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EDUARDO LOPEZ
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Major Professor: H. Eugene Stanley, Professor of Physics.
ABSTRACT

An important problem is the construction of theories relating geometry of random
structures with flow properties in those structures, because the results have implica-
tions in oil recovery, metabolic network research and polymer physics. For this reason,
I consider three kinds of random structures and elucidate their flow properties.

Firstly, to improve oil production forecasting, I study traveling-tracer times ¢, be-
tween sites A and B (injection and extraction) separated by distance r in percolation
systems of linear size L through their probability density function (pdf) P(ty|r,L). 1
find: (a) a most probable traveling time ¢}, satisfying a power law with r, and (b) two
power law decay regions for P(ty|r, L), one for intermediate ¢;, and another for large
ty, with multifractal properties. I explain these results through geometric exponents
of percolation.

Secondly, I examine the pdf P({,|r, L) of optimal path lengths £,,; between A and
B when lattice sites are assigned weights of an exponentially broad distribution. This
problem relates to polymer behavior in random potentials. I find a power law decay
for P(€ops|r, L), and determine the scaling form of P(£,,|r, L). Since optimal paths
can jump across so called ‘percolation regions’, P({,,|r, L) differs from P(¢,|r, L),
the pdf of traveling-tracer lengths ¢, of the first model. However, by constraining
optimal paths to remain inside such percolation regions, the two problems exhibit
similar scaling.

Thirdly, I analyze pdf ®sp(G) of conductance G between two arbitrary nodes
of random scale-free networks with degree distribution P(k) ~ k™* or Erdés-Rényi
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networks, where in both networks the links have unit resistance. I predict a power-
law distribution ®gp(G) ~ G'~2* and confirm my predictions by simulations. The
power-law tail in ®gp(G) leads to large values of G, improving transport in scale-free
networks compared to Erdos-Rényi networks. Based on a simple physical picture that
I call the transport backbone picture, I show that the conductances are ckakp/(ka +
kp) for any pair of nodes A and B with degrees k4 and kp. Thus, a single parameter
¢ characterizes transport on complex networks.

In summary, this work presents new ideas that illustrate the connection between

flow and geometry in random structures.
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Introduction



Chapter 1

Introduction. Models of Random

Structures

Transport in many random structures is anomalous, i.e., different than that in reg-
ular space. Random structures are found in many places in the real world, from oil
reservoirs to the Internet, making the study of anomalous transport properties a wide
reaching field.

In this work, we focus on two important examples: the properties of tracers inside
percolation systems, and the conductance of complex networks. These constitute
examples of the most active areas of research at present. We begin in this introduction
by addressing the accepted models for the above mentioned problems, and proceed to
study their transport behavior through different methods in the rest of this Thesis.

Let us begin by considering the nature of an oil field, one of the most important
examples of random structures due to the relevance of oil as a source of energy today.
Most oil reservoirs are complicated geological structures [1] composed of several kinds
of rock that have been deposited over a long period of time. The configuration of
the structure has usually been altered by tectonic activity and mineral deposition by
aquifer flow. For our purposes, the types of rock comprising any oil reservoir can be
separated into two categories: high-permeability (conducting) and low-permeability
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(insulating). The location of both the conducting and insulating rock is random but
also nontrivial, i.e., during extraction it is only through the conducting rock that the

flow of oil occurs.

Based on the random spatial location of the conducting rock, a simplifying proce-
dure that has emerged in attempting to predict oil extraction is to model the reservoir
by a bond percolation cluster with occupation probability p [2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. The value of p corresponds to the fraction of
conducting rock to total rock of the reservoir. This captures the essential features of
the reservoir, while avoiding some of the non-crucial complications. An advantage to
using percolation theory is that it makes available the already well developed percola-
tion theory to the analysis of oil recovery. However, we must caution the reader that
these approximations cannot be taken as the definitive description for oil reservoirs.
It is well known [21, 22, 23, 24, 25] that true field-size porous media possess correla-
tions. Our description merely represents a first order approximation, which can serve

as a base for more detailed studies.

Percolation is a model introduced by Broadbent and Hammersley [26] to address
the question of wetting inside porous rocks. Since then, it has been used for numerous
applications ranging from forest fires to drug delivery [27, 2, 28]. For concreteness,
we elaborate on the two-dimensional example. For a simple square of bonds (sites) of
size L x L, each bond is kept with the occupation probability p, or eliminated with
probability 1 — p. For small values of p below a certain critical p = p,., the lattice is
populated by small, disconnected clusters of bonds which are interconnected in the
sense that their first neighbors are also part of the cluster. For values of p > p., a
fraction of bonds of the lattice is connected in such a way that it spans the system, that
is, the largest cluster reaches opposite boundaries of the system. Another property
of this largest cluster is that the number of bonds belonging to it is a function of the
system size L. The critical probability p. is that for which a spanning cluster appears

for the first time. The mass M of the spanning cluster has been found to be fractal in



the sense that its mass dependence with size is goverened by a non-integer exponent
[29]. This is

M ~ L%, (1.1)

where d; is called the fractal dimension of the percolation cluster.

Aside from this property, percolation clusters possess other relevant features that
are related to their fractal nature. For instance, when the bonds of a cluster are
considered to be resistors of value one, the percolation cluster is usually called a
Random Resistor Network, and the resistance R between two oppposite boundaries

scales as

R~ L*. (1.2)

In Chap. 2, we consider the Random Resistor Network at p., and place two termi-
nals A and B (a source and a sink), between which we establish a potential (pressure)
difference. Then, a stationary flux appears in the system, and drives tracer particles
from source to sink ( Particle Launching Algorithm [30]). The tracers are random walk-
ers for which the rules of motion are governed by the stationary flux (see Chap. 2).
They explore many possible paths within the percolation cluster, giving information
about their traveling times. In fact this model mimics the process of secondary oil
extraction, in which two or more wells are drilled into a reservoir to extract its oil.
In the simple case of two wells, one of them acts as an injector A and the other as
an extractor B. Through well A, a fluid such as water or steam are injected, pushing
the oil inside towards the extration well B. No mixing occurs at the flux regime and
scale at which the oil companies operate, and thus, we disregard such behavior here.

The conditions under which oil extraction takes place are usually one of two: con-
stant current or constant pressure. For the constant current case, each realization of
the medium (each cluster) is subjected to a pressure difference between source and
sink such that the stationary flow established inside is some predetermined constant

value. When the next realization is considered, the pressure is once again adjusted



to attain the desired constant flux value. When constant pressure conditions are
required, the pressure drop between source and sink is always the same across real-

izations of the medium.

We use the Particle Launching Algorithm to explore the post-breakthrough be-
havoir of the oil and water mix that forms at the extraction point of an oil reservoir
being exploited through secondary oil extraction. We calculate and analyze the trav-
eling time probability density function for two values of the fraction of connecting
bonds p: the homogeneous case p = 1 and the inhomogeneous critical threshold case
p = p.. We analyze both constant current and constant pressure conditions at p = p,.
The homogeneous p = 1 case serves as a comparison base for the more complicated
p = p. situation. We find several regions in the probability density of the traveling
times for the homogeneous case (p = 1) and also for the critical case (p = p,..) for both
constant pressure and constant current conditions. For constant pressure, the first
region Ip corresponds to the short times before the flow breakthrough occurs, when
the probability distribution is strictly zero. The second region IIp corresponds to nu-
merous fast flow lines reaching the extraction point, with the probability distribution
reaching its maximum. The third region IIIp corresponds to intermediate times and
is characterized by a power law decay. The fourth region IVp corresponds to very
long traveling times, and is characterized by a different power law decaying tail. The
power law characterizing region IV p is related to the multifractal properties of flow in
percolation, and an expression for its dependence on the system size L is presented.
The constant current behavior is different from the constant pressure behavior, and
can be related analytically to the constant pressure case. We present theoretical
arguments for the values of the exponents characterizing each region and crossover
times. Our results are summarized in two scaling assumptions for the traveling time
probability density, one for constant pressure and one for constant current. We also
present the production curve associated with the probability of traveling times, which

is of interest to oil recovery.



Trace traveling lengths /;, are also relevant, because they inform us what are the
regions of the cluster which are explored more frequently by the flow. But more
surprisingly, because of some numerical coincidences, it was proposed in [12] that
the traveling lengths are related to the purely static problem of finding the optimal
(least cost) path length £.,; between two points on a lattice where there is a random
cost associated to each site (bond) of the lattice, and these costs are very broad
distribution. In the limit when the cost of the whole path is equal to the cost of the
highest cost site along the path, we reach what is usually called the strong disorder
[31], where £p; ~ rPrt. In Ref. [12], it was found that £, ~ r% and di, ~ dopi. It

was then proposed that the two problems belong to the same universality class.

In Chap. 3 we explore this conjecture, and find that, only under certain conditions
this relation is true. The optimal path in strong disorder has been related to the
percolation threshold p. because the this is the ranking of the highest cost site the
path typically has to crosses to connect A and B. Thus, the cost of this site, and in
the strong disorder limit, the cost of the potimal path can be mapped to p.. This
relation, though, is an approximate one. In most cases, the optimal path has an
energy slightly higher than the one given by the relation with p., because sites A and

B in most cases have to travel across high energy regions before they can travel from

A to B.

We show that the optimal path length distribution is, in general, different from
tracer traveling path length. However, if we constrain the optimal path to have
energies equal or lower than those given by p., then the two distributions become
equivalent in that they have the smae scaling exponents. This is very relevant, be-
cause it gives a direct connection between two problems with fundamental differences:
optimal path in strong disorder is a static problem, but tracer lengths in percolation

is a dynamic problem.

In the last model that we study, we consider random graphs or network (also called

complex networks). These are objects formed by sites and links connecting the sites



randomly. There has been an explosion of research in this area with the realization
that many real world networks like social, biological, computer, etc. [32] possess a
structure which had not been identified. Particularly, for a site of the network, the

probability distribution that it has k links, generally called degree, is given by
P(k) ~ k™ (1.3)

where A characterizes the probability of the network to have highly connected sites
(hubs). When X approaches a lower limit of 2, the network has a very high proba-
bility to have a site that connects to most (or even all) other sites of the network.
Also, a number of anomalous properties have been identified for these networks, like
a very short minimum distance between any two of its sites. This property, called
the small-world property is responsible for the famous popular phrase ”six degrees of
separation”, which simply states that there is a very short route through intermedi-
aries (originally thought to be six by Milgram) between two individuals that do not
know each other.

The competing model of networks is the Erdds-Rényi model of random graphs
[33]. In it, sites are connected with probability p and disconnected with probability
1 — p, in a very similar fashion to percolation. In this case, the degree distribution is

consistent with a Poisson distribution

(1.4)

where z = (k) = 372, kP(k), the average degree of the network. Mathematicians
discovered critical phenomena through this model. For instance, just as in percolation
on lattices, there is a critical value p = p. for which the largest connected component
of the graph has a mass that scales with the system size, but below p,., there are only
small clusters.

In our study, we compare the transport property conductance, GG, of the Erdds-

Rényi and scale-free graphs. This is done by calculating the probability density



function ®(G) for both kinds of networks. Our study finds a sharp constrast between
the two models. The scale-free networks are able to have large conductance nodes
that are absent in Erdds-Rényi networks. This is found to be a consequence of the
much broader distribution of degrees compared to the Poisson distribution for the
Erdos-Rényi model.

In our case, we study transport for values of p > p., which are more frequently
found in real systems and thus, are more important for current applications. Ad-
ditionally, transport near percolation tends to be very simple for complex networks,
because the structure of the percolation cluster is tree-like [34], giving almost trivial
properties to ®(G). However, for p > p. we predict a broad range of values of G,
with a power-law tail distribution ®sp(G) ~ G796, where gg = 2)\ — 1, and confirm
our predictions by simulations. The power-law tail in ®sp(G) leads to large values
of (G, thereby significantly improving the transport in scale-free networks, compared
to Erdds-Rényi random graphs where the tail of the conductivity distribution decays
exponentially. Based on a simple physical “transport backbone” picture we show that
the conductances are well approximated by ckakp/(ka + kp) for any pair of nodes A
and B with degrees k4 and kp. Thus, a single parameter ¢ characterizes transport
on scale-free networks.

