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Major Professor: H. Eugene Stanley, University Professor and Professor of Physics

ABSTRACT

This thesis applies statistical physics concepts and methods to quantitatively an-

alyze complex systems.

This thesis is separated into four parts: (i) characteristics of earthquake systems

(ii) memory and volatility in data time series (iii) the application of part (ii) to world

financial markets, and (iv) statistical observations on the evolution of word usage.

In Part I, we observe statistical patterns in the occurrence of earthquakes. We

select a 14-year earthquake catalog covering the archipelago of Japan. We find that

regions traditionally thought of as being too distant from one another for causal

contact display remarkably high correlations, and the networks that result have a

tendency to link highly connected areas with other highly connected areas.

In Part II, we introduce and apply the concept of “volatility asymmetry”, the

primary use of which is in financial data. We explain the relation between memory and

“volatility asymmetry” in terms of an asymmetry parameter λ. We define a litmus

test for determining whether λ is statistically significant and propose a stochastic

model based on this parameter and use the model to further explain empirical data.

In Part III, we expand on volatility asymmetry. Importing the concepts of time

dependence and universality from physics, we explore the aspects of emerging (or

“transition”) economies in Eastern Europe as they relate to asymmetry. We find

that these emerging markets in some instances behave like developed markets and

in other instances do not, and that the distinction is a matter both of country and

a matter of time period, crisis periods showing different asymmetry characteristics

than “healthy” periods.
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In Part IV, we take note of a series of findings in econophysics, showing statistical

growth similarities between a variety of different areas that all have in common the

fact of taking place in areas that are both (i) competing and (ii) dynamic. We show

that this same growth distribution can be reproduced in observing the growth rates of

the usage of individual words, that just as companies compete for sales in a zero sum

marketing game, so do words compete for usage within a limited amount of reader

man-hours.

vi



Contents

I Introduction 1

1 Interdisciplinary Applications of Statistical Physics to Complex Sys-

tems: Seismic Physics, Econophysics, and Sociophysics 2

II Earthquake networks based on similar activity pat-
terns 5

2 Background 6

3 Data 8

4 Method 11

5 Results 14

III Asymmetry in power-law magnitude correlations 21

6 Background 22

7 Testing Statistical Significance 25

8 Results 30

IV Comparison between response dynamics in transition
vii



and developed economies 35

9 Background: Volatility Asymmetry 36

10 Asymmetry model 39

11 Results 41

V Statistical laws governing fluctuations in word use
from word birth to word death 48

12 Background and Introduction 49

13 Results 53

14 Discussion 71

15 Methods 75

VI Conclusion 79

16 Conclusion 80

References 84

Curriculum Vitae 97

viii



List of Tables

8.1 Critical values Sc obtained for an i.i.d. process . . . . . . . . . . . . . 34

8.2 Summary of statistical parameters for selected patients . . . . . . . . 34

11.1 Estimates of GJR GARCH(1,1) parameters . . . . . . . . . . . . . . 44

11.2 GJR GARCH(1,1) parameters α, β, γ for subperiods . . . . . . . . . . 44

11.3 GJR GARCH(1,1) parameters σ, γ for subperiods . . . . . . . . . . . 45

13.1 Summary of annual growth trajectory data for varying threshold Tc . 63

13.2 Summary of data for the relatively common words . . . . . . . . . . . 63

13.3 Summary of Google corpus data . . . . . . . . . . . . . . . . . . . . . 64

ix



List of Figures

3.1 Gutenberg-Richter statistics for the JUNEC catalog every 2 years . . 9

3.2 JUNEC catalog activity by location . . . . . . . . . . . . . . . . . . . 10

5.1 Example of highly correlated signals . . . . . . . . . . . . . . . . . . . 15

5.2 Time-shifted correlations of JUNEC earthquake data . . . . . . . . . 16

5.3 Number of links compared to number of links obtained with shuffled

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.4 Maps of earthquake networks . . . . . . . . . . . . . . . . . . . . . . 18

5.5 Assortativity of obtained earthquake networks . . . . . . . . . . . . . 19

5.6 Distribution of links by distance . . . . . . . . . . . . . . . . . . . . . 20

7.1 Asymmetry in magnitude correlations and detrended fluctuation func-

tion F (n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8.1 Critical value Sc vs. sample size N . . . . . . . . . . . . . . . . . . . 31

8.2 Distribution of time series data for 20 of the 25 patients . . . . . . . . 32

11.1 Changes of the volatility asymmetry parameter γ each year from 1989-

2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

11.2 Changes of the volatility asymmetry parameter γ . . . . . . . . . . . 47

12.1 The number of words and books grows over time . . . . . . . . . . . . 51

13.1 The birth and death rates of a word depends on the relative use of the

word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

13.2 Measuring the social memory effect using the trajectories of single words 60

13.3 Hurst exponent indicates strong correlated bursting in word use . . . 61

x



13.4 Statistical laws for the growth trajectories of new words . . . . . . . . 62

13.5 Word extinction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

13.6 Dramatic shift in the birth rate and death rate of words . . . . . . . . 65

13.7 Survival of the fittest in the entry process of words . . . . . . . . . . 66

13.8 Historical events are a major factor in the evolution of word use . . . 67

13.9 Quantifying the tipping point for word use . . . . . . . . . . . . . . . 68

13.10Common growth distribution for new words and common words . . . 69

13.11Scaling in the “volatility” of common words . . . . . . . . . . . . . . 70

xi



List of Abbreviations

ARCH AutoRegressive Conditional Heteroskedasticity

DFA detrended fluctuation analysis

EEG electroencephalography

GARCH Generalized AutoRegressive Conditional Heteroskedasticity

i.i.d. independent and identically distributed

JUNEC Japan University Network Earthquake Catalog

MLE maximum likelihood estimation

pdf probability density function

xii



Part I

Introduction



Chapter 1

Interdisciplinary Applications of

Statistical Physics to Complex

Systems: Seismic Physics,

Econophysics, and Sociophysics

Interdisciplinary science is an emerging field which applies methods from various

fields to address research topics that have traditionally been analyzed by scientists

within a specific field. Specifically, within interdisciplinary research and growing in

import is the concept of complexity. While various definitions of complexity have

been expounded most have in common the notion of a large number of distinct parts

interacting at different levels within the framework of a hierarchy that operates on

a wide gamut of scales. Often these interactions are fractal in nature, manifesting

in the form of power-law relationships between the variables under consideration.

This stands in stark contrast to noncomplex systems, such as the motion of a ran-

dom walker or the kinematic statistics of an ideal gas which, though they may be

complicated, are characterized by uniscaled functional forms like exponentials. The

power-law form is central to complexity because it displays a scale invariance not

found in exponential or related forms. Changing the input scale by a factor of λ, for

example results in qualitatively identical behavior, differing only by a constant factor:
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f(λx) = A(λx)k = λkf(x) ∝ f(x). (1.1)

As a consequence, the relation obeys a scaling law in λ. λ can be “scaled out” in

that f(λx)
λk has no dependence on λ. If, for example, f is a relationship that tells a

company’s growth rate, based on its size x, and λ can be scaled out in this manner,

it shows that companies of all sizes obey the same underlying mechanics.

The most obvious philosophical consequence of scale invariance is the lack of a

characteristic size for observations. While an exponential, for example, has a charac-

teristic scale, at which one may consider further effects to be nominal (e.g. the half-life

of a radioactive particle, the penetration depth of electromagnetic radiation into a

material), a power-law exhibits identical qualitative behavior at any scale, resulting

in relationships that do not vary over several orders of magnitude.

