find ϵIIc − ϵIIc (L) ∼ (1/L)0.5516 at ϵIIc = 0.9875. Fig. 6 (c) shows that
when p = 0.9, λ = 0.7, the peak of NOI versus ϵ gradually shifts to the left with L. We
further fit ϵIc(L) − ϵIc versus 1/L by using the least-squares-fit method in Fig. 6 (d), and find
that ϵIc(L) − ϵIc ∼ (1/L)0.2089 at ϵIc = 0.2089. The large second-order transition points and
the relatively small first-order transition points explain the variations in prevalence at some
extents.
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Figure 5. (Color online) The prevalence R as a function of λ within different L. In
subfigures (a)-(d), the parameters are respectively chosen as p = 0.1, λ = 0.4, p = 0.1, λ =

0.7, p = 0.9, λ = 0.4 and p = 0.9, λ = 0.7. The results are averaged over 102 × 103

independent realizations in 102 networks.

4. Conclusions

We have studied the complex contagions on interdependent spatial networks consisting of two
interdependent lattices. A general threshold model is proposed to describe the individuals’
memory effect in the social contagion. In view of this model, a susceptible individual adopts
a new behavior with a probability in proportion to the cumulative pieces of information
received from its adopted neighbors in the same lattice, or if its dependency node becomes
adopted. We first investigated the prevalence versus spreading probability λ. Although the
large adoption probability ϵ could promote the social contagion significantly in both the weak
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Figure 6. (Color online) The finite-size analyses near the critical points for p = 0.1, λ =

0.4 (a-b) and p = 0.9, λ = 0.7 (c-d). (a) G2 versus ϵ. (b) λII
c −λII

c (L) versus 1/L. (c) NOI

versus ϵ. (d) λI
c(L) − λI

c versus 1/L. The arrows in (c) and (d) mark the intersection points.
The results are averaged over 102 × 103 independent realizations in 102 networks.

and strong interdependent networks, the phase transition of prevalence is second-order. For
the given spreading probability, we further studied the prevalence versus adoption probability
ϵ, and found that the strong interdependent structure could obviously stimulate the prevalence.
Especially, in the strong interdependent networks we observed the first-order phase transition
even for a quite small spreading probability, while the phase transition remains second-order
in the weak interdependent networks. Both of the scaling relations near the transition points
of first-order and second-order were revealed using the finite-size analysis.

Our results show the important role of the spatial interdependent structure in complex
contagions and may help to understand the phase transitions in the social contagion process.
Further theoretical studies are very important and full of challenges since the non-Markovian
character of our model and non-local-tree like structure of the interdependent lattice make
it extremely difficult to describe the strong dynamical correlations among the states of
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neighbors.
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