Throughout this Thesis, the importance of the interaction between the structure
of the medium and the rules of flow are highlighted. We present several results which
are a consequence of this relation. Yet, the major challenge of explaning dynamical
properties from structural properties remains an open field which continues to offer

new and interesting problems.
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Chapter 2

Post-Breakthrough Behavior in
Flow through Porous Media

2.1 Overview

We numerically simulate the traveling time of a tracer in convective flow between
two points (injection and extraction) separated by a distance 7 in a model of porous
media, d = 2 percolation. We calculate and analyze the traveling time probability
density function for two values of the fraction of connecting bonds p: the homogeneous
case p = 1 and the inhomogeneous critical threshold case p = p.. We analyze both
constant current and constant pressure conditions at p = p.. The homogeneous p = 1
case serves as a comparison base for the more complicated p = p, situation. We find
several regions in the probability density of the traveling times for the homogeneous
case (p = 1) and also for the critical case (p = p.) for both constant pressure and con-
stant current conditions. For constant pressure, the first region Ip corresponds to the
short times before the flow breakthrough occurs, when the probability distribution is
strictly zero. The second region IIp corresponds to numerous fast flow lines reaching
the extraction point, with the probability distribution reaching its maximum. The

10



11

third region IIIp corresponds to intermediate times and is characterized by a power
law decay. The fourth region IVp corresponds to very long traveling times, and is
characterized by a different power law decaying tail. The power law characterizing
region IVp is related to the multifractal properties of flow in percolation, and an
expression for its dependence on the system size L is presented. The constant current
behavior is different from the constant pressure behavior, and can be related analyt-
ically to the constant pressure case. We present theoretical arguments for the values
of the exponents characterizing each region and crossover times. Our results are sum-
marized in two scaling assumptions for the traveling time probability density, one for
constant pressure and one for constant current. We also present the production curve

associated with the probability of traveling times, which is of interest to oil recovery.

2.2 Preliminaries

The problem of oil extraction from a reservoir and how this extraction evolves in time,
is of significance to oil companies. In order to maximize profits, they must be able
to predict how much oil is recoverable from a reservoir over a given period of time.
This problem can be approached scientifically by devising a model that accurately
predicts the behavior of oil during the extraction process.

Most oil reservoirs are complicated geological structures [1] composed of several
kinds of rock that have been deposited over a long period of time. The configuration
of the structure has usually been altered by tectonic activity and mineral deposition
by aquifer flow. For our purposes, the types of rock comprising any oil reservoir can be
separated into two categories: high-permeability (conducting) and low-permeability
(insulating). The location of both the conducting and insulating rock is random but
also nontrivial, i.e., during extraction it is only through the conducting rock that the
flow of oil occurs.

Based on the random spatial location of the conducting rock, a simplifying proce-
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dure that has emerged in attempting to predict oil extraction is to model the reservoir
by a bond percolation cluster with occupation probability p [2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. The value of p corresponds to the fraction of
conducting rock to total rock of the reservoir. This captures the essential features
of the reservoir, while avoiding some of the non-crucial complications. An additional
advantage to this approach is that it makes available to the analysis of oil recovery
the wealth of information pertaining to percolation theory. However, we must caution
the reader that these approximations cannot be taken as the definitive description for
oil reservoirs. It is well known [21, 22, 23, 24, 25] that true field-size porous media
possess correlations. Our description merely represents a first order approximation,

which can serve as a base for more comprehensive studies.

To fully explain the flow of oil in a percolation cluster, several physical and geo-
metric parameters of percolation have been explored. Among them, there is work on
the shortest path in a percolation cluster [9, 11, 13, 35, 36, 37, 38, 39, 40, 41, 42], the
average flow time of a fluid inside a cluster [43], and the full probability distribution
of flow time inside a cluster for relatively short times [12]. The multifractal nature of

flow inside a cluster has also been the subject of a number of articles [44, 45].

In this work, we focus on one particular technique of oil extraction used by com-
panies: secondary oil extraction. It consists of injecting a fluid (water, carbon dioxide
or methane) into the reservoir in order to displace the oil trapped inside. The fluid
is injected through an injection well, located at point A of the reservoir, and the
mixture of fluid and oil is collected at point B of the reservoir, where an extraction
well is placed. The distance between the wells is known as the interwell space r.
Inside the reservoir medium, a mixture of two fluids is formed, driven by a pressure
difference between wells A and B. Here, we consider the case when the two fluids
have equal viscosities and are both incompressible, and thus can be considered as
identical miscible fluids. For fluids of different viscosities, see [49, 50, 46, 47, 48]. To

predict the amount of oil obtained at a given time, one must understand the evolution
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of this flow. In particular, it is important to know how long the injected fluid starting
at A requires to reach B. Since the flow on the reservoir occurs in the set of paths
that connect A and B, knowledge of the traveling time t (also known in the literature
as first-passage time) on all the paths in the reservoir determines how much of the
displacing fluid has reached B at a given time and therefore, what percentage of the

extracted mixture still corresponds to oil.

Some progress has been made in the study of this problem. The case of homo-
geneous flow (with p = 1), when the reservoir is only composed of conducting rock
has been treated in [15]. Also, the convective and diffusive regimes of a more realistic
non-homogeneous reservoir (specifically at criticality p = p.) have been considered
[12, 13, 15]. The time it takes for any amount of the injected fluid to reach B, called
the breakthrough time ty,, was analyzed in [12, 13]. The case of different viscosities
for the injected and displaced fluids has been studied before, both for a finite value
of the viscosity ratio [46, 47, 48], and in the limit of very high ratio [49, 50]. In the
last case, a behavior analogous to diffusion-limited-aggregation (DLA) in percolation

is found.

In this chapter, we analyze analytically and numerically the flow inside a 2-d bond
percolation cluster for two different occupation probabilities (p = 1 and p = p.) and
under two different pumping conditions at A: constant current and constant pressure.
The quantity measured is the probability distribution of the traveling time ¢ of tracer
particles after breakthrough in a percolation ensemble, for a given interwell space r,
and a reservoir of linear dimension .. These measurements ultimately allow us to
write the probability distributions in concise expressions, valid for all the conditions
studied here.

In Sec. 2.3, we introduce the basic mathematical quantities, the probability den-
sity of traveling times and the production curve, and relate them to the physical
picture. Sec. 2.4 deals with the homogeneous case p = 1, which serves as a template

to understand the more complicated 0 < p < 1 case. Sec. 2.5 introduces the inhomo-
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geneous model at criticality to be used, while Sec. 2.6 recounts the numerical results
of the model. In Sec. 2.7, we present analytical arguments explaining the behaviors
observed in Sec. 2.6 and these arguments are then used to present the final forms
for the probability distributions under both constant current and constant pressure

conditions.

2.3 Preliminary concepts

In secondary oil extraction, a fluid (typically water) is injected into the reservoir
through an injection or pumping well A, pushing oil trapped inside toward the ex-
traction well B. We call any infinitesimal fluid element of water a tracer. The time it
takes a tracer to travel from A to B is called the traveling time t. For each possible
configuration of the reservoir, there are generally many possible paths to travel from
A to B and each of these paths is called a streamline. Because of the multiplicity
of streamlines, each particular tracer that starts at A, in general, requires a different
time t to reach B. The breakthrough time ¢, corresponds to the time when the
first water stream reaches B for a given realization. We define P(¢,r, L)dt as the
probability that a tracer crosses from A to B in a time between ¢t and ¢t + dt, with
the condition that A and B are separated by a distance 7, in a reservoir of linear
size L. The function P(t,r, L) is averaged over all possible reservoir configurations
connecting the wells. Physically, it represents the fraction of water that becomes part
of the extracted mixture at time ¢. Note that when t < ty,, P(t,r,L) = 0, and the
mixture corresponds to oil only. For t > t;,, certain tracers begin to reach B, and
P(t,r,L) > 0, giving a mixture of oil and water at B. Ast — oo, P(t,r,L) — 0, be-
cause no new streamlines reach B and this well produces only water. Cost constraints
dictate the point at which the use of the well is terminated.

From our knowledge of P(t,r, L), assuming that the streamlines do not change

over time, we can determine the average production curve C(t,r, L), which is the ratio
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of oil contained in the mixture coming out of the extraction well at time ¢
t ~ ~
C@nL)El—/}%unMﬁ. (2.1)
0

Equation (2.1) exhibits the expected features of the mixture: initially P(t,r,L) =0
and only oil comes out, giving C'(¢,7, L) = 1. As t increases, C(t,r, L) begins to decay
as a function of the number of streamlines that reach the extraction well. As t — oo,
all water streamlines reach the extraction well and C(¢,r, L) = 0.

For a reservoir being exploited with a pressure differential between A and B,
such that the total current between these two points is @), the total amount of oil S

contained inside the reservoir can be determined by the expression
5:@/ C(t)dt. (2.2)
0

Assuming oil is incompressible and using units for which its density is equal to one, S
also represents the accessible volume of the reservoir. Inserting Eq. (2.1) into Eq. (2.2)

and integrating by parts, we obtain

% _ /Ooo dt(1_/0t P(t,r, L)di)

= / tP(t,r,L)dt
0
= (t). (2.3)
This result corresponds to the equal-time theorem, which states that the average
traveling time of tracers inside the reservoir is equal to the available reservoir volume

divided by the total external current [15, 51]. Eq. (2.62) of Appendix 2.9 represents

the same result, applied to a reservoir in which all the sand is conducting.

2.4 Homogeneous case

The homogeneous case (p = 1), which can be analytically solved, serves as a guide for

the more realistic, non-analytic critical percolation threshold case (p = p.). Thep =1
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case was studied in [52] using differential equations. Here, we obtain the solutions by
conformal mapping, reproducing the results of [52], and add the particular form of the
production curve for the times ¢ right after the breakthrough. This section contains
the main results of the time behavior, but the derivations are located in Appendix 2.9.
One of the results obtained there is that ¢ carries units of 72 and therefore, in the

following, t is replaced by a scaled variable

tl

:_2. (2.4)

We assume that the reservoir is a circle of diameter L centered at the origin and
the two points A and B are located at (—r/2,0) and (r/2,0). We study the production
curve C(t,r,L). The ratio L/r is represented by A. Using t' and A, the production

curve C(t,r, L) for a given r and L is
C(t,\) = C(t/r*1,\) = C(t,r, L), (2.5)

where we have made use of Eq. (2.71), which expresses the scaling rule of C(¢,r, L)
under rescaling of ¢ to t/r%. For the sake of brevity, we refer to C(t',\) as C(t).
Originally, the reservoir is filled with one kind of fluid (oil). At time ¢’ = 0, we
start to inject at point A, with constant rate, a different fluid (water). We measure
the production curve C(t') at well B (Fig. 2.1). We assume that both fluids are
incompressible and have zero viscosity. The flow is then described by Darcy’s Law
7 = —kVP and V2P = 0. A set of regions, and two transition times tio and ¢
separating these regions, appears for the production curve C(t'). We now present

them.

e Region Iy. Before t' =t (1)), the concentration of injected fluid at point B
is zero and only oil exits through point B. We denote this time region, when

t' < t},, as region Ig.

e Region IIyz. When the injected fluid reaches the production well, the con-

centration of the displaced fluid rapidly drops immediately after breakthrough
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Figure 2.1: Production curves for the homogeneous p = 1 case in logarithmic scale
for A = 2, 3, and 10. The solid curves superimposed to the production curves indicate
the asymptotic behaviors of regions Iy, I1lg, and IVg. All the solid lines have been
calculated using the results in the Appendix 2.9. For region IIg, Eq. (2.69) is used
with K given by Eq. (2.74); for region Illg, Eq. (2.70) is used and for region IVg,
we applied Eq.(2.79). The full circle indicates the transition time ¢} /2 and the empty

circle indicates t).

) ~1— KW -t (2.6)

This behavior occurs until ¢t = ¢} /2(/\), when a new time dependence sets in.

The time region t, <t <1}/, is defined as region Ily.

e Region IIlg. If A > 1, for times t' > ¢}, there exists a region of power law

decay [52],
C(t) ~t 13, (2.7)

We call this region IIlg. It is present at times t'1/2 < t' < t), where t)(N) is
defined below.

e Region IVy. At the transition time t)()), the reservoir is almost exhausted
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of oil and C(t') decays exponentially as
C(t') ~ exp(—(t' —1,)/ty), (2.8)

where t/()) is given by Eq. (2.78). This is region IVy and it is present in C(t')
for all A > 1, for times ¢ > tj. For A = 1, C(¢/,1) = 2C(2t',00) — 1 and the

reservoir is completely exhausted at (1/2)t] ,(c0).

e Transition times t’l/2 and t,. Regions Il and Illy are separated by a
transition or crossover time t] /2()\), given by Eq. (2.75). Regions IIIg and IV
are separated by the crossover time ¢j(\), given by Eq. (2.77). For A ~ 1, the
two crossover times become of the same order, and region Illy is no longer

present. However, as A — oo
(N = 1/2, (2.9)

and [52]
ty(A) ~ A% [d = 3] (2.10)

That is, as A increases, region Illy appears and the transition time between

II1g and IV g scales as a cubic function of the geometric factor A.