Methods from statistical physics are well-suited for interdisciplinary complexity

research due to the similarity between physical systems consisting of interacting par-

ticles and complex systems consisting of interacting constituents. In this work, we

focus our attention on three such systems that display emergent complexity arising

from interactions between the constituent parts:

(i) the emergent behavior in seismology resulting from the intricate distribution of

stress along the world’s tectonic plates and associated interplate and intraplate

fault systems,

(ii) the interaction between millions of interacting individuals manifesting in stock

market prices,

(iii) the collective dynamics resulting from words in a language competing for usage.

We use statistical physics concepts such as scaling analysis, universality, symme-

try, stationarity, and networks, as well as tools from econometrics such as cross-

correlations, autoregressive hetereoskedastic processes to analyze these three systems.

The purpose of this research is to demonstrate the utility of these methods in explain-

ing data recorded for various complex systems and to find statistical laws that quantify

the statistical regularities we observe.

Our research is a combination of both theoretical modeling and experimental

observation. We utilize comprehensive data recorded for
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(i) seismic records of earthquake events over the 14-year period 1985-1998 as recorded

by nine institutions of higher learning across Japan,

(ii) the financial time series of stock market indices for 11 Eastern European tran-

sition economies over the 20-year period 1989-2009, as well as 3 United States

market indices for the 27-year period 1980-2008

(iii) word instances of 1 × 107 distinct words from 106 digitized books, over the

209-year period 1800-2008

and find several statistical laws. These empirical descriptions aid in the development

of appropriate theoretical models, which can provide further insight into the various

deterministic and stochastic mechanisms that give rise to real-world phenomena. We

also invoke electroencephalography (EEG) data for 25 subjects during an overnight

hospital stay as a “proof of concept” for a statistical model we introduce.



Part II

Earthquake
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activity patterns



Chapter 2

Background

One of earliest observed phenomena to exhibit what we now call “complexity”

is that of earthquakes. While many natural phenomena known to antiquity occurred

with clockwork regularity such as tides, seasons, or even the flooding of the Nile

Delta, the pattern behind earthquake behavior seemed to have neither regularity or

even an approximate time scale upon which to plan or make any kind of headway into

understanding. Consequently, many ancient peoples posited explanations involving

large animals supporting the world or instead explained earthquakes as the capricious

kicks of a large fetus in an enormous womb. These explanations, animistic at their

root, all tacitly reinforce the perception of earthquakes as arbitrary and unpredictable

events.

Since the advent of modern study, progress has been made. Despite the underlying

complexities of earthquake dynamics, celebrated statistical scaling laws have emerged,

describing the number of events of a given magnitude (Gutenberg-Richter law)[1],

the decaying rate of aftershocks after a main event (Omori law)[2], the magnitude

difference between the main shock and its largest aftershock (Bath law)[3], as well

as the fractal spatial occurrence of events[4, 5]. Indeed, Bak et al. have unified

these three of these laws[6, 7] by scaling out spatiotemporal information, revealing an

underlying common structure. However, while the fractal occurrence of earthquakes

incorporates spatial dependence, it ostensibly embeds isotropy in the form of radial

symmetry, while real-world earthquakes are usually anisotropic[8].

To better characterize this anisotropic spatial dependence as it applies to such
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heterogeneous geography, network approaches have been recently applied to study

earthquake catalogs[9, 10, 11, 12, 13]. These recent network approaches define links

as being between successive events or being between events which have a relatively

small probability of both occurring based on three of the above statistical scaling

laws[14]. These methods define links between singular events. In contrast, we define

links between locations based on long-term similarity of earthquake activity. While

earlier approaches capture the dynamic nature of an earthquake network, they do

not incorporate the characteristic properties of each particular location along the

fault[15]. Various studies have shown[15, 16, 17, 18, 2] that localized areas within a

catalog have non-Poissonian clustering in time, even within aftershock sequences[18],

demonstrating that each area not only has its own statistical characteristics[20], but

also retains a memory of its events[15, 16, 17]. As a result, successive events may not

be just the result of uncorrelated independent chance but instead might be dependent

on the history particular to that location. If prediction is to be a goal of earthquake

research, it makes sense to incorporate such long-term behavior inherent to a given

location by integrating the analysis of each location over time, rather than by treating

each event independently. We include long-term behavior as such in this paper by

considering a network of locations, where each location is characterized by its long-

term activity over several years.



Chapter 3

Data

For our analysis, we utilize data from the Japan University Network Earthquake

Catalog (JUNEC), available online at

http://wwweic.eri.u-tokyo.ac.jp/CATALOG/junec/. We choose the JUNEC catalog

because Japan is among the most active and best observed seismic regions in the

world. Because our technique is novel, this catalog provided the best first avenue to

analysis. In the future, it may be possible to fine-tune our approach to more sparse

catalogs.

The data in the JUNEC catalog span 14 years from 1 July 1985 - 31 December

1998. Each line of the catalog includes the date, time, magnitude, latitude, and lon-

gitude of the event. We found the catalog to obey the Gutenberg-Richter law for

events of magnitude 2.2 or larger. By convention, this is taken to mean that the

catalog can be assumed to be complete in that magnitude range. However, because

catalog completeness cannot be guaranteed for shorter time periods over a 14-year

span, we also examine Gutenberg-Richter statistics for each nonoverlapping two-year

period (Fig 3.1). We find that, though absolute activity varies by year, the rela-

tive occurrences of quakes of varying magnitudes does not change significantly for

events between magnitude 2.2 and 5, where there is the greatest danger of events

missing from the catalog. We also note the spatial clustering of data in the regime

of 2.2≤M≤2.5. We therefore compare our results to results obtained using 2.5 as a

lower bound for event inclusion. See further discussion below.
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Figure 3.1: (Color online) Gutenberg-Richter statistics for the JUNEC catalog every

2 years demonstrating that the magnitude above which the Gutenberg-Richter law is

obeyed is approximately constant from year to year.
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Figure 3.2: (Color online) Number of events by location in the JUNEC catalog. The

JUNEC catalog clusters spatially, with most activity occurring on the eastern side of

Honshu, Japan’s principle island.



Chapter 4

Method

We partition the region associated with the JUNEC catalog as follows: we take

the northernmost, southernmost, easternmost, and westernmost extrema of events in

the catalog as the spatial bounds for our analysis. We partition this region into a

23 × 23 grid which is evenly spaced in geographic coordinates. Each grid square of

approximate size 100 km × 100 km is regarded as a possible node in our network.

Results do not qualitatively differ when the fineness of the spatial grid is modified.

For a given measurement at time t, an event of magnitude M occurs inside a given

grid square. Similar to the method of Corral[18], we define the signal of a given grid

square to form a time series {st} where each series term st is related to the earthquake

activity that takes place inside that grid square within the time period t.

Because events do not generally occur on a daily basis in a given grid square, it is

necessary to bin the data to some level of coarseness. How coarse the data are treated

involves a trade-off between precision and data richness.

We obtain the best results, corresponding to the most prominent cross-correlations,

by choosing 90 days as the coarseness for our time series. This choice means that st

will cover a time period of 90 days and st+1 will cover the 90-day non-intersecting time

period immediately following, giving approximately 4 increments per year. Results

do not qualitatively differ by changing the time coarseness.

Accordingly, we develop a definition of the signal for the time series {st} belonging

to each grid cell ij:
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“energy released”:

st(ij) ≡
∑Nt(ij)

l=1 10
3

2
M l

t(ij). We choose this definition because the term 10
3

2
M is

proportional to the energy released from an earthquake of magnitude M.

We also instituted our analysis with another three signal definitions that we omit

here:

(a) “average magnitude”:

st(ij) ≡ 1
Nij

∑Nij

"=1 M
"
t (ij) where M "

t (ij) is the magnitude of the event and Nt(ij)

is the total number of events occurring in the 90-day time window t in the grid square

ij.

(b) “number of events”:

st(ij) ≡ Nt(ij) with the symbols as defined in (a).

(c) “magnitude sum”:

st(ij) ≡
∑Nt(ij)

l=1 M l
t(ij).

All three of these alternative definitions failed to give results significantly better

than the shuffled data that were robust in the various adjustable parameters.

To define a link between two grid squares, we calculate the Pearson product-

moment correlation coefficient r between the two time series associated with those

grid squares:

rx,y ≡
∑

i

(xi − µx)(xi − µy)

σxσy
(4.1)

where µx, µy are the means and σx, σy are the standard deviations of the series x, y.

We consider the two grid squares linked if this cross-correlation is larger than

a specified threshold value rc, where rc is a tunable parameter. As is standard in

network-related analysis, we define the degree k of a node to be the number of links

the node has. Note that because our signal definition involves an exponentiation of

numbers of order 1, energy released, and therefore the cross-correlation between two

signals is dominated by large events. Examples of signals with high correlation are

shown in Fig 5.1.

To confirm the statistical significance of rx,y, we compare rx,y of any two given

signals with rx,y calculated by shuffling the time orders of one of the signals. We

also compare rx,y with the cross-correlation rx,y(τ) we obtain by time-shifting one of

the signals by varying time increments τ , rx,y(τ) ≡ r(s1,t, s2,t+τ ), where we impose

periodic boundaries t+ τ ≡ (t+ τ) mod tmax where tmax is the length of the series.
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We find that either shifting or shuffling the signal reduces cross-correlation to very

low levels (Fig. 5.2). Over the 14-year time period 1985-1998, the overall observed

activity increased in the areas covered by the catalog. To ensure that the cross-

correlations we calculate are not simply the result of trends in the data, we compare

our results to those obtained with linearly detrended data [19]. We find that the

trends do not have a significant effect. For example, using rc = 0.7, we obtain 815

links, while detrending the data results in only 3 links dropping below the threshold

correlation value. For rc = 0.6, we obtain 1003 links, while detrending results in only

3 links dropped. Additionally after detrending, 94% of correlation values stay within

2% of their values.



Chapter 5

Results

As described above, we compare rx,y ≡ rx,y(0) between signals at different loca-

tions at the same point in time with rx,y(τ). Even time-shifting by a single time

step (representing 90 days) reduces the cross-correlation to within the margin of

significance, as shown in Fig. 5.2. We also find a large number of links with cross-

correlations far higher than their shuffled counterparts. The number of links exceed

those of time-shuffled data by roughly 2-4 σ, depending on choice of rc as shown in

Fig. 5.3.

As can be seen in Fig. 5.4, a significant fraction of these links connect nodes further

than 1000 km apart, which is consistent with the finding that there is no characteristic

cut-off length for interactions between events [14]. This is corroborated by Fig. 5.6,

showing the number of links a network has at a given distance as a fraction of the

number of links that are geometrically possible. Distances shorter than 100km have

sparse statistics due to the coarseness of the grid while distances greater than 2300km

have sparse statistics due to the finite spatial extent of the catalog.

Our results, shown in Fig. 5.4, are anisotropic, with the majority of links occurring

at approximately 37.5 degrees east of north, which is roughly along the principal axis

of Honshu, Japan’s main island, and parallel to the highly active fault zone formed

by the subduction of the Pacific and Philippine tectonic plates under the Amurian

and Okhotsk plates. High degree nodes (i.e. nodes with a large number of links) tend

to be found in the northeast and north-central regions of the catalog.
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Figure 5.1: (Color online) Examples of highly correlated signals, values of (i,j)

marked above: (a) Two signals with correlation r=0.9617, 878km apart, (b) corre-

sponding Pearson correlation as a function of time offset. Note that because the signal

is defined in terms of exponentiation that large events dominate the correlation, just

as large events dominate the total energy released.

Additionally, in network science we often characterize networks by the preference

for high-degree nodes to connect to other high-degree nodes. The strength of this

preference is quantified by the network’s assortativity, with assortativity being defined

as:

A ≡ rk1,k2 (5.1)

where each link i in the network is described as a link between a node of degree

k1(i) and k2(i), and r is the Pearson product-moment correlation coefficient as defined

in Equation 4.1. Hence, if each node of degree k connects only to nodes of the same

degree, the two series k1 and k2 will be identical and A=1.

As shown in Fig 5.5, the networks that result from our procedure are highly

assortative with assortativity generally increasing with rc. For comparison we show

the assortativity obtained by using the time shuffled networks. Since assortativity of

the original networks is far higher than those of shuffled systems, the high assortativity

cannot be due to a finite size effect or the spatial clustering displayed in the data (time

shuffling preserves location).
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Figure 5.2: (Color online) Testing the statistical significance of cross-correlations.

For each pair of signals with a correlation larger than rc, we shift one of the signals in

time and calculate the new correlation. Offsetting the signals in time results in lower

cross-correlation, dropping to the level of noise in the actual data. As a control, we

shuffle the signals and calculate the cross-correlation for different time shifts (shown

below each figure). Cross-correlation between various pairs of signals vs. time offset.

Shown are links for which (a) r(0) ≥ rc = 0.7 and (b) r(0) ≥ rc = 0.9.
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Figure 5.3: (Color online) Demonstration that empirical data show far more links

than time shuffled data. In black is the distribution of the number of links obtained in

the network after time shuffling the data. A link corresponds to a correlation between

two signals ≥ rc (shown rc = 0.8. Results are similar for other values of rc.) Actual

results (red online) are greater than 4σ from the mean of the shuffled distribution.
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Figure 5.4: (Color online) Network links superimposed on a map of the Japanese

archipelago, including Japan’s main island Honshu. Note that links are anisotropic

and primarily lie parallel to the principal axis of Honshu. Shown are links satisfying

r ≥ rc that are connected to high-degree nodes (k ≥ kmin). Darker colors (red online)

indicate stronger links (i.e. stronger correlations). Links shown satisfy (a) rc = 0.9,

kmin = 5, (b) rc = 0.8, kmin = 7, (c) rc = 0.7, kmin = 8, (d)rc = 0.5, kmin = 8. These

choices for rc and kmin give approximately 70, 70, 90, and 90 links respectively.
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Figure 5.5: (Color online) Demonstration that earthquake networks are highly assor-

tative for a wide range of rc, generally increasing with rc. Assortativity > 0 indicates

that high-degree nodes tend to link to high-degree nodes and low-degree nodes tend

to link to low-degree nodes. For comparison assortativity values obtained from net-

works using time-shuffled data demonstrate that these findings are not a finite-size

effect or a result of spatial clustering (time-shuffling preserves location).