2.5 Model for the inhomogeneous case

We represent the reservoir as a two-dimensional bond percolation cluster and choose
points (—7/2,0) and (r/2,0), denoted by A and B, respectively, to be the injection
and extraction well positions. Points A and B are separated by a geometric distance r
and the system box has corners at (+L/2,4+L/2). We construct a percolation cluster
by removing bonds of a square L X L lattice with probability (1—p). Equivalently, each
bond of the lattice is conducting with probability p and insulating with probability
1 — p. We simulate the flow if the points A and B belong to the same conducting
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cluster. Otherwise, we discard the configuration. We restric our simulations to the
critical bond percolation probability p = p. = 0.5 [2]. We consider both spanning
clusters and finite clusters, and perform averages over 10 realizations of the medium.

To model the flow of water, we use the analogy with electrical circuits, where
for each bond, the pressure drop corresponds to the voltage difference and the flow
corresponds to the electrical current on the bond. A pressure difference between points
A and B drives the tracer. We choose the value of the pressure difference according to
the conditions desired: for constant pressure, we set a pressure difference of 1 between
A and B for all realizations of the medium; for constant current, we first measure
the resistance R of the realization, and the pressure drop is chosen to be equal to
R, so that the current for the realization is one. For each realization, 10* tracers
are introduced at point A and then collected at point B. The set of all bonds with
non-zero current contained in the percolation cluster for each particular realization
defines the backbone of the cluster and the backbone mass Mg is the number of bonds
that constitute this backbone.

Mathematically, the “pressure” difference across bonds is equivalent to a “voltage”
difference, so by solving Kirchoft’s laws on the backbone, we obtain the potential
(pressure) drops AP over all bonds for a given realization. For a node having s
outgoing bonds, the tracer selects a bond with a probability

AP,

= — =1,... di=1,...,Mp]l. 2.11
Z] AP,L] [.7 ) ,§ and 17 ) ) B] ( )

wi]-

Here the index ¢ is over the Mp nodes and j is over the s outgoing bonds, i.e., the
bonds for which the pressure at the node ¢ is larger than the pressure at the other
node of the bond. For incoming bonds, w;; = 0. The time necessary to cross each
bond is t;; = 1/AP,; and the velocity is v;; = AP;; since each bond has unit length.
The total traveling time of a tracer is the sum of the times corresponding to all the
bonds of the path connecting A and B, chosen by this tracer. Since the particles do

not interact with each other, it is equivalent to launching one particle at a time into
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the cluster. This procedure is known as particle launching algorithm [15, 53].

We determine the probability distribution of the traveling times P(t,r,L) by
counting the number of particles that travel from point A to point B, separated
by a distance r in a box of linear size L, in a time between t and t + dt, over all the

particles and all realizations of the medium simulated.

2.6 Results for the inhomogeneous case

Following earlier work [13], and in a similar way to Sec. 2.4, we define scaled times ¢p
and t¢ to study the flow at both constant pressure and constant current conditions.
For constant pressure, the scaled time is tp = t/r?8*" and for constant current it is
te = t/r?8, where dp is the backbone fractal dimension and i is the characteristic
exponent of the resistivity dependence on distance. The current values for these
exponents are dgp = 1.6432 £ 0.0008 and i = 0.9826 + 0.0008 [43, 54]. Under these
new variables, we can define, in analogy to the homogeneous case (Eq. (2.5) and

Eq. (2.71)), two new probability distributions
P(tc,)\) = P(te = t/r8 1,)), (2.12)
for constant current conditions and
P(tp,\) = P(tp = t/r?8t% 1)), (2.13)

for constant pressure. The functions P(t¢, A) and P(tp, A) are independent of r and
L, as reflected by the notation, but depend only on the ratio A\. Below, we refer
to P(tp,A) as P(tp) and to P(tc,\) as P(tc), with the understanding that these
functions are still dependent on A. The two log-log plots Fig. 2.2(a) and Fig. 2.2(b)
contain three simulations each, corresponding to the probability distributions P(t¢p)
and P(t¢) respectively; both plots were prepared using A = 32 and system sizes

L = 258,514,1026. The curves overlap in both the constant pressure and constant
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Figure 2.2: (a) Probability distribution of traveling times for constant pressure con-
ditions for A = 32. Three simulations are presented, for L = 258,514,1026. (b)
Probability distribution of traveling times for constant current conditions for A = 32.

Three simulations are presented, for sizes L = 258,514, 1026.

current cases, which imply the scaling properties
P(tg,\) = r*8P(t,r, L) (2.14)

and

P(tp,\) = r?8 2P (¢, r L). (2.15)

A set of regions with different behaviors appears in the two distributions. For the

constant pressure distribution P(t¢p), we encounter:

e Region Ip, which corresponds to times smaller than the breakthrough time,

before water reaches the extraction well;
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e Region Ilp, appearing when the first water streams reach B and ending at the

onset of a constant slope region, including the maximum of P(t¢p);

e Region IIlp, characterized by a constant value of the slope, defined as —gg),

of value —1.41 4+ 0.01, and;

e Region IV p, which corresponds to another constant slope, defined as —gg)

and measured to be —2.43 4 0.06.

The scaled crossover time from region IIIp to region IVp is called 7p.
The results for the constant current distribution P(t¢) are similar to those of
constant pressure. However, there is a difference in that there is yet another constant

slope region present. Consequently, we have:

¢ Region Ig, for times before breakthrough;

e Region Il;, corresponding to times right after breakthrough and until the first

constant slope region appears, including the maximum of P(t¢);

¢ Region IIl;, corresponding to a first slope, denoted by —gg), of value —1.56 +
0.01;

e Region IV, for a second slope —gg), with a value of —1.75+0.01 for A = 32,

but with a heavy dependence with respect to A and;

¢ Region Vg, with a slope represented by —gg’), measured to be —2.45 £+ 0.04.

The scaled crossover time between Illg and IV is defined as Tél) and between [V¢

and V¢, as 7'((;2). All these values are presented in Table 2.1.
Next, we present simulations for the probability distributions of traveling times for
both constant current and constant pressure and for different A values (Fig. 2.3). As

before, the distributions have two constant slope decay regions for constant pressure

and three for constant current. However, as A changes, the positions of these regions
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Figure 2.3: (a) Probability distribution of traveling times for constant pressure condi-
tions for system size L = 514. Four simulations are presented, for A = 4,8,16,32. (b)
Probability distribution of traveling times for constant current conditions for system

size L = 514. Four simulations are presented, for A = 4,8, 16, 32.

change as well. The detailed shapes of P(tp) and P(t¢) can be determined by studying
their successive slopes, shown for constant pressure conditions in Fig. 2.4(a), and for
constant current in Fig. 2.4(b). It is noteworthy that regions IIIz and IV become
shorter as A\ decreases, with region Ills disappearing for A < 4, and region IV for
A< 2.

Another set of quantities studied are the times for which the slopes crossover
between regions. These crossover times are indicated by ellipses and boxes in Fig.
2.4(a) and Fig. 2.4(b). For the case of constant pressure, Fig. 2.5 shows the scaling of

the crossover time 7p with respect to ), found to be 7p ~ \4? with dp = 2.78 £ 0.15.
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Figure 2.4: (a) Successive slopes for the probability distribution of traveling times
for constant pressure conditions for system size L = 514 (shown in Fig. 2.3). Four
simulations are presented, for A = 4, 8,16,32. (b) Successive slopes for the probability
distribution of traveling times for constant current conditions for system size L = 514.

Four simulations are presented, for A = 4,8, 16, 32.

(1

For constant current, Figs. 2.6(a) and 2.6(b) show two crossover times 75" and 7.5

bl

which scale as TC(}) ~ A%’ and Té?) ~ A& with dg) = 1.7440.05 and d(g) = 2.9040.09,
respectively. The positions of the crossover times have been determined by finding
the positions of the inflection points of the successive slopes plots.

Of practical interest is the production curve for constant current conditions (Fig.
2.7), because it supplies a tool for estimating the oil production efficiency. This curve
is obtained by using Eq. (2.1), from the probability distribution of P(¢¢) (shown in
Fig. 2.3b).
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Figure 2.5: Crossover times from region IIIp to region IVp for constant pressure

conditions, with a system size of L = 258,514,1026 and A = 4, 8,16, 32.
2.7 Discussion

The distributions of traveling time under constant current and constant pressure
conditions are connected to one another. By definition, tp = (R/r")t¢, with R being
the resistance of a percolation cluster [2, 5], which is defined operationally as the
voltage obtained between points A and B when a current of value 1 is present. The
probability that a percolation cluster at the critical concentration p. has resistance R

is given by ®(R)dR, and can be seen in Fig. 2.8. Approximately, ®(R) is given by

0 R § len
®(R) ~{ Rr Rysin < R < Ropas [9r = 2.10 £ 0.20] (2.16)
0 R > Rpas,

with Rmm ~ 7P and Rmam ~ L#. The labels for Rmm as minimum resistance, and for
Rmm as maximum resistance, reflect the scaling rules of R with respect to the linear
size z of a cluster, i.e., R ~ 2/ [2]. Therefore, since the interwell distance is r, the r*
represents the typical minimum value of resistance Rmin. The maximum resistance

becomes determined by the system size and it scales as L?. The function ®(R) is not

strictly zero for R < Rmm or R > fimm, but this is an acceptable approximation in
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Figure 2.6: (a) Crossover times from region IIIs to region IV for constant current

conditions, with system sizes L = 258,514,1026. (b) Crossover times from region IV¢

to region V¢ for constant current conditions, with system sizes L = 258,514, 1026.

our theory. All the results we present for @(R) are in agreement with previous work

[13, 55].

As with the rescaled times, we find it convenient to define a scaled resistance R =

R/r" [13] and an associated probability ®(R) = r*®(R = Rr”). The function ®(R)

obeys the same scaling as ®(R) (it satisfies Eq. (2.16) dropping the tilde sign). The

quantity R, = Rmin / r" now becomes geometry independent and R,,,, = Rmam / rh

scales as R, ~ M.

The redefined resistance R reduces the relation between tp and to to tp = Ric.
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Figure 2.7: Production curve for system size L = 1026, under constant current con-

ditions. Four interwell distances have been used, for A = 4,8, 16, 32.
Thus, P(tp|R) and P(t¢|R) are related by P(t¢|R)dtc = P(tp|R)dtp and give
P(t¢|R) = RP(tp|R). (2.17)

Hence, knowledge of one distribution enables us to calculate the other.

We focus on P(tp) initially. We consider the parameter R, the scaled resistance
of the cluster, as the relevant physical quantity dominating the properties of P(¢p).
Therefore, we numerically find P(¢p|R)dtp, which corresponds to the probability that
a tracer particle travels between points A and B in a cluster with resistance R (more
formally, with resistance within the range R to R + dR). The function P(tp) can be

constructed by the convolution
P(tp) = / P(tp|R)®(R)dR. (2.18)

The function P(tp|R), seen in Fig. 2.9, is obtained from the simulation of a system
with L = 1026 and r = 32, or equivalently, with A\ = 32. Each curve represents a
different value of the resistance R. The detailed behavior of the P(¢p|R) has several

features. The function reaches a maximum at time

th ~ R%®  [dp = 2.57 £ 0.02], (2.19)
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Figure 2.8: Probability density i)(f%) vs. R for a simulation with system size L = 1026
and A = 32.

as seen in Fig. 2.11. The scaled crossover time between the two power law regions in
Fig. 2.9, defined by the notation ¢35, occurs at equal time for all the curves, which
indicates that it is independent of the resistance R. However, we have performed

other simulations with different values of A\, and have found that

th ~ AT [dy = 2.84 4 0.10]. (2.20)

The region t} < tp < tp is characterized by a power law decay of changing slope
—~(M in the log-log plot (Fig. 2.9). For times tp close to t}, the slope presents a
value close to -2, and as tp — t5, the value gradually changes to -1.6 (see Fig. 2.10).
Additionally, as becomes apparent in Sec. 2.7.5, (! is also A dependent, a fact that
affects the value of the exponent gg ). We do not have a satisfactory explanation for
this time dependence of V), but as a first order approximation, in what follows we
assume it to be a constant, of value () = 1.74 + 0.15, with the value given by its

average over the range t}, < tp < t5. The second region in Fig. 2.9, for times tp > t5,

is characterized by a slope of value v(?) = 2.41 £ 0.04. In analytical form, P(tp|R)
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Figure 2.9: Probability distribution P(tp|R) vs. tp = t/r?8*% for system size L =
1026 and interwell spacing » = 32 (A = 32), under constant pressure conditions. The
most probable traveling time ¢} and the crossover time t3 are indicated for the curve

corresponding to R = 64.

can be approximated as

0 tp < t};
P(tp|R) ~ § 57" th < tp <t} (YD = 1.74 + 0.15] (2.21)
57 tp > th [v® = 2.41 +0.04].