20

100 1000
distance (km)

0.001

0.01

0.1
Fr

ac
tio

n 
of

 p
os

sib
le

 li
nk

s rc=0.1
rc=0.3
rc=0.5
rc=0.7
rc=0.9

Figure 5.6: (Color online) Number of network links at a given distance as a fraction

of how many links are geometrically possible at that distance, demonstrating that

links have no characteristic length scale. Distances less than 100km have sparse

statistics due to the coarseness of the spatial grid while distances greater than 2300km

have sparse statistics due to the finite spatial extent of the catalog.



Part III

Asymmetry in power-law

magnitude correlations



Chapter 6

Background

A familiar concept to many is the idea of a spatial fractal, as demonstrated, for

example, by the famous Koch snowflake or Mandelbrot set. As noted in Chapter 2,

seismic phenomena have also been shown to exhibit fractal behavior, both in the spa-

tial occurrence of earthquakes and in the fault systems embedded within the earth’s

crust.

The defining characteristic of such a fractal is that the object looks the same at

all scales, i.e. “zooming in” on any piece of the shape results in the reappearance of

the same shape. This kind of self-similarity is a staple of complex systems. Complex

systems have similar dynamics at a wide range of scales, which is necessarily fractal,

nearly by definition.

This type of scale-invariance extends beyond phenomena that are spatial in nature

to the temporal. While a simple signal is often characterized by two scales - the size

characterizing the phenomenon itself and the characteristic size of the background

noise - a complex signal like those of many financial indices and physiological data

has no such abrupt cutoff at any scale.The observed fluctuations display the same

behavior, no matter the scale at which the signal is examined. This self-similarity

manifests in the form of power-law autocorrelations embedded in the signal and can

be tested for using statistical techniques.

The outputs of a broad class of systems ranging from physical and biological,

to social systems exhibit either long-range temporal or spatial correlations that can
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be approximated by power laws [53, 57, 23]. A variety of studies have also found

that different complex systems spanning finance [24], physiology [25], and seismology

[26, 27] generate time series of increments, the absolute values (magnitudes) of which

are power-law correlated. The correlation of these magnitudes, results in “clustering”,

where large increments are more likely to follow large increments and small increments

are more likely to follow small increments. As a consequence of this, a simple random

walk model fails to fully describe the data.

Random walks are commonly utilized in physics as a null model hypothesis to

describe observed data. The data are compared to the statistical results of what can

be thought of as the motion of a severely intoxicated person[28]. At each discrete

time step the random walker has a probability p to step to the right and therefore a

probability 1− p to instead step to the left. In general, the sizes of the steps can also

be allowed to vary. Using the drunk stumbler as a heuristic, we can then characterize

the walk in terms of the total distance the walker is from the starting point, and

calculate quantities like, on average, where we would expect the walker to be, how far

the walker generally wanders over a certain time period, and the distance from the

starting point can be expected to depend on time. As a typical feature of the random

walk model, there is no memory in the walking process: the walker is so inebriated

that e.g. taking a step left has no effect on his subsequent step so that each step is

independent of the previous.

Because a variety of complex systems do display a memory, in that the result of

one step causes changes in what the next step is likely to be, a simple random walk

model misses important aspects of the data. To solve this problem, the random walk

model is generalized to capture this clustering regularity. The random walker now

continues to stumble left or right, but does so with a characteristic step size that

depends on time.

Thus, long-range magnitude correlations in increments xi are usually modeled us-

ing a time-dependent standard deviation, σi [24], commonly called volatility, describ-

ing this characteristic step size. σi is defined as a linear combination of N previous

values of |xi−n|, i.e. σi = ΣN
n=1a(n)x

2
i−n, where i refers to the ith term and a(n) are

statistical weights. a(n) should be a decreasing function, e.g. power-law or exponen-

tial, since the most recent events (smaller n) intuitively contribute more than events
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from the distant past. Such a model is referred to as an Autoregressive conditional

heteroskedasticity (or ARCH) model[24].

Magnitude correlations were proposed in order to understand financial time series

[24]. Magnitude correlations of many financial time series [29] are asymmetric with

respect to increment sign, in that negative increments were more likely to be followed

by increments of large magnitude and positive increments were more likely to be

followed by increments with small magnitudes (i.e. “bad news” causes more volatility

than “good news”). Such an observation should not be surprising given the findings in

cognitive psychology that humans have a tendency to pay more attention to negative

inputs and experiences than positive ones. Such an attentional bias can manifest in

financial time series, where prices are influenced by human action[30][31].

If we are to model this asymmetry, the time-dependent standard deviation σi we

define must depend on both xi−n and |xi−n|, to capture the dependence of both sign

and magnitude. Since σi must be positive, we can define σi = Σna(n)(||xi−n|+λxi−n|),
where λ is a real parameter that acts as a measure of asymmetry. For λ > 0, positive

increments xi−1 are more likely to be followed by large increments |xi| (see Figs. 7.1

(a) and (b)), whereas for λ < 0, negative increments are more likely followed by large

increments. λ = 0 reduces to the symmetric σi above that has no dependence on the

sign of the increment.

We ask if the concept of asymmetry in magnitude correlations is relevant to real-

physical data. We first create a test allowing one to find if an observed asymmetry

is statistically significant. We then propose a stochastic process in order to (i) fur-

ther test significance, and (ii) model data as dependent on two parameters which

characterize both the length of the power-law memory and its magnitude correlation

asymmetry, parameters which we then demonstrate how to obtain. Finally, we apply

our test to real-world physiological data to determine if there is statistically significant

asymmetry in the magnitude correlations.



Chapter 7

Testing Statistical Significance

How would we know if an observed asymmetry is genuine and not due to a finite-

size effect? For example, a finite-length time series generated by an independent

and identically distributed (i.i.d.) (i.e., uncorrelated) process will exhibit a spurious

asymmetry. To this end, we ask how large should the asymmetry be to become

statistically significant? To answer this question, we generate i.i.d. series, and for

each we calculate two sums, S+ and S−. The sum S+ is the average of all the values

|xi| preceded by positive xi−1, while the sum S− is the average of all the values |xi|
preceded by negative xi−1. For an infinitely long i.i.d. time series, we expect S+ = S−,

while finite length time series in general have S+ '= S−.

We therefore define a test variable:

S ≡ S+ − S− . (7.1)

What is the range (−Sc, Sc) such that S will fall in this range 95% of the time?

To answer this question, we generate a large number of finite i.i.d time series, each

with N data points. For each time series we calculate S. We find on collecting all

the S values that S follows a symmetrical probability distribution P (S) centered at

zero. By ranking the values S from smallest to largest, we find a critical value Sc for

which there is probability 0.95 that the S of a random uncorrelated series is between

(−Sc, Sc). By repeating the same procedure for a different number of data points, in

Fig. 8.1 and in the inset, we find an almost perfect power-law fit relating the critical

value Sc to the number of data points with exponent 0.5 ± 0.006 in agreement with

the Central Limit Theorem.
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To find critical values for empirical series, we also use another approach of Ref. [27].

For a given series, we accomplish 104 reshufflings, where each reshuffled time series is

subtracted from the average and divided by its standard deviation. For each series,

we calculate S of Eq. 7.1. By ranking the values S in ascending order, we find Sc

for which there is probability 0.95 that the S is between (−Sc, Sc). By using this

approach, for subjects 2 and 8 we find Sc = 0.019 and Sc = 0.021, respectively.

We next argue that the interval (−Sc, Sc) found for a given N is a “litmus test” for

significance. If the empirically calculated S is found outside this interval, we consider

the asymmetry statistically significant. We calculate the values of Sc for various N

(Table 8.1 and Fig. 8.1).

Note that our test is model-independent — it measures asymmetry in magnitude

correlations, but assumes neither the memory in correlations (long or short) nor the

functional form of the correlation (e.g. power-law or exponential).

A concern is the possibility that in order to test significance of asymmetry in

power-law magnitude correlations, we should find the intervals (−Sc, Sc) not from

i.i.d., but from time series generated by symmetric magnitude correlations. To ad-

dress this concern, we create a stochastic process characterized by asymmetric power-

law correlations in the magnitudes |xi|

xi = σiηi, σi =
∞
∑

n=1

an(ρ)
||xi−n|+ λxi−n|
〈||xi−n|+ λxi−n|〉

, (7.2)

where ρ ∈ (0, 0.5) and λ ∈ (−1, 1) are free parameters, σi is a time-dependent stan-

dard deviation, an(ρ) are power-law distributed weights an(ρ) = Γ(n−ρ)/(Γ(−ρ)Γ(1+

n)) chosen to generate power-law correlations in the magnitudes |xi|. Γ(x) denotes

the Gamma function and ηi denotes i.i.d. Gaussian random variables with mean

〈ηi〉 = 0 and variance 〈η2i 〉 = 1. The parameter ρ controls the length of the power-law

memory, whereas the parameter λ controls the asymmetry in magnitude correlations.

When λ = 0, the process of Eq. 7.2 reduces to a fractionally integrated autoregressive

moving average (FIARCH) process with symmetric magnitude correlations [32] for

which α = 0.5 + ρ [33], where α is the exponent found from detrended fluctuation

analysis (DFA) [34]. We therefore call the process of Eq. 7.2 asymmetric FIARCH

process (AFIARCH).

Because we include all previous increments in σi of Eq. 7.2, our process is nec-
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essarily long-range correlated. We can also create a short-range correlated process

xi = σiηi by including only the most recent increment, so σi = (||xi−1| + λxi−1|). In

this paper, instead of ) = ∞, in Eq. 7.2 we use the cutoff length ) = 500.

By using the process of Eq. 7.2, we generate a number of time series and find

that the magnitude correlations quantified by the DFA exponent practically do not

depend on the parameter λ. To demonstrate this, Fig 7.1(b) shows DFA plots for

two fixed values of ρ and varying values of λ. We see that the DFA plots practically

overlap, and that α = 0.5 + ρ holds, as for the symmetric FIARCH process Eq. (7.2

with λ = 0 [32]). Thus, the asymmetric term in Eq. 7.2 (λ '= 0) practically does not

affect the correlation pattern of the magnitude time series.

We next return to our goal of determining the statistical significance of asymmetry.

We use the process of Eq. 7.2 with λ = 0 to generate a large number of time series

for various values of ρ and N . We then determine the test variable S of Eq. 7.1 for

each of these series. Ranking the values S from smallest to largest we find a critical

value Sc for which there is probability of 0.95 that the S from a finite symmetrically-

defined series falls between (−Sc, Sc). Varying both ρ and N , in Fig. 8.1 we obtain

four power-law fits relating the critical value Sc and the number of data points N . As

expected, the critical values for power-law correlated time series shown in Table 8.1

with ρ = 0.1 (“weak” power-law correlations) are practically the same as the critical

values obtained for i.i.d. time series. However, the stronger the correlation, the larger

the critical value Sc.

In order to estimate the parameter λ characterizing the asymmetry of a time

series, we employ the maximum likelihood estimation method [35]. One starts by

deriving a likelihood function that is an expression for the probability of obtaining a

given sample of N known observations (X1, X2, ..., XN ). We denote the probability

of obtaining the i-th observation Xi as P (Xi). Then the probability L of obtaining

our particular N observations is the product of the probability P (Xi) to obtain each

L =
N
∏

i=1

P (Xi). (7.3)

To make further progress, we need to posit a form for P (Xi). We assume the

incrementsXi are normally distributed P (Xi) = (2πσ2
i )

−1/2 exp(X2
i /2σ

2
i ) with a mean

0 and characterized by a time-dependent variance σ2
i which depends on the past values
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Figure 7.1: Asymmetry in magnitude correlations and detrended fluctuation func-

tion F (n). (b) We show that the increments are larger for xi−1 > 0 (top curve,

shifted upward for clarity) than for xi−1 < 0 (bottom curve) as a result of positive

λ. The time series is obtained from numerical simulations of the process of Eq. 7.2

with λ = 0.9 and ρ = 0.4. (c) Detrended fluctuation function F (n), where n is a

measure of window size, obtained from numerical simulations of process of Eq. 7.2

with λ = 0.3, 0.6, and 0.9 and ρ = 0.2 and 0.4. For asymptotically large values of n,

each of the F (n) curves can be approximated by a power law F (n) ∝ nα with scaling

exponent α ≈ 0.5 + ρ independent of the value of λ.
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of Xi. In our case, all values of σi and all values of P (Xi) are characterized by only

two adjustable parameters (ρ, λ). Substituting the previous P (Xi) into Eq. 7.3, and

taking the logarithm we obtain the log-likelihood function for the sample [35]

lnL = −
1

2
N ln(2π)−

N
∑

i=1

[

ln(σi) +
1

2
X2

i /σ
2
i

]

. (7.4)

where σi is given by Eq. 7.2.



Chapter 8

Results

To illustrate the utility of the process of Eq. 7.2 for modeling real-world data, we

next analyze a large electroencephalography (EEG) database [36] comprising records

from 25 subjects randomly selected over a 6-month period at St. Vincent’s University

Hospital in Dublin [37]. EEG data are recorded every 0.8 s, so we obtain the number of

data points N between 22,000 and 30,000 (Table 8.2). Time series of EEG magnitudes

exhibit power-law long-range correlated behavior [38, 39].

From each original time series we subtract the average. From Tables 8.1 and 8.2 we

see that our test of Eq. 7.1 with probability 0.95 confirms the existence of asymmetry

in magnitude correlations. The test for each subject is outside the range (−Sc, Sc)

for a given N . For example, for subject 02, characterized by N = 28, 000 (close to

32,000 in Table 8.1) and ρ = 0.27 (close to 0.3 in Table 8.1) we find S = −0.024

that is outside the range we obtained for i.i.d. process (−0.014, 0.014), process with

symmetric power-law magnitude correlations (−0.019, 0.019), and the approach of

Ref. [27] (−0.019, 0.019).

By minimizing Eq. 7.4, we estimate ρ and λ for each subject (Table 8.2) where

we choose a normal pdf P (x) for EEG data. Commonly one uses a normal pdf when

using log-likelihood approach. In order to check if some other choice for P (x) would

be more appropriate, next we analyze pdf P (x) of empirical data [36]. In Fig. 8.2 we

see that for most of the empirical time series, P (x) in the broad central region follows

not normal, but Laplace distribution P (Xi) = 1/
√
2σ exp(−

√
2(x− x)/σ), where σ
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Figure 8.1: To utilize the test from Eq. (7.1), we show that the critical value Sc

follows a power law with respect to sample size N . In order to apply the test for

empirical time series, we calculate values Sc for different value of N . We generate 106

i.i.d. time series for such N and for each series we calculate the test S. We rank all

the S values from smallest to largest and find the Sc for which there is probability 0.95

that the S of a generated series is between (−Sc, Sc). We repeat the same procedure

for different values of N . We obtain a power law (inset) Sc ∼ AN−α between Sc and

N , where α = 0.5 and A = 2.16. We repeat the procedure for Sc values for the process

of Eq. (7.2) when λ = 0 (FIARCH), a symmetric process in magnitude correlations.