Taking P(tp|R) to be identical to zero for tp < t3, although an approximation,
simplifies our calculations considerably and does not affect the validity of our results.
In fact, this is a very good approximation since there are very few tracers reaching
well B in this time range, which means that their statistical contribution is negligible.
This simplifying assumption is repeated below for P(t¢|R). The actual behavior of
P(tp|R) for tp < t} has been studied in detail before [13], where it was found to be
that of a stretched exponential, carrying negligible statistical weight in our present
calculations. In Sec. 2.7.5, we incorporate this result into the full scaling ansatz for
P(tp) and P(t¢). The numerical values of the exponents of P(tp|R) and ®(R) are
summarized in Table 2.2.

The similarity in the values of dp and the combination 1 + dp/fi is worth some
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Figure 2.10: Successive slopes for P(tp|R), with a system size L = 1026 and A\ = 32.
The region corresponding to slope yM) of P(tp|R) varies in value, as indicated by
the horizontal lines, between -1.60 and -2.00. The second slope 7? reflects a more

constant behavior, with value 2.41 + 0.04.

consideration. It has been proposed elsewhere [12] that under constant current condi-
tions, the unscaled most probable traveling time scales with respect to r as 798. Now,
for a fixed value of the resistance R, at constant pressure conditions (tp = Rt¢), we
expect the unscaled most probable traveling time to scale as 7¢8+# where the scaling
rule R = Rr” has been used. These considerations justify our choice of rescaled times.
Since R ~ 7%, we can assume that the most probable traveling time at constant R
scales as R'8/" and thus, dg = dp/fi + 1. By similar arguments regarding the
longest possible tracer trajectories inside the system, the unscaled crossover time can
be related to L48+# indicating that t5 ~ A% would have dy be equivalent to dp + ji.
However, our numerical simulations do not have sufficient accuracy to answer these

question definitively.

The properties just described for P(tp|R) and use of Eq. (2.18), determine the
form of P(tp) as we now prove for each separate region identified in Figs. 2.2(a) and
2.2(b) (see also Sec. 2.6). The analytical expressions for all the predicted exponents

pertaining to the distribution P(t¢p) and their numerical values are given in Table 2.1.
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t, (R)

Slope=2.57

100

Figure 2.11: Scaling of the maximum ¢ (R) of the probability P(tp|R) vs. the resis-
tance R, for a system size L = 1026, and interwell distance » = 32 (A = 32). The
quantity t5(R) scales with R as RI®  with dp = 2.57 & 0.02

2.7.1 Region IIlIp

To use P(tp|R) for the calculation of P(tp, A), according to Eq. (2.18), we need to take
into account its normalization factor, which is R dependent. To obtain this factor,
we integrate the distribution and equate it to unity, using the following assumptions:
P(tp|R) is strictly equal to zero for times tp < t} ~ RI® and, as a consequence of

the previous condition, the lower limit of integration is t3 ~ R9. The final form of

P(tp|R) is

0 tp < th
P 1 tp -y * x (1)
(trIR) ~ § = () th <tp <t} [y = 1.74 4 0.15]
(1) _.(2) —~(2)
B — (&%) tp >t} [v® = 2.41 £ 0.04].

(2.22)

Regarding ®(R), its normalization has no impact on the variables in which we are
interested and is therefore not presented.

To perform the integration of Eq. (2.18), we must first define the limits of in-

tegration in R that apply for region IIIp. The R dependence of function P(tp|R)

is contained in its normalization factor, and also in the fact that this distribution
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is non-zero when tp > t5% ~ RY®. Therefore, for a given time tp, the integrand of

Eq. (2.18) is non-zero for all R < t}/*®

. The lower limit of the integral is R,,;,, but

it is irrelevant with regards to the ¢p scaling form. For the function P(¢p|R), only
. —~@) . . . c e . .

the first scaling t5’ Vs used, since region IIlp is limited to tp < t5. Then, using

Eq. (2.16), Eq. (2.22), and the convolution Eq. (2.18), we obtain

1/dg
—y [t —dp (=~ -

P(tp) ~ 57" / T R4 grargp (2.23)

for tp < t3. After integration, the exponent of ¢p is positive, which implies that the

leading term for the integral is the upper limit of integration. Substituting this limit

t(l_dR_gR)/dR
P .

yields the scaling form Therefore, since in region Illp the scaling is

_o)
P(tp) ~ tp’" , we obtain
oW = gr+dr—1

2.24
P dR ( )

2.7.2 Region IVp and crossover time 7p

For times tp > t}, the distribution P(¢p|R), regardless of the value of R, decays with
a power law of t1_37(2). The upper limit of integration is determined by the largest
resistance possible within the conditions of the geometry, which we denote by R,,.y,

and it is independent of tp. Therefore, by convolution Eq. (2.18), we obtain

(2) (2)

P(tp) ~tp'" =137, (2.25)
giving
gp) =42. (2:26)

)

The actual numerical value of gg is discussed in Sec. 2.7.4.
The crossover time t5 separates regions IIIp and IVp. Therefore, 7p = t5, which
implies that

Tp ~ A% (2.27)

and

dp = dy. (2.28)
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2.7.3 Mapping between P(tp) and P(tc)

Based on Eq. (2.17), the differences observed in the curves for P(tp) and P(t¢) are
caused by a shift of the curve P(tp|R) on a log-log plot by log(1/R). The function
P(tc|R), defined from P(tp|R) by Eq. (2.17), is characterized by two power law
decays with exponents —y(") and —?, a maximum at time ty, = th/R ~ R¥*! and
a scaled crossover time between the two power law regions at t§ = t3/R ~ R™'t5. In

analytical form, P(t¢|R) can be approximated by an equation similar to Eq. (2.22)

0 tc < to
1 t —y * X (1)
P(tc|R) ~ i (=) tr <to < t% [y®) = 1.74 £+ 0.15]
(1) _(2) —~(2)
e (ger) te >t [Y® = 2.41 £ 0.04],

(2.29)
where the normalization factor has been obtained by assumptions analogous to those
used for P(tp|R). To explain the different power law regions in the behavior of P(t¢)

we use the convolution
P(tc) = /P(tC|R)<I>(R)dR - /P(tP|R)R<I>(R)dR, (2.30)

where Eq. (2.17) has been taken into account.

In Eq. (2.29), the times t}, and t; are dependent on R and therefore, the size
of the scaling region P(t¢|R) ~ tgﬂ(l) is R dependent as well. This is an important
difference between the constant current and constant pressure cases, because it is the
cause of the existence of regions Il and IV with exponents that differ from each
other and from the exponent of region IIIp. The R dependence of the size of the
region is as follows: as R increases, t}, increases, but t; decreases. For large enough
R, denoted here by Ry, these two times coincide, and only the scaling t57(2) is present.
The resistance R scales as a function of the crossover time t5 as Ry ~ (t})/9® and
ultimately, in terms of A as Ry ~ A¥x/9r_ Also, there is a specific time, denoted here
by M, associated with this point of coincidence, where only the power law decay with

(@)

to!' survives. Inserting Ry into t}, ~ R ™! (or alternatively into t5 ~ R™'t}), we



34

obtain

M ~ \dr=1)dx/dr (2.31)

It is now possible to explain the existence of regions Illo and IVs. For times
te < M, the convolution integral in Eq. (2.30) has an upper limit obtained by the

relation t¢ ~ R%%~1 and consequently, the expression becomes

tl/(dR_l)

P(tc) ~ tg"" / ¢ R Um0 Wr-U-9rgp (2.32)

If the exponent of to after integration is positive, only the upper limit is relevant

and the integral yields P(t¢) ~ tg_dR_gR)/(dR_l). Otherwise, the integral is finite and
_ o

P(tg) ~ t57(1). For region III¢, the scaling behavior is P(t¢) ~ tcgc , implying that

d —2
drp —1

The predicted value for gél ) is different than the measured quantity, although it is

within the error bars. This discrepancy is associated with the simplifications made in

our theory, which do not reflect the fact that for t¢ < N, the highest contribution to

P(t¢) comes from lower values of R, and ®(R) in this range decays with an exponent

gr smaller than 2.1 (note the rounded shape of ®(R) near its peak in Fig. 2.8).
(1)

Therefore, with a smaller effective value of gp, the exponent g’ acquires a smaller

value as well.

As it follows from the behavior of P(tp|R), for times tc > M, P(tc|R) scales
as t57(1) for small values of R and as tav(z) for larger R. The transition between
the two situations occurs when tc = tJ, and since this last quantity scales as R~*,

.. . . —(1) —
then tc ~ R~ and the upper limit of the integral for the regime ¢’ Vis R~ o'

Therefore, the convolution Eq. (2.30) is written as

t_‘1 Rmax
P(tc) ~ t(—/ﬂ(l)/c R_(dR_1)+’Y(1)(dR_1)_ngR+t5’7(2) /71 Rdr—D)+7WVdr—P—gr g
C
(2.34)
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Once again, by considering the value of the exponents after integration, given that

_ .2
P(t¢) ~t;’¢ , we obtain for region IV¢
0% = min{(yV = 1)dg — gr + 2,7V} (2.35)

This result is valid for a given value of A due to the dependence of v(!) on this pa-
rameter. At the limit of very large A, application of the equal-time theorem indicates

that gg ) approaches gg ), or

(2) (1)

9c” — 9¢ (A = oo, (2.36)

which corresponds to Eq. (2.59). See Sec. 2.7.5 for details.

Because t5 ~ R7!, as R decreases, t increases. Consequently, the transition of
P(tc|R) to the scaling P(t¢|R) ~ tgﬂ(z) occurs at later times for smaller R. Since the
minimum R possible is Ry, the crossover tj5 has an upper bound, denoted here by
N. The form of N is determined through P(t¢|R = Rmi) and it is equal to tg for

this particular distribution, or
N ~t} ~ R th ~ Ao, (2.37)

For t¢ > N, we have P(t¢|R) ~ t57(2). Using this form of P(t¢|R) in the convolution
Eq. (2.30) we obtain P(t¢) ~ t57(2). The upper limit of integration is again Rpax.
Thus, for region V¢, we have

L) (2.38)

This exponent is equal to that obtained for region IVp.
Now we derive the expression for the first crossover time M, which separates

regions IIIo and IVy. According to Eq. (2.31)

Tél) — M ~ \¥x(dr—1)/dr_ (2.39)

Comparing this with the definition for Tél) given in Sec. 2.6, we obtain

dY) = dy(dp — 1)/dg. (2.40)
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The second crossover, according to Eq. (2.37), occurs at 7'((;2) = N and obeys the

scaling

7~ A 2.41
C )

which in turn implies that

d? = d,. (2.42)

2.7.4 Long time regime for constant pressure and constant

current

As a first approximation, we can assume that the functions P(¢p) and P(t¢), for a
given ratio A, have no dependence on the system size L. However, our numerical
simulations suggest a weak dependence of the exponents gg) and 9(03 ) on the system
size L. These exponents express only the long time behavior (large ¢tp and t¢ or
alternatively, regions IVp and V) of the distributions. The values of these exponents
were found to be the same, since both gg) and gg ) are equal to v(?. Consequently,
this means that (? is a function of L. Based on the multifractal nature of flow in
porous media [44] and particularly, on the results obtained in Ref. [45, 56], we propose
an argument on how 7? depends on L. Since the scaling forms for P (t¢) and P(tp)
are the same at long times (regions IVp and V), for the rest of this section we
introduce the notation ¢ to represent both tp and t¢, because the following argument
applies to both distributions.