For four different values of ρ we obtain power law relations between Sc and N .
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Figure 8.2: The pdf in the log-linear plot for each of 20 EEG time series out of total

25 time series [36] comprising records from 20 subjects. Each pdf approximately

follows the Laplace distribution. We also show the pdf of subject 10 whose tails due

to bumps deviate from the Laplace pdf.

is the standard deviation. For 5 subjects, P (x) exhibit some bumps in the tail parts.

Next we follow the procedure of Eq. 7.3, but this time with Laplace P (x). We

find that the parameters ρ and λ change quantitatively, but not qualitatively (see

Table 8.2) — the sign of λ does not change by replacing normal P (x) by Laplace

P (x).

To further test the statistical significance of asymmetry in magnitude correla-

tions found in the data, we employ another process known as asymmetric GARCH

(AGARCH) process [29]. This process is characterized by an exponentially decaying

auto-correlation function

σ2
i = ω + α(|xi−1|+ λ1xi−1)

2 + βσ2
i−1, (8.1)

where α, β, ω, and λ1 are the free AGARCH parameters and λ1 is an asymmetry

parameter similar to the one in Eq. 7.2. The last column in Table 8.2 shows our

estimate for λ1 (and two standard errors).
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Note that the estimates λ and λ1 for AFIARCH and AGARCH, respectively,

calculated for different subjects are very closely related. We obtain λ = −0.029 +

1.232λ1, where 0.120 is the standard error of the slope coefficient. Differences are ex-

pected since the AFIARCH is characterized by power-law magnitude correlations (see

Fig. (7.1(b)), while the AGARCH process is characterized by exponential magnitude

correlations. From the results obtained for the AGARCH process, the asymmetry pa-

rameter λ1 is statistically insignificant (within two standard errors) only for subjects

7, 8, 10, 12 and 21. Discrepancy between the results obtained from the test of Eq. 7.1

and the stochastic process of Eq. 8.1 is likely explained by the fact that the test of

Eq. 7.1 measures only asymmetry in magnitude correlations, and does not assume

either (i) the functional form of the magnitude correlations or (ii) their long-range

nature, whereas our stochastic process imposes both.

From the analysis of individual time series, we conclude that magnitude corre-

lations in observed physiological data exhibit significant asymmetry. However, uni-

versality is not confirmed. From the values of λ in Table 8.2 obtained for different

subjects, we calculate the average λ — λ = −0.022 ± 0.11. The spread of values of

the asymmetry parameter λ suggests that the asymmetry does not show universality.

However, based on the findings of [25], which showed statistical differences between

healthy and diseased subjects, the average λ and its standard deviation σ might also

show significant differences between diseased and healthy subjects. Consequently,

the present analysis and proposed test may have potential to be useful for diagnostic

purposes.
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Table 8.1: Critical values Sc obtained for an i.i.d. process and for the process of

Eq. 7.2 with λ = 0. Due to finite-size effects, even these two processes may have

non-zero values for S. In order to be considered significant asymmetry, we demand

that the empirically calculated S (see Table 8.2) is outside the interval (−Sc, Sc).

N i.i.d. ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4

500 0.105 0.106 0.118 0.141 0.222

2,000 0.053 0.054 0.063 0.076 0.131

8,000 0.027 0.027 0.029 0.039 0.070

32,000 0.014 0.014 0.016 0.019 0.037

Table 8.2: Subjects shown in column 1 are designated as in Ref. [36]. We show only

a few subjects. Statistics for all subjects available on request. Column 2 shows the

number N of data points, while column 3 displays the results obtained for the test of

Eq. 7.1. In columns 4 and 5 are the estimates for ρ and λ of the AFIARCH process

of Eq. 7.2 obtained after likelihood minimization of Eq. 7.4 with Gaussian pdf. In

columns 6 and 7 are the AFIARCH estimates for ρ and λ with Laplace pdf. In the

last column we show the AGARCH λ1 estimate.

subject N S ρG λG ρL λL AGARCH λ1

02 28,000 -0.024 0.27 0.20 0.30 0.09 0.170± 0.01

06 30,000 0.015 0.24 -0.02 0.22 -0.01 −0.085± 0.010

08 24,000 0.070 0.28 0.02 0.27 0.03 −0.002± 0.012

10 24,000 0.028 0.24 0.10 0.26 0.13 0.023± 0.022

24 25,000 0.003 0.20 -0.08 0.19 -0.08 −0.062± 0.012

28 27,000 0.028 0.24 -0.12 0.25 -0.06 −0.115± 0.010



Part IV

Comparison between response

dynamics in transition and

developed economies



Chapter 9

Background: Volatility Asymmetry

The focus of econophysics is marrying economics to physics by importing tech-

niques and concepts from the latter to the former. However, one must be cautious in

doing so, since a number of generalizations that can be taken for granted in physics

do not extend to economics.

i) A physics law discovered in the U.S. presumably holds universally over the

entire Earth. By contrast, few expect such country invariance to hold in economics,

since economics laws tend to depend on the wealth level of a country. For example,

the hypothesis of the weak form of market efficiency [40], which assumes that stock

prices at any future time cannot be predicted, holds in many large developed markets,

even as evidence of violation has been found in ten transition (developing) economies

in Eastern and Central Europe [43, 44]. Also, highly developed economies [46, 47,

48, 49] and those of different levels of aggregation (continents) [50] display power-law

probability distributions in their price fluctuations. However, analysis of the Indian

National Stock Exchange may instead show exponential distributions. [45]

ii) There is no guarantee that economics laws are time-independent, even for

countries of a given level of wealth. Just how time-dependent economics laws are

remains under investigation.

We seek here to explore (i) the extent to which economics laws depend on both

level of economic development and (ii) time.

To review from Chapter 5, many complex systems exhibit temporal or spatial cor-

relations that can be approximated by power-law scaling [53, 54, 55, 56, 57, 23, 58, 59],
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and a range of stochastic models [60, 61, 62, 63] have been proposed to explain this

scale invariance. Recent studies have reported that power-law correlations in empiri-

cal data are often characterized by a significant skewness or asymmetry in the distri-

butions of increments. Examples include astrophysical data [64], genome sequences

[65], respiratory dynamics [66], brain dynamics [67], heartbeat dynamics [68], turbu-

lence [69], physical activities, finance [70, 71, 72], and geophysics weather data [73].

Besides power-law correlations in the increments, different complex systems exhibit

power-law correlations in the absolute values of increments. Examples include finance

[24, 74], physiology [25], and seismology [26, 27]. Applications for this phenomenon

are particularly salient in finance because the absolute values measure the level of

financial risk.

As was mentioned in Chapter 5, the autoregressive conditionally heteroscedastic

(ARCH) process models such time series as a random walk with variable-sized steps.