Barthélémy et al. [45] studied the nature of the distribution of tracer velocities
{v;} in a cluster connecting two points in percolation and found that it has multifrac-
tal properties. Particularly, ]S(vz) ~ v, 1+a/log1o L, where v; is the velocity of the tracer
through bond ¢, and a is a constant. What is the consequence of this distribution in
terms of our problem? From the rules of the simulation, we have ; = 1/v; and there-

fore, the distributions of both time and velocity are related by P(v;)dv; = P(t;)dt;. If

a tracer travels through a bond with a velocity v; that is among the lowest velocities
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on the realization, then it is true that £ ~ ¢; i.e., the total time of the tracer is ap-
proximately equal to the time it takes to pass the slowest bond. Then P(%) ~ P(f;)
and

~ o~ d’U,‘

P() ~ P(E) = P(v) 37 (2.43)

Given that the tracers choose to travel through a particular bond with a probability
proportional to the value of the velocity in that bond, we then have to modify the
distribution P(v;) for v;P(v;) to take this into account. Therefore, we obtain a new
distribution P(v;) = v;P(v;), which equals P(v;) = v/ ¥~ The corresponding time

distribution to P(v;) is called P(t;) and satisfies

- ~ dv, 1 .
P(t;) = v;P(v;) d:;l = vf/logmLE—z = §2-allogwo L (2.44)

1

Since we are treating the case for t ~ t;, P(t) = P(t;). The probability distribution

P(t) is the distribution satisfied for very large ¢ in our problem, which means that
7 T—~(2)

P(t) ~t=7", or

v =2+ a/logy, L. (2.45)

In Fig. 2.12, we find the value of 4? as a function of 1/log,y L, measured from
simulations, for several values of the ratio A\. Data regression for these results yields
the expression

v =208 +0.81

) 2.4
log,, L ( 6)

The agreement between the predicted and the empirical results suggests that we have
reached a regime where the traveling time values are dominated by the times on
these bonds. This regime starts for times 7p at constant pressure and 7'((;2) at constant
current. These times, in turn, scale with A with exponents dp = 2.78 + 0.15 and
dg) = 2.90 4+ 0.09, which are close to each other and to the quantities dx and dp + /i.
This scaling is consistent with the hypothesis that the long time regime appears when

most of the fluid inside the cluster has been displaced and only the slowest parts of the

cluster still preserve some original fluid. Since there are only two stagnation points
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Figure 2.12: Value of the tail exponent —y(? as a function of 1/log,, L, where L cor-
responds to the system size of the simulation. Each symbol represents the succession
of values of ¥ for a given ratio A, with the longest curve corresponding to ratio 4
and the shortest to ratio 32. The thick straight line represents the least squares fit
of the A = 4 case, which yields a line of value y?) = 2.08 + 0.81/logy, L, as stated in
the text.

for the homogeneous case of Sec. 2.4, P(t') is characterized by an exponential decay.
This is in contrast to the p = p. case where a multifractal spectrum of stagnation
points is present, generating a power law for P(t'). However, the long-time regime of
the homogeneous case emerges in a time that scales as A%, with d; = 3, and since at

p=1,dp =2 and i = 1, this becomes consistent with our picture.

It is important to point out that the power law behavior that we observe implies
that the k-moments (£&) of the distribution P(t¢) (and the equivalent for P(tp))
diverge for all sufficiently large k. This appears to be in contrast with earlier work
[15], where the high current limit @ — oo has finite moments for all k£ in a finite
system. However, this apparent discrepancy is in fact due to the different conditions
that are being considered. In [15], both convective and diffusive effects are present,
and all tracers on a system are able to travel and eventually leave, even from very

slow bonds, making the effect of the stagnation points negligible, and generating
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an exponential decay for the traveling time probability distribution. On the other
hand, if no diffusion is present, as it is the case here, the presence of the multifractal
distribution of the velocities of in the bonds generates a power law tail that makes

the moments divergent; the tracers cannot diffuse away from the stagnation points.

2.7.5 The full scaling forms of P(tp) and P(tc).

The results obtained in Secs. 2.6 and 2.7 allow us to write a full set of scaling ansatz for
the traveling time probability distributions under both constant current and constant
pressure conditions. The ansatz takes into account the regions present in each of the
distributions, as well as the short time cutoff (before ¢ = ¢}.). For the cutoff, we
follow closely the arguments presented in [13], where this behavior is accounted for
by the use of a stretched exponential function.

For constant pressure, we write

e tp
P(tp) ~ t5°7 Fp(tr)G (ATP) , (2.47)

where the functions Fp(z) and G(z) have the behaviors

Fp(z) ~ exp(—bz™?), (2.48)
and
const. K1
Gy~ ] (249
x~9p tIp x> 1,

and the constants b and ¢ are fitted by the data. For ¢, the data extracted from
Fig. 2.2(a) yield ¢ = —1.42 + 0.03. The exponents gg), gg), and dp are given by
Egs. (2.24), (2.26), and (2.28), respectively. In the unscaled coordinates, P(t,r, L)

under constant pressure is

_ (1)
Pt L)~ (=) Fp (=)o (—— (2.50)
( 7 rdp+i P rdp+i Ldpp—dptdp+ii | * )
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For the case of constant current, we have

—gm to to
P(tc) ~to© Fe(to)H: W H, W . (2.51)

The function F¢(z) corresponds to a stretched exponential
Fo(z) ~ exp(—cz™?), (2.52)

where again the constants c and 6 are fitted by the data. By completing the necessary
transformations on Fig. 2.2(b), we obtain § = —1.49 £ 0.01. The functions H; and

Hy are given by

const. rK1
Hl(x) ~ ), (1) (2'53)
x~9c tic z>1
and
const. rK1
HQ(x) ~ 3), 3 (2'54)
z™9c toc z> 1.

Once again, the exponents gg), 9(02)’ gg’), dg), and d(g), are given by the Eqgs. (2.33),

(2.35), (2.38), (2.40), and (2.42), respectively. For the unscaled coordinates, we find
(1)

—
Pt i)~ (o) Fo () M (W) H, (W) . (2.55)
An additional constraint that Eq. (2.51) has to satisfy is that of the equal-time
theorem (we treat the scaled coordinates example). The flow of tracers occurs only on
the backbone of the percolation clusters, which has volume proportional to Mp, and
the total tracer current () is unity. Since we use all backbones that connect points
A and B, without requiring that they percolate throughout the entire system L x L,
we expect that the average time (t¢) scales with A exactly in the same way as (Mp)
scales for a given .
The problem of the distribution of backbone masses Mp of a percolation cluster
defined between two points A and B, separated by a distance r, for a given system
of size L x L, is treated in [57], and it is predicted that

L

(Mp) ~ 5X3

% = 0.37 £ 0.02. (2.56)
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Therefore, applying the equal-time theorem

(te) = &) M) apy, (2.57)

rds rds

Calculating (t¢) from Eq. (2.51), we find that it scales as a power of A%, where ¢
depends on the exponents involved in Eq. (2.51). Noting that gg ) has a decreasing
value which is A dependent and that this regime extends to Téz) ~ A% to satisfy

Eq. (2.57), ¢ must satisfy
E=dp—1=(2—g%)dy (2.58)

which implies that 9(02 ) 1.55, very close to the value of the exponent g(c} ), Therefore,
we expect that
g(cz) — g(cl) A = oo (2.59)
and the power-law regions Ills and IVs become one region, with exponent g(c} ) ex-
tending from the maximum of P(t¢) to the crossover time 7'((;2).
Finally, regarding the validity of our results in true field-size porous media, we
hypothesize that the form of the scaling ansatz presented still holds, even if the values

of the exponents change. This issue must be resolved by additional studies.

2.8 Conclusions

We establish that the distributions of traveling times obey the general scaling rela-
tions P(t,r,L) = (1/r*)P(t/r*,1, ), and the production curve satisfies C(t,r, L) =
C(t/r*,1, ). For constant pressure conditions, 2 = dp + fi, and for constant current,
z = dp. This relates the scaling of the traveling time to the scaling of two basic
cluster properties: backbone and conductivity.

Using the rescaled times tp = t/r?®*% and to = t/r?8, we have determined
the dependence of P(tp) = P(tp,1,\) and P(t¢) = P(tc,1,\) on the geometric

parameter A\ and have observed several power law regions. We obtain the exponents
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for the power law regions and crossover times of P(¢tp) and P(t¢) by convolution
of the functions P(tp|R) and ®(R), expressed as functions of the exponents gg, dg,
dy, vV, and 4. The crossover times themselves scale as powers of the ratio .
We propose relations between dp and dy and the fundamental percolation exponents
dp and fi. Using arguments based on multifractality, we also propose the relation
7® =2 + a/log,, L. The exponent vV is not yet explained (see Table 2.2). The
full scaling forms of P(tp) and P(t¢) are expressed in two scaling ansatz (Egs. (2.47)
and (2.51)) that contain all their observed regions and crossover times.

For the longest times, the crossover occurs for the p = 1 case at a time that scales
as A% with d; = 3, which can be interpreted as dp + /i under homogeneous conditions.
For the p = p, case, the crossover to the long time region scales as A%, regardless
of the pumping conditions (constant current or constant pressure). We hypothesize
that dx and dp + [i are the same exponent and propose that the transition to the

long time regime occurs similarly at different values of the occupation probability p.

2.9 Analytical solution for the homogeneous case

The equations for the stationary ideal flow [52] are V2P = 0 and ¥ = 6[’, where P
is the pressure, ¥’ the velocity and V? is the Laplace operator. In two dimensions,
the solution is given by an arbitrary analytical function f(z) of complex variable
z = z+1y, and P(z,y) = Ref(z), v, = Ref'(z) and v, = —Imf'(z). The equation of
a streamline is given by ¢ = Imf(z), where ¢ is a parameter. The flow between two
wells A and B, located at points (£7/2,0) in the circular reservoir z? +y* < L?/4, is

given by

f(z) =In (z + g) —In (z — g) +In (z + §—j> —In (z — S—j) . (2.60)

The circular boundary of the reservoir satisfies the equation ¢ = w. The fastest

streamline connecting A and B corresponds to ¢ = 0 and an arbitrary streamline
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forms angles ¢ and (7 — ¢) with the z-axis at points A and B. The traveling time

along a streamline can be found as a contour integral

(2.61)

L [P & _/de B dy
Ja fi(z)

where f(z) is the complex conjugate of f'(z). The traveling time t(¢) can also be

A Uy A vy’

found by differentiation of the area S(¢) between two streamlines corresponding to

different values of ¢

o) = 52,

which is another manifestation of the equal-time theorem. The concentration of oil

(2.62)

arriving at the well B at time ¢ i.e., the production curve C(t,7), is given by the

inverse of function ¢(t)
™ —¢(t)

™

C(t,r) = (2.63)

In the unbounded case, L — oo, the streamlines are circles, and ¢(¢) is given by an

B r? ¢ cos ¢
b= 2sin? ¢ (1 ~ sing ) ' (2.64)

Thus t has dimensionality of area and therefore in the following, we use the scaled

elementary formula

time t' = t/r®. Accordingly, C(¢,7) has the scaling property
C(t,r) = C(t' =t/r*1). (2.65)

In the interest of briefness, we use C(¢') = C(t',1). For small ¢ — 0, ¢’ is given by
the expansion

/_l i 2 4
=g+ 15¢ + O(¢%). (2.66)

For large ¢ — m, t' — oo and

7r
t'= ———[14O((r — ¢)?)]. 2.67

st gpll + Ol = ¢ (267)

The breakthrough time ¢}, corresponds to the fastest streamline ¢ = 0 and thus is

given by

1
the = lmt'(9) = . (2.68)
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Immediately after breakthrough, the concentration of oil drops as
C(t') =1 — Kyt —t,, + O((t' —t},)%/?), (2.69)
where K = @ When t' — oo, the concentration decays as a power law

cw):(Z;ﬂ)l+o(ﬂ). (2.70)

The crossover time from the initial fast decay to the slow power law decay is approx-

imately equal to the time ¢ /23 defined as the time when the concentration drops by
a factor of two, or t'1/2 =t'(n/2) =1/2.
In the bounded case, the production curve for scaled time depends only on the

ratio A = L/r, and similarly to the result of Eq.(2.65), we find that

C(t,r,L) = C(t' = t/r* 1, )). (2.71)

The production curve C(t,\) = C(t' = t/r* 1,)\) can be expressed via elliptical

functions. Integrating Eq. (2.61) along the fastest streamline gives

T4+ A+ (1 =A%) A(1—)\?)? A—1
be = A+ ) ( ) In (2.72)
12(1 + A2%) 8(14 A?) A+1

which in the limit A — oo yields

1

The constant K in the initial fast decay can be obtained by expanding the equations
of short streamlines in powers of ¢, resulting in lengthy elementary functions of A.