The size of these steps (called the “volatility”) in the simple ARCH model is de-

pendent only on the previous terms in the series[24]. The time dependence is thus

captured by defining the volatility at a given point to be dependent on the previous

increments in the series. The question arises of whether this volatility is dependent

not only on the magnitude of preceding increments but also on their sign. Commonly,

stockholders may not react equally to bad news (negative price increments) as com-

pared to good news (positive price increments). Again, this observation corroborates

what one would intuitively expect from findings in cognitive psychology, demonstrat-

ing the perceptual bias of humans to spend more attention on negative inputs than

equally significant positive ones.[30][31]

Many extensions of original ARCH process [24] and its generalization (GARCH

[74]) have been subsequently defined in order to incorporate such “asymmetry” [75, 76]

(see Sec. III), which have shown significant asymmetry in a variety of developed

markets [76, 24, 77, 78, 79, 80].

We ask how universal the phenomenon of volatility asymmetry is in global markets,

particularly in transition economies, which often show different statistics than devel-

oped economies. For example, in contrast to the predominant behavior of financial

time series of developed markets to exhibit only very short serial auto-correlations

in price changes, financial time series of Central and Eastern European transition
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economies exhibit longer memory [81, 82, 83, 44]. If the volatility asymmetry exists

in transition economies, is it persistent or does it change over time? Likewise, what

can we say about the persistence of volatility asymmetry in developed economies?



Chapter 10

Asymmetry model

Here, we extend the study [80] of volatility asymmetry to Central and Eastern Eu-

ropean transition economies using a generalization of the ARCH process, finding that

most of the indices under investigation also display statistically significant volatility

asymmetry. Surprisingly, we find that such asymmetry is far more pronounced during

the 2007-2009 world financial crisis than for the preceding eight years, indicating a

greater universality of asymmetric market response during times of shared economic

adversity.

Here, we investigate financial time series of index returns of eleven European tran-

sition economies of Central and Eastern Europe. Specifically, we analyze eleven stock

market indices—PX (of the Czech Republic), BUX (Hungary), WIG (Poland), RTS

(Russia), SKSM (Slovakia), SVSM (Slovenia), CRO (Croatia), NSEL30 (Lithuania),

TALSE (Estonia), RIGSE (Latvia), and PFTS (Ukraine)—each corresponding to one

of the eleven transition economies. As a representative of developed economies, we

consider the U.S. stock market, analyzing three financial indices: the S&P500, NYSE,

and NASDAQ. All data are recorded daily. As is common in economics, we define

the relative price change (also called the return) in terms of the stock price S(t) as

Rt ≡ log S(t+∆t)− log S(t), (10.1)

where ∆t = 1 corresponds to a time lag of one day. The increments used in time

series are the returns with the average return subtracted so that the resulting series

has a mean of zero.
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To estimate the parameter γ quantifying the volatility asymmetry of a time se-

ries, we employ the maximum likelihood estimation (MLE) method to ascertain which

parameter values optimize the probability of a stochastic process to reproduce the ob-

served time series. We start by deriving a likelihood function that is an expression for

the probability of observing a given sample of N known data points (X1, X2, ..., XN ).

We denote the probability of obtaining the i-th data point Xi as P (Xi). Then the

probability L of obtaining our particular N data points is the product of the proba-

bility P (Xi) to obtain each

L =
N
∏

i=1

P (Xi). (10.2)

The most widely used volatility processes are based on the ARCH approach.

The GARCH(1,1) and ARCH(n) processes, for example, have the volatility, or time-

dependent standard deviation, expressed by the squares of the increments, a choice

which necessarily loses information because it eliminates the ability to explore if

the volatility has any dependence on the sign of an increment. In order to account

for the possible asymmetric dependence on an increment’s sign, different variants of

GARCH processes have been proposed. Here we employ GJR GARCH(p,q) [75], a

process that incorporates this asymmetry. In order to model long memory in volatil-

ity auto-correlations, the current volatility σt depends on p prior volatilities σt−i and

q prior fluctuations εt−i:

εt ≡ Rt − µ = σtηt, (10.3)

σ2
t = α0 +

q
∑

i=1

(αi + γTt−i)ε
2
t−i +

p
∑

i=1

βiσ
2
t−i, (10.4)

where t stands for time, µ is the mean of the relative price change, σt is the volatility,

ηt is random number chosen from a Gaussian distribution with a standard deviation

of 1 and mean equal to 0. The coefficients α and β are determined by MLE and

Tt = 1 if εt < 0, Tt = 0 if εt ≥ 0. The parameter γ is expected to be positive, meaning

that bad news (negative increments) enlarge volatility more than good news.
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Results

For the sake of simplicity, we set p = q = 1, as is commonly done, in all simulations

for the process. Note that this defines the volatility as a short-term parameter because

it results in Equation 10.4 only going back one term. We use the gretl package [84]. For

each of the 11 different indices of transition economies, during approximately the 10.5-

year period studied, we calculate the parameters of the GJR GARCH(1,1) process of

Eqs. 10.3-10.4 and present our results in Table 11. In the GJR GARCH process the

sum α+ β gives a measure of the volatility persistence. The smaller this sum is, the

longer the characteristic lifetime of the persistence. Based on these results, with the

exception of the Lithuanian NSEL30 index, all the indices exhibit volatility persistence

since the sum α+ β is close to 1. In addition, we find the asymmetry parameter γ to

be statistically significant to within two standard deviations for all indices except the

Slovakian SKSM and Estonian TALSE. We find the largest asymmetry parameter

γ for the Russian RTS and Lithuanian NSEL30 indices. These two markets are

characterized by the largest kurtosis (i.e. heaviest tails, corresponding to a higher

incidence of extreme events) and thus the largest volatility. In our study, this implies

that greater asymmetry corresponds with larger volatility, as found for some other

developed markets. For all the indices except SKSM and TALSE, we find that γ is

positive.

Next we ask whether the statistical properties concerning volatility asymmetry are

homogeneous. For comparison, DNA chains are not homogeneous in correlations in
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that long-range correlations exist only in intron-containing genes, and not in intron-

less genes [34]. Hence, we ask if these statistical properties are more pronounced, for

example, during market crashes and economic crisis.

To answer this question, we split the entire period, 12/31/98-07/10/09, into two

subperiods: a “control” period, 12/31/98-01/01/07, and a “crash” period, 01/01/07-

07/10/09, chosen to coincide with the world financial crisis. Note that the late-2000s

recession began in the United States in December 2007 and it was announced in July

2009 that the recession may have ended. The recession has been followed by the global

financial crisis. For each of 11 different indices, and for each subperiod, we estimate

the GJR GARCH(1,1) process of Eqs. 10.3-10.4 and present the results for α+β and

γ in Table 11.2. First we note that the parameter α + β changes little during these

two subperiods. Four indices—RTS, BUX, PX, SKSM, and NSEL30—for both sub-

periods exhibit significant volatility asymmetry. For five other indices—WIG, SVSM,

RIGSE, and CRO—the control subperiod is characterized by no statistically signif-

icant volatility asymmetry, while the crash period is characterized by statistically

significant volatility asymmetry. Note that the TALSE index exhibits no volatility

asymmetry in either subperiod. We also find that for all indices, except the Russian

index, the asymmetry parameter γ estimated for the last ≈2.5 year period character-

ized by 2007-2009 global recession and severe market crash is larger than γ estimated

for the previous less volatile eight-year period. In summary, the last ≈2.5 years of

the 2007-2009 world financial crisis are characterized by larger and statistically more

significant volatility asymmetry than the previous eight years.