Expanding the latter in powers of \~! yields

V15 10
K:——[+—A-FQ)} (2.74)
s 7
The half time is given by integration along the ¢ = /2 streamline
1 /\2 3 4
t'1/2 = |14+ 2= ) arcsin
4 (14+A)VA24+6+ 22
1
= = 2.75
+ (2.75)
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Finally, as t' — oo and ¢ — =, the entire reservoir is swept out except in the vicinity
of the two stagnation points (£L/2,0), where the velocity is equal to zero. Integrating
Eq. (2.61) along the reservoir boundary and the segments connecting the wells and
stagnation points, with the exception of a small vicinity of the stagnation point of

order y/m — ¢, gives
t' =t —t)ln(m — @) + o(1), (2.76)

where ¢/ and t} are functions of A,

, 1A —1)2 N8
tl = gm = ? + O()\), (277)

and
2(2 —3X — 3224+ 1023 + 3X* —3)\° 16A (A2 + 1
t =t ( i i )-I-ln "+ 1) . (2.78)
3A(AZ —1)2 (A2 —=1)(A 4 1)?
This yields the exponential decay of C(t') at t' — oo
1 th—t
C(t') = —exp [_(75—’0)] 14 o(1)], (2.79)
n ¢

where t; plays the role of the characteristic time. If t; >t , (A > 1), an intermediate
power law decay is present between ¢} /2 and t), with the scaling form of Eq. (2.70).
In this case, t, also plays the role of the crossover time from the power law to the

exponential decay.
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Constant Current

Region Theory Simulation
Il g = min{(dn+or-2)/(dn—1)2"} |
= min{1.70 + 0.13,1.74 + 0.15}
Ve (A~ 32) o’ = min{(s" ~1)dr —gn+2.7"} 1.75 + 0.01
= min{1.80 £+ 0.40,1.74 £ 0.15}
Ve (A= o0) | ¥ = g% ~ 1.56 +0.01 N/A
Ve 0P =4® =24 a/logy, L 2.45 + 0.04 (Avg.)
crossover Tél) dg) =dx(dgp — 1)/dr = 1.73 £ 0.07 1.74 £ 0.05
crossover 7'((;2) d((?) =dy =284+0.10 2.90 £0.09
Constant Pressure
Region Theory Simulation
II1p g5 = (dp+ gr—1)/dg = 1.43 £ 0.08 1.41 4 0.01
IVp ¢ =~4@ =24 qa/logy, L 2.43 +0.06 (Avg.)

Crossover Tp

dp = dy = 2.84 +0.10

2.78 £ 0.15

Table 2.1: Theoretical exponents and exponents obtained by simulation for the all

the regions and crossovers for the functions P(t¢) and P(tp). The exponents y*),

42, dp, and d* are defined in Sec. 2.7 and their numerical values along with their

proposed theoretical values can be found in Table 2.2. The value of the exponent v

was obtained as the average (Avg.) over three simulations, having L = 258,514, 1026.
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Exponent | Theory Simulation
o N/A 1.74 4 0.15
7@ 2+ a/log, L 2.4140.04 (Avg.)
dg dp/fi+1=2.67240.002 | 2.57 £ 0.02
d dp + i = 2.6258 £ 0.0011 | 2.84 £ 0.10
gr See [13] 2.10 £ 0.20

Table 2.2: Exponents of the functions P(tp|R) and ®(R) determined through simu-
lations, and also their proposed theoretical values. The symbol N/A represents not

available. The value of the exponent (?) was obtained as the average (Avg.) over

three simulations, having L = 258,514, 1026.



Chapter 3

Possible Connection between the
Optimal Path and Flow in

Percolation Clusters

3.1 Overview

We study the behavior of the optimal path between two sites separated by a distance
r on a d-dimensional lattice of linear size L with weight assigned to each site. We
focus on the strong disorder limit, i.e., when the weight of a single site dominates
the sum of the weights along each path. We calculate the probability distribution
P(£opi|r, L) of the optimal path length £, and find for r < L a power law decay with
Lopt, characterized by exponent gop;. We determine the scaling form of P(lyp|r, L)
in two- and three-dimensional lattices. To test the conjecture that the optimal paths
in strong disorder and flow in percolation clusters belong to the same universality
class, we study the tracer path length ¢, of tracers inside percolation through their
probability distribution P (4 |r,L). We find that, because the optimal path is not
constrained to belong to a percolation cluster, the two problems are different. How-
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ever, by constraining the optimal paths to remain inside the percolation clusters in

analogy to tracers in percolation, the two problems exhibit similar scaling properties.

3.2 Introduction

It is often assumed that transport properties on percolation clusters can be directly
related to some geometric property of the cluster, but despite considerable effort [58]
such a geometric property relation has not been found [59]. Flow in porous media
can be modeled by flow in percolation systems [60], and the most probable traveling
length ¢;. of a convective tracer on a percolation cluster scales with the distance r

between the injection and extraction sites A and B [12] as
b~ 7™ [dy = 1.21£0.02 for d=2]. (3.1)

For d = 2, the exponent di, ~ d,,; where d,p; 1s the exponent for the optimal path
length in the strong disorder limit [31, 61].

In this study, we propose that transport in percolation can be directly related
to the optimal path in strong disorder, and we support our proposal with extensive
numerical simulations for d-dimensional lattices with d = 2 and 3.

The optimal path is defined as follows: for a d-dimensional lattice to each site
(or bond) 7, we associate a weight ¢, = e®*i, with x; € [0,1). This is equivalent to

choosing ¢; from the distribution
1
W(e) = — € € [1,expal. (3.2)
The energy of any path of length £ on the lattice is given by the sum
i
E = Z €, (3.3)
J

where j is an index running over the sites of the path. The limit a — oo is known

as the strong disorder limit. The optimal path of length ¢, is the path for which F
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is minimal with respect to all other paths. The optimal path length scales with r as
[31]
lopt ~ %P [dope = 1.22 4 0.01]. (3.4)

We address the question: can flow on percolation clusters in strong disorder, a
dynamical process, be connected to the optimal path in strong disorder, a static
property, as suggested by the similarity of Egs. (3.1) and (3.4)?7 To this end, we
study the probability density function (pdf) P({ops|r, L) for the optimal path to have
a length /., given a system size L, and an Euclidean distance r between the starting
and ending sites A and B of the path. We will compare this pdf with P(¢,|r, L), the
pdf that convective tracer paths have a length /;, in a percolation system of size L at
criticality, where the starting and ending sites are at a distance 7.

Other relations between percolation and strong disorder optimal path have been
reported. For a lattice with disorder given by Eq. (3.2) in the strong disorder limit,
the most probable largest weight of the sites used by the optimal path is e where
p. is the percolation threshold [61]. Also, Wu et al. [62] recently determined through
the study of tracer flow on a lattice with disorder, that the strong disorder limit has
a length scale that scales as a”, where v is the connectedness exponent of percolation
[60], and hence a system is in the strong disorder limit only when a” > L. In this
paper, we study the ultrametric limit a — oc.

In Sec. 3.3 we present results for the distribution P({yy¢|r, L). In Sec. 3.4, results
for P(4y|r, L) are presented and compared with P({yp¢|r, L). We then discuss the

results in Sec. 3.5.

3.3 Optimal Path Distribution

To study P(lopt|r, L) we use the “bombing algorithm” proposed in Ref. [31]. The
optimal path length /,,; between sites A and B is found by eliminating sites of the

lattice in decreasing order of weight, but leaving those sites necessary to keep A and
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Figure 3.1: Distribution P({op|r, L) for » = 4 and system sizes L = 64,128 and 256.
As L increases, the power law region with exponent g,,; becomes better defined, and

the upper cutoff increases.

B connected. When all sites that do not disconnect A and B are eliminated, only
the sites of the optimal path remain [63, 64, 65].
In Figs. 3.1, 3.2 and 3.3 we present P({yp|r, L) for » < L for a square lattice of

sites. Four distinct features appear:
e The most probable optimal path length £ scales with r as

O~ ror, (3.5)

opt

The values of d,,; have been reported for several lattice dimensions d, and also
have been shown to be universal [66]. Here, we rescale P({y|r, L) with the
exponent d,p¢, calculated elsewhere for the average optimal path length Z_opt,
but, as Figs. 3.1 and 3.2 show, d,; also produces the correct scaling for £ .

Our results for d,; are reported in Table 3.1 for d = 2 and 3.

e A lower cutoff [Fig. 3.2] which, in analogy with the distribution of minimal paths
in percolation [67, 68, 13], is expected to be a stretched exponential function f;

of the form

fi(2) = exp(—az~%) lx Copt ] , (3.6)

/rdopt
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Figure 3.2: (b) Probability distribution P({op|r, L) for (r = 8, L = 64) (solid line),
(r = 16,L = 128) (dashed line), and (r = 32,L = 256) (dotted line) for two-

dimensional systems. The ratio between L and r is kept fixed for these curves.

where « is a lattice-dependent constant, and ¢, is a universal exponent satis-

fying [66, 67]
1

Pt = =1

(3.7)

e An upper cutoff due to the effect of the finite lattice size L. A stretched expo-
nential behavior is also expected to describe this region [64, 68, 13], through a

function f5 of the form

Eo t
R = o6 u= 72, (35)
where [ is a lattice-dependent constant, and ,,; has universal properties [64,

68, 13].
e A power-law region described by
P(Eopt) ~ Ecjrftopt [,r.dopt < Eopt S LdoPt]- (39)

The above considerations lead us to postulate for P (|7, L) a full scaling Ansatz

66, 67, 68, 13]

1 EO t oot Eo t Eo t
P(Eopt|7’; L) ~J Irdopc (/rdcf)pt> fl (rdti)t> f2 (Ld(l:pt 3 (3.]_0)
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1 10
Scaled optimal path l”p/rd"l”

Figure 3.3: (c) Scaled distribution retP({,.|r, L) vs. scaled optimal path length
Lopt/7%rt for the curves in Fig. 3.2. The collapse has been achieved using the exponent
dopt Teported for Eopt, which is also valid for the most probable length £ opt S evidenced

in the plot.

where the prefactor 1/r%»t is necessary for normalization. We have tested this Ansatz
for d = 2, 3 and found it to be consistent with our earlier simulations [66].

An interesting feature of P({u|r, L) is that, as d increases, gops decreases. In
other words, the longer optimal paths at larger dimensions have a larger probability
(see Table 3.1). Additionally, since gopy < 2 for all d, Zopt and all higher moments
diverge as L — oo.

To calculate the exponents @, and 1., of Egs. (3.6) and (3.8), we introduce the
function
A

Eo t >
I E XAl =l opt
<7’dOPt P(€0pt|ri L)frdopt (fprPt‘)g ) ]

which, upon using Eqgs. (3.6), (3.8) and (3.10) yields

£,
H( pt,A,A) ~ In

frdopt

(3.11)

A
f ([oopptt) f2 ( [oor;tt )\ dopt)
/ —¢dopt Popt
~ InA+a ( 0‘“) + 1 ( opt \ dom) . (3.12)

,r.dopt /rdopt

We have made use of A\ = L/ in the argument of the function f» so that fo(lop/L%) =
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Scaling function MN(x,\,A)
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Scaled length x=I,, /rdapr

Figure 3.4: The scaling function II(z, A\, A) for A = 0.1 vs. the scaled optimal path
length 2 = £,,;/r%r for system sizes (r = 8,L = 64), (r = 16,L = 128), and
(r = 32, L = 256). The two straight lines serve as guides to the eye for the data that

determine the exponents ¢,p¢ and 1y

fa(A~%rtf, i /rdrt). The constant A is an auxiliary parameter chosen to make the
minimum value of II slightly larger than unity. Defining z = £.p,¢/r%r, we show in
Fig. 3.4 II(z, A, A) for d = 2 and the fit lines for the exponents of both f; and fs,
which are reported in Table 3.1. The values of ¢,,; we calculate are close to the values

predicted by Eq. (3.7) for d = 2, 3.

3.4 Comparison between Flow in Percolation and

the Optimal path

The question of whether the optimal path /¢, is related to the flow of tracers on a
percolation cluster has remained unsolved. This question was raised [12] due to a
puzzling coincidence of the scaling exponent d;, of the typical tracer length which,
for d = 2, is within error of d,,;. It was then proposed that the traveling lengths
4y, of tracers driven by convection on a percolation cluster satisfy the same scaling

laws as those for f.,;,. Here, we address this question by analyzing the detailed
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conditions under which optimization and flow in percolation occur. Our analysis (see
Sec. 3.5) explains the differences we observe, and also the “right way” in which the
two problems become equivalent.

Since simulations for flow on percolation clusters are performed, we describe the
two-dimensional case of the algorithm. We follow closely the description made in
Ref. [30]. We represent the reservoir as a two-dimensional site percolation cluster,
and choose sites at (—r/2,0) and (r/2,0), denoted by A and B, respectively, to
be the injection and extraction well positions. Points A and B are separated by a
geometric distance r, and the system box has corners at (£L/2,+L/2). We construct
percolation clusters at p. using the Leath algorithm [69)].

To model tracer motion we use the analogy with electrical circuits, where for
each bond, the pressure drop corresponds to the voltage difference, and the flow
corresponds to the electrical current on the bond. A pressure difference between sites
A and B drives the tracer. For each realization, 10* tracers are introduced at site A,
and then collected at site B. The set of all sites through which there is a non-zero
current defines the cluster backbone of Mp sites.

The “pressure” difference across bonds is equivalent to a “voltage” difference, so
by solving Kirchhoff’s equations on the backbone, we obtain the potential (pressure)
drops AV over all bonds for a given realization. For site ¢ having s; outgoing bonds,

the tracer selects a bond with a probability

A[’ij . .
= 2% =1, s i=1,..., Mgl 3.13
E] A‘r” [.7 ) ) S ? B] ( )

W4
For incoming bonds, w;; = 0. The total traveling length of a tracer is the number
of bonds of the path connecting A and B, chosen by this tracer. Since the particles
do not interact with one another, it is equivalent to launching one particle at a time
into the cluster. This procedure is known as particle launching algorithm [52, 53].

We determine the probability distribution of the tracer traveling lengths P(¢,|r, L)

by counting the number of particles that travel from site A to site B along a path of
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Figure 3.5: Probability distribution P(¢;|r, L) forr = 2and L =128 ind = 2and d =
3. In a similar fashion as for P({.p¢|r, L) we see a power law region that we characterize
by exponent gi,. Another feature of this plot is the increasing steepness of P({,|r, L)
as d increases (implying g;, increases with d), a feature for which P(¢,,|r, L) has the

opposite behavior, as g.,¢ decreases with d.

length /., over all the particles and all realizations of the percolation cluster.

The form of P(¢,|r, L) for the two-dimensional case was suggested in [12]. Here,
we extend these results to d = 3 (Fig. 3.5). Once again, the power law and stretched
exponential behaviors are present. The scaling of the most probable tracer path

length is given by £;, ~ r%:. These results yield

1 [\ ly 0,
P(lulr, L) ~ — <r;) hy (T;> ha ( LZ) , (3.14)

where functions h; and hs have the forms

_ Liy
hl(z) = exp(_luz ‘:btf) |:Z = r;tr] y (315)
and
Ly
ho(u) = exp(_pu¢tr) [u = L;“] . (3.16)

Arguments similar to those leading to Eq. (3.12) indicate how to determine the ex-

ponents ¢, and ., reported in Table 3.1.
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Figure 3.6: The power law tails of P(¢|r, L) (solid) and P(£.p|r, L) (dashed) in d = 2
and 3. The upper pair is for d = 2 with L = 256 and » = 4. The lower pair is for
d =3 with L =128 and r = 2.

The power law region is characterized by the exponent g;,, which is different from
gopt (see Table 3.1). We present in Fig. 3.6 curves for the power law regime for both
P(£y|r, L) and P({opt|r, L) in d = 2 and 3. In Table 3.1 we see the difference in the
slope of the power law decay between P({y|r,L) and P({ops|r, L). Moreover, as d
increases, gopt decreases and gy, increases, indicating the differing behaviors for the
two problems. In the next section, we explain the origin of the differences, how these

differences can be removed, and under which conditions the two problems coincide.

3.5 Discussion

The numerical results presented above show the difference in the values of the scaling
exponents gop; and g, of the distributions. To understand these differences, we now
elaborate on the characteristics of the optimal path problem in comparison to those

of tracer paths in percolation.

In Fig. 3.7(a) we represent the optimal path in strong disorder, where the dark

areas represent regions with site weights ¢, = e* with z; < p., and the white areas
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Figure 3.7: (a) Schematic of occupied sites for p below the percolation threshold p,,
and the optimal path in strong disorder. The darker regions represent sites that are
still present when p. is reached. We see in this case that /,,; must cross the region
above p, (i.e., leave the cluster) to connect A and B. (b) If sites A and B are chosen
within the a cluster below p., the optimal path does not leave the cluster because

that would increase the cost.
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Figure 3.8: Comparison of P({,y|r,L) inside percolation with P({y|r, L) for (r =
16,L = 64), (r = 32, L = 128) and (r = 64, L = 256). The solid lines represent the
optimal path distribution, and the long dashed lines the tracer length distributions.
The values of r and L have a fixed ratio equal to L/r = 4. The similarity between
distributions is clear, supporting our hypothesis. The small separation along the
horizontal axis between P({,,|r, L) and P(¢|r, L) (consistent for the three pairs of

curves) is due to non-universal details of the two models.

regions with site weigths e = e** with ; > p.. Typically, the arbitrary choice of A and
B may lead to a path connecting them that requires visiting regions with site weights
€ > e, In contrast, the tracers inside percolation clusters must, by definition, travel
on the same percolation cluster (spanning or otherwise), because the flow takes place
only if there is a percolating path between A and B. Therefore, this difference between
the flow and optimal path problems presents a possible explanation for the differences
between P({opi|r, L) and P(£y|r, L). Optimal paths tend to be longer because they
are able to visit more sites of the lattice and are therefore of longer length, whereas
tracers in percolation flow are confined to a given cluster, and their traveling lengths

are much more limited. These features intuitively explain why gy, is larger than g;.

The above considerations lead to the following hypothesis: if the optimal path

search is constrained to pairs of sites within regions of the lattice that are part of
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the same cluster [Fig. 3.7(b)], then the scaling of P({p|r, L) and P(¢y|r, L) would
coincide. To test this, we present P({op|r, L) and P(4,|r,L) in Fig. 3.8, where the
optimal paths satisfy the condition that their highest weight is at or below percolation.
This condition forces the optimal paths to be inside percolation clusters. Indeed, for
this case (Fig. 3.8), the two quantities exhibit very similar behavior, supporting our
hypothesis. The exponent g, inside percolation now becomes very close to gi,. On
the other hand, d,,; does not change, confirming the equivalence of the two problems.
We also have similar results for three-dimensional lattices.

In summary, we have shown that P({.p|r, L) has a power law tail with an exponent
gopt Which decays as d grows and is different from the power law tail of P(¢;,|r, L). This
difference seems to be related to the fact that the optimal path crosses percolation
clusters and thus tends to have longer lengths compared with tracers which are always
inside percolation clusters. When /,,; is measured only inside percolation clusters,
our results suggest P({,pi|r, L) and P(£,|r, L) are equivalent and the two problems

possibly belong to the same universality class.



Table 3.1: Exponents characterizing P({ops|r, L) and P(£y|r, L), which are defined in
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the text. The value of g,,; is determined from P(Lopi|r = 4,L = 256) in Fig. 3.1,

for which the power law region is the longest. The values of ¢, and 1,,; are from

Fig. 2.
Optimal Path in Strong Disorder (“Static”)
d || dop Gont b Gopt = 227 | Vot
2 || 1.22 £ 0.01[31] | 1.55 £ 0.05 | 4.8 £ 0.5 4.55+0.21 |53+0.3
3 || 1.42 £0.02[70] | 1.37 £0.05 | 2.1 £0.1 23+£0.1 4.3+0.3
Optimal Path in Strong Disorder in Percolation (“Modified Static”)
2| 1.21£0.02 1.82+0.05 | 49+0.4 476 +0.45 |23+£04
3| 1.40 £ 0.03 22+x0.1 2.0£0.1 25+£0.2 3.6 £0.2
Tracer Path (“Dynamic”)
d | di G Bix =g | Yo
2 || 1.21 £0.02[12] | 1.82 £ 0.05 | 4.7 £ 0.4 476 £0.45 |2.7+£0.2
3| 1.37£0.05 2.23+£0.09 | 1.81£0.02 | 2.7+ 0.4 3.46 + 0.04
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Chapter 4

Anomalous Transport in Complex

Networks

4.1 Overview

To study transport properties of complex networks, we analyze the equivalent conduc-
tance GG between two arbitrarily chosen nodes of random scale-free networks with de-
gree distribution P(k) ~ k™ in which each link has the same unit resistance. We pre-
dict a broad range of values of G, with a power-law tail distribution ®gp(G) ~ G796,
where g = 2\ — 1, and confirm our predictions by simulations. The power-law tail
in ®gp(G) leads to large values of G, thereby significantly improving the transport
in scale-free networks, compared to Erdos-Rényi networks where the tail of the con-
ductivity distribution decays exponentially. Based on a simple physical “transport
backbone” picture we show that the conductances of scale-free and Erdés-Rényi net-
works are well approximated by ck4kp/(ka+ kp) for any pair of nodes A and B with
degrees k4 and kp. Thus, a single parameter ¢ characterizes transport on complex
networks.
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Recent research on the topic of complex networks is leading to a better understanding
of many real world social, technological, and natural systems ranging from the World
Wide Web and the Internet to cellular networks and sexual-partner networks [32].
One type of network topology that appears in many real world systems is the scale-

free network [71], characterized by a scale-free degree distribution:
P(k) ~ k™, kmin <k < Fmax, (4.1)

where k, the degree, is the number of links attached to a node. The distribution has
two cutoff values for k: kp;,, which represents the minimum allowed value of k& on
the network (kmin =2 here), and k. = ki NY (’\_1), which is the typical maximum
degree of a network with N nodes [72, 73]. The scale-free feature allows a network to
have some nodes with a large number of links (“hubs”), unlike the case for the classic
Erdés-Rényi model of random networks [33, 74].

Here we show that for scale-free networks with A > 2, transport properties char-
acterized by conductance display a power-law tail distribution that is related to the
degree distribution P(k). We find that this power-law tail represents pairs of nodes
of high degree which have high conductance. Thus, transport in scale-free networks
is better than in Erdés-Rényi random networks. Also, we present a simple physical
picture of transport in complex networks and test it with our data.

The classic random networks of Erdés and Rényi [33, 74] have a Poisson degree
distribution, in contrast to the power-law distribution of the scale-free case. Due to
the exponential decay of the degree distribution, the Erdds-Rényi networks lack hubs
and their properties, including transport, are controlled solely by the average degree
k=Yl iP(i) [74, 75].

Most of the work done so far regarding complex networks has concentrated on
static topological properties or on models for their growth [32, 72, 76, 77]. Trans-

port features have not been extensively studied with the exception of random walks
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Figure 4.1: (a) Comparison for networks with N = 8000 nodes between the cumulative
distribution functions for the Erdés-Rényi and the scale-free cases (with A = 2.5 and

3.3). Each curve represents the cumulative distribution F(G) vs. G. The simulations

have at least 10° realizations.

on complex networks [78, 79, 80|, despite the fact that transport properties contain
information about network function [81]. Here, we study the electrical conductance
G between two nodes A and B of Erdos-Rényi and scale-free networks when a po-

tential difference is imposed between them. We assume that all the links have equal

resistances of unit value [82].

To construct an Erdos-Rényi network, we begin with a fully connected network,
and randomly remove 1 — k/(N — 1) out of the N(N — 1)/2 links between the N
nodes. To generate a scale-free network with N nodes, we use the Molloy-Reed
algorithm [83], which allows for the construction of random networks with arbitrary
degree distribution. We generate k; copies of each node ¢, where the probability of
having k; satisfies Eq. (4.1). These copies of the nodes are then randomly paired in
order to construct the network, making sure that two previously-linked nodes are not

connected again, and also excluding links of a node to itself [84].

The conductance G of the network between two nodes A and B is calculated using

the Kirchhoff method [85], where entering and exiting potentials are fixed to V4 =1
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Figure 4.2: Effect of system size on Fgp(G) vs. G for the case A = 2.5. The cutoff

value of the maximum conductance G, progressively increases as /N increases.

and Vg = 0. We solve a set of linear equations to determine the potentials V; of
all nodes of the network. Finally, the total current I = G entering at node A and
exiting at node B is computed by adding the outgoing currents from A to its nearest
neighbors through 3°;(V4 — V;), where j runs over the neighbors of A.