Additionally, we compare the persistence of the auto-correlations in the transition

economies to that in developed economies by comparing the sum of the parameters

α + β. The smaller this sum is, the longer is the characteristic lifetime of the de-

pendence. Table 11.2 shows that the parameter α + β responsible for persistence in

auto-correlations, except for the CRO and NSEL30 indices, does not change much

for different subperiods. Note that the β parameter determines the weight applied to

the previous volatility, whereas the α parameter determines the weight applied to the

most recent news. In contrast to α+β, the parameter γ, which controls the volatility

asymmetry, changes substantially for different subperiods. In Fig. 11.1 we show how

γ estimated annually (by using ≈ 252 daily returns) for different indices changes over
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time. Fig. 11.1(a) shows the annual variation of γ for representative countries with

statistically significant γ for both subperiods. In Fig. 11.1(b) we show γ vs year for

countries with statistically significant γ only for the crash subperiod. In Fig. 11.1(b)

we find that γ substantially changes from positive to negative values.

For reference, we also compare our results to those of well-developed markets,

using the S&P 500, NASDAQ, and NYSE Composite indices. Applying our method

to the S&P 500 for the last 20 years in one-year intervals, we find that γ varies over

time, and is always positive. As an interesting result we find that the smallest γ

values occur in 2002 and 2007-2009 corresponding to the dot-com bubble crash and

current global recession respectively. We repeat our analysis, this time with two-year

intervals on the S&P 500, and we also include the NASDAQ and NYSE Composite

indices. Our results are shown in Fig. 11.2. We find the smallest γ values for 1982-

1983 and 1988-1989 periods, proximal to the 1982 recession and Black Monday in

1987, respectively. Restricting ourselves to the last decade, the smallest γ values again

occur in the time periods matching the dot-com crash and 2007-2009 recession. Due

to sample variability, we expect the asymmetry parameter γ to change over time. We

find, however, that for the well-known US indices γ tends to decrease during market

crashes and economic crises, time periods characterized by their large volatility.

Our results contradict the suggestion given by Refs. [85, 86] that a decrease in

overall volatility implies a decrease in asymmetry. However, our work is in agreement

with Ref. [87] where opposite results were found analyzing Asia-Pacific Stock Index

Returns. Ref. [87] found that high-volatility regimes (indicated by “fatter” tails

returns) are associated with relatively low asymmetry. We therefore are in a position

to confirm this finding for the leading US financial indices. The negative association

between volatility and asymmetry is obvious during both the dot-com bubble crash

and the 2007-2009 global recession.
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Table 11.1: Estimates of GJR GARCH(1,1) with standard errors in parenthesis.

index GARCH α1 + β1 α1 β1 γ Log-likelihood

RTS 0.981 0.065 (0.005) 0.905 (0.006) 0.276 (0.034) −5094

BUX 0.977 0.085 (0.008) 0.885 (0.010) 0.212 (0.030) −4923

WIG 0.990 0.055 (0.005) 0.932 (0.005) 0.140 (0.035) −4673

SKSM 0.996 0.037 (0.002) 0.959 (0.002) −0.021 (0.021) −4318

SVSM 0.962 0.314 (0.016) 0.648 (0.014) 0.105 (0.018) −2949

PX 0.979 0.116 (0.011) 0.846 (0.013) 0.234 (0.030) −4520

PFTS 0.931 0.184 (0.009) 0.748 (0.009) 0.015 (0.012) −5218

NSEL30 0.821 0.184 (0.016) 0.613 (0.021) 0.260 (0.030) −3365

RIGSE 0.956 0.219 (0.013) 0.738 (0.012) 0.075 (0.022) −3817

TALSE 0.999 0.098 (0.005) 0.910 (0.003) −0.016 (0.013) −3967

CRO 0.950 0.193 (0.014) 0.752 (0.016) 0.076 (0.022) −2941

Table 11.2: For two subperiods 1998/12/31 - 2006/01/01 and 2007/01/01 -

2009/07/10 we estimate the GJR GARCH(1,1) process with standard errors in paren-

thesis.
index α1 + β1 γ α1 + β1 γ

RTS 0.946 0.332 (0.049) 0.986 0.259 (0.053)

BUX 0.962 0.177 (0.036) 0.975 0.246 (0.068)

WIG 0.992 0.026 (0.044) 0.959 0.465 (0.201)

SKSM 0.967 −0.075 (0.040) 0.999 0.139 (0.038)

SVSM 0.893 0.015 (0.024) 0.932 0.231 (0.045)

PX 0.957 0.203 (0.042) 0.975 0.257 (0.055)

PFTS 0.865 0.007 (0.017) 0.979 0.025 (0.028)

NSEL30 0.751 0.156 (0.053) 0.692 0.308 (0.061)

RIGSE 0.953 −0.020 (0.026) 0.927 0.275 (0.053)

TALSE 0.999 −0.035 (0.019) 0.999 0.042 (0.024)

CRO 0.788 −0.087 (0.040) 0.979 0.164 (0.041)
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Table 11.3: For two subperiods 1998/12/31 - 2006/01/01 (subscript 1) and

2007/01/01 - 2009/07/10 (subscript 2) we show the standard deviation and the GJR

GARCH(1,1) estimation.

index σ1 σ2 γ1 γ2

RTSI 1.469 3.002 0.3651 0.2547

BUX 1.467 2.155 0.1977 0.2278

WIG 1.357 1.723 0.0173 0.4994

SKSM 1.312 1.076 -0.0832 0.0972

SVSM 0.657 1.573 0.0026 0.4255

PX 1.242 2.236 0.2232 0.2782

PFTS 1.660 2.164 -0.050 0.0631

NSEL30 0.835 1.779 0.2337 0.3461

RIGSE 1.555 1.570 -0.0531 0.3251

TALSE 1.078 1.431 -0.0558 0.0891

CRO 1.130 2.060 -0.1078 0.2053

DOWJ 1.069 1.794 1.0170 0.4410

SP500 1.110 1.968 0.9802 0.4475

FTSE100 1.125 1.794 1.3776 0.4966
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Figure 11.1: Changes of the volatility asymmetry parameter γ each year over the

20-year period 1989-2009. (a) For transition economies γ for both subperiods (crisis

and control) changes over time. (b) The same, but for countries with statistically

significant γ only for the crisis subperiod. The parameter γ substantially changes

from positive to negative values. (c) As a representative for developed markets, we

use the S&P 500 index. Over the last 20 years, γ values vary over time, but γ is

always positive. The local minima for γ values we obtain during dot-com bubble

crash and during the 2007–2009 global crisis.
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Figure 11.2: Changes of the volatility asymmetry parameter γ, calculated every two

years over the 27-year period 1980-2008 for three developed markets: (a) NASDAQ,

(b) NYSE, and (c) S&P500. Note the local minima for γ values during Black Monday,

the dot-com bubble crash, and during the 2007–2009 global crisis. The late-2000s

recession began in the United States in December 2007.



Part V

Statistical laws governing

fluctuations in word use

from word birth to word death



Chapter 12

Background and Introduction

A number of arenas of competition demonstrate complexity in the form of scaling

power laws. Again there is no characteristic size for many of the observed statistics

because of the underlying hierarchy. This hierarchy has been shown e.g. in profes-

sional sports, academic careers, popular musical success, sexual activity, and in simple

business competition, and follows from the so-called “Matthew effect”, wherein the

winners of a previous round of competition gain a probabilistic advantage for the

next, creating a feedback loop in which a few players dominate (e.g. Babe Ruth,

Google, Lady Gaga) and the majority play out at a more modest level