First, we analyze the pdf ®(G)dG that two nodes on the network have conductance
between G and G+dG. To this end, we introduce the cumulative distribution F'(G) =
I& ®(G")dG, shown in Fig. 4.1 for the Erd8s-Rényi and scale-free (A = 2.5 and
A = 3.3, with kp;, = 2) cases. We use the notation ®gp(G) and Fsp(G) for scale-free,
and ®pgr(G) and Fggr(G) for Erdés-Rényi. The function Fgr(G) for both A = 2.5 and
3.3 exhibits a tail region well fit by the power law

Fsp(G) ~ G961, (4.2)
and the exponent (gg — 1) increases with A. In contrast, Fggr(G) decreases exponen-

tially with G.

Increasing N does not significantly change Fsp(G) (Fig. 4.2) except for an increase
in the upper cutoff G,,.., where G,,., is the typical maximum conductance, corre-
sponding to the value of G at which ®gp(G) crosses over from a power law to a faster

decay. We observe no change of the exponent g with N. The increase of G,,., with
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Figure 4.3: Probability density function ®sp(G|ka, kp) vs. G for N = 8000, A = 2.5
and k4 = 750 (kg4 is close to the typical maximum degree k., = 800 for N = 8000).

N implies that the average conductance G over all pairs also increases slightly [86].

We next study the origin of the large values of G in scale-free networks and obtain
an analytical relation between A and gg. Larger values of GG require the presence of
many parallel paths, which we hypothesize arise from the high degree nodes. Thus,
we expect that if either of the degrees k4 or kp of the entering and exiting nodes is
small, the conductance G between A and B is small since there are at most k& different
parallel branches coming out of a node with degree k. Thus, a small value of k& implies
a small number of possible parallel branches, and therefore a small value of G. To

observe large GG values, it is therefore necessary that both k4 and kp be large.

We test this hypothesis by large scale computer simulations of the conditional pdf
®sp(G|ka, kp) for specific values of the entering and exiting node degrees k4 and kp.
Consider first the case kp < k4, and the effect of increasing kp, with k4 fixed. We
find that ®sp(G|ka, kp) is narrowly peaked (Fig. 4.3) so that it is well characterized
by G*, the value of G when ®gp is a maximum. We find similar results for Erdos-
Rényi networks. Further, for increasing values of kp, we find [Fig. 4.4] G* increases
as G* ~ k%, with a = 0.96 £ 0.05 consistent with the possibility that as N — oo,

o = 1 which we assume henceforth.
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Figure 4.4: Most probable values of G*, estimated from the maxima of the distri-
butions in Fig. 4.3, as a function of the degree kp. The data support a power law

behavior G* ~ k% with exponent a = 0.96 £ 0.05.

For the case of szkA, G™ increases less fast than kp, as can be seen in Fig. 4.5
where we plot G*/kp against the scaled degree = k4/kp. The collapse of G*/kp
for different values of k4 and kp indicates that G* scales as

G~ kpf (:—;) . (4.3)

The behavior of the scaling function f(z) can be interpreted using the following simpli-
fied “transport backbone” picture [Fig. 4.5 inset], for which the effective conductance
GG between nodes A and B satisfies

1 1 1 1
GGty (44
where 1/Gy, is the resistance of the “transport backbone” while 1/G 4 (and 1/G B)
are the resistances of the set of bonds near node A (and node B) not belonging to
the “transport backbone”. It is plausible that G4 is linear in k4, so we can write
(G4 = cky. Since node B is equivalent to node A, we expect Gp = ckp. Hence

G— 1 — I CkA/kB
T 1Jcka+1/ckg +1/Gy "1+ ka/kp + cka/Gy

(4.5)
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so the scaling function defined in Eq. (4.3) is

B cx L
B l—l—x—l—ckA/thN 14z

f(z) (4.6)

The second equality follows if there are many parallel paths on the “transport back-
bone” so that 1/Gy < 1/cka [87]. The prediction (4.6) is plotted in Fig. 4.5 for
both scale-free and Erdos-Rényi networks and the agreement with the simulations
supports the approximate validity of the transport backbone picture of conductance
in complex networks.

The agreement of (4.6) with simulations has a striking implication: the conduc-
tance of a complex network (scale-free and Erdds-Rényi) depends on only one pa-
rameter c¢. Further, since the distribution of Fig. 4.3 is sharply peaked, a single
measurement of G for any values of the degrees k4 and kp of the entrance and exit
nodes suffices to determine G*, which then determines ¢ and hence through Eq. (4.6)
the conductance for all values of k4 and kp.

Within this “transport backbone” picture, we can analytically calculate Fsp(G).
Using Eq. (4.3), and the fact that ®gp(G|ka, kp) is narrow, yields [88]

Bp(G) ~ / P(kp)dksp '/P(kA)dkAd lka (:—2) - G] , (4.7)

where 6(z) is the Dirac delta function. Performing the integration of Eq. (4.7) using
(4.6), we obtain for G < Giax

Dsp(G) ~ G79¢ [gg =21 —1]. (4.8)

Hence, for Fsp(G), we have Fgp(G) ~ G~(2*=2) To test this prediction, we perform
simulations for scale-free networks and calculate the values of gg — 1 from the slope

of a log-log plot of the cumulative distribution Fsp(G). From Fig. 4.7 we find that
gc —1=(1.97+0.04)X — (2.01 £ 0.13). (4.9)

Thus, the measured slopes are consistent with the theoretical value predicted by

Eq. (4.8) [89).
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Next, we consider some further implications of our work. Our results show that
larger values of G are found in scale-free networks with a much larger probability than
in Erdos-Rényi networks, which raises the question if scale-free networks have better
transport than Erdos-Rényi networks. To answer this question, we consider the aver-
age conductance between all the pairs of nodes in the network, which quantifies how
efficient is the transport. However, since scale-free networks are heterogeneous, we
must find a way to assign proper weights to the nodes. Recent work [90, 91| suggests
that the conductance of links between nodes ¢ and 7 in certain real-world networks are
characterized by (kik]-)ﬁ , with # = 1/2. Using this weight, and comparing scale-free
and Erdés-Rényi networks with equal values of k [92], we find that the average conduc-
tance of scale-free networks is large than that of Erdés-Rényi networks (Table 4.1).
Even larger average conductance for scale-free networks compared to Erdos-Rényi
networks (Table 4.1) is obtained if one assumes [78] 8 = 1, i.e., that transport occurs
with frequency proportional to the degree of the node. The case of § = 0 represents
a “democratic” average, where all the pairs of nodes A and B are given the same
weight. This case, which is not justified for heterogeneous networks, yields average
conductance values for scale-free networks close to those of Erdds-Rényi networks
(Table 4.1). In many real-world systems, degree dependent link conductances and
frequent use of high degree nodes both occur, making scale-free network transport
even more efficient than Erdds-Rényi network transport.

In summary, we find a power-law tail for the distribution of conductance for scale-
free networks and relate the tail exponent gg to the exponent A of the distribution
P(k). Our work is consistent with a simple physical picture of how transport takes

place in complex networks.
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scale-free || B =1 g=1/2 =0
Aok Gsr (Ger) | Gsr (Gir) | Gsr (Ger)
25|53 [55(21) |24(20) |13(L9)
27143 |27 (15)  |1.8(15) | 1.1 (1.4)
2037 |[17(1.2) |14(12) |09 (L)
3134 | 1.3(1.0) |1.1(0.9) |0.8(0.9)
3331 [[1.0(0.9) |1.0(08) |0.7(0.7)
3529 [08(0.7) |08(07) |06 (0.7)

Table 4.1: Values of average conductance of scale-free and Erdos-ényi networks for
weights defined as (k;k;)?. In parenthesis we have indicated the values of the corre-

sponding Erdos-Rényi networks.
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Figure 4.5: Scaled most probable conductance G*/kp vs. scaled degree z = ka/kp
for system size N = 8000 and A = 2.5, for several values of k4 and kp: O (kg = 8,
8 < kp < 750), & (ka =16, 16 < kp < 750), A (ka = 750, 4 < kp < 128), O (kp =
4,4 < ks <750), v (kp = 256, 256 < k4 < 750), and > (kg = 500, 4 < ks < 128).
The solid line crossing the symbols is the predicted function G*/kp = cz/(1 + z)
obtained from Eq. (4.6). We also show G*/kp vs. scaled degree z = k4/kp for Erdés-
Rényi networks with £ = 2.92 and 4 < k4 < 11 and kg = 4 (symbol e), the solid
line crossing the symbols representing the theoretical result according to Eq. (4.6),
and an extension of this line to represent the limiting value of G*/kp (dotted-dashed
line). Note that the probability to obtain k4 > 11 is extremely small in Erdés-Rényi
networks, and thus we are unable to obtain significant statistics. These plots show
the rapid approach of the scaling function f(z) of Eq. (4.6) from a linear behavior to
the constant ¢ (here ¢ = 0.87 £ 0.02 for scale-free networks, horizontal dashed line,
and ¢ = 0.55+0.01 for Erd6s-Rényi, dotted line). The inset shows a schematic of the
“transport backbone” picture, where the circles labeled A and B denote the nodes A

and B and their associated links which do not belong to the “transport backbone”.
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Solving the Kirchhoff Equations

Since both problems considered require the solution of the Kirchhoff Equations, we
present a description of the method.

First, consider a connected graph with /N sites. These sites are interconnected
based on the structure of the lattice under consideration. For a two-dimensional
square lattice, for instance, each site is connected to four neighbors which surround
the site. For Erdés-Rényi random graphs, a site has a random number of neighbors
that varies from site to site and satisfies Eq. (1.4).

In either case, if we are interested in solving the circuit equations, we must begin
by choosing one or more sites as the source, which we label A, and one or more sites
as the sink, which we label B. The simplest case corresponds to A being only one site,
and B being another site. We impose values of the potential V4 and Vp = 0. The
value of V4 is one for the case of constant pressure conditions (for percolation this is
one of two situations, and this is the only situation studied for complex networks). For
constant current conditions, V4 = R, where R is the total resistance of the particular
realization being studied.

Having considered the boundary conditions, we now explain how to solve for the
values of potential V; at each site ¢, and the values of current [;; along link ¢5. First,
we point out that it is necessary to use only one of the two Kirchhoff rules in order to
solve the problem completely. Here, we choose to apply the current rule, which states
that at all sites of the network current is conserved. Thus, the sum of all incoming
current to a site is equal to the sum of all outgoing current from the site. Now, since
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we assume ohmic circuits throughout this work, the current from site ¢ to site j along

link 77, with resistance r;;, is given by

L= ——2 (4.10)

In our study, the resistance from site ¢ to site j is the same as from site j to site 1,
and thus

S 4.11
J J

Kirchhoft’s current conservation law then implies

iv:fn’:i —— = I(6i4 — bip), (4.12)

where [ represents the total current entering the circuit through A and leaving it

through B and 6, represents the Kronecker delta

0 n#m
Opnm = 7 (4.13)
1 n=m.
Equation (4.12) expresses the fact that for all sites except the source and sink, the
total in- plus out-current is zero.
Considering that V4 and Vg are known, there N — 2 Eqgs. (4.12) (A and B are the

only sites not counted) and N — 2 unknown potentials V;, where : = 1,..., N except

A and B. Therefore, we need to solve the system of equations
TV =8, (4.14)

where matrices T,V and S are given by

sy L _1 _1
Jj=1,j#1 T1j r12 1N
_1 ZN 1 __1
_ r21 J=1,#2 rq; " TaN
T = . : i ' ' (4.15)

DO
TN1 TN2 e ]=1’]¢N TNj
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Vi
Vs
V=] | (4.16)
Vn
and
Va 4 VB
T14 T1B
S = : . (4.17)
Vs 4 VB
TNA TNB

None of the matrices have the A or B row. In other words, these rows are not used.
Aside from the symmetry expressed in Eq. (4.11), there is one further simplifica-
tion for both of our transport models. The values of resistance are all taken to be
identical to one. Thus matrix T becomes the so called Laplacian matrix L, which is
the matrix that represents the Laplacian operator in discrete space. It is defined by
(L) = bt (4.18)
—cij 1 # ]
where k; is the degree of node ¢ as before, and ¢;; = 1 if sites < and j are connected,
and zero otherwise. The matrix of the ¢;; is called the connectivity or adjacency
matrix.
The solution to this system of equations if perfomed through the use of linear
algebra software packages. Typically, matrix T is sparse, thus a high efficiency can
be achieved with a computational complexity that is slower than N2. Thus, the

matrix inversion is relatively fast.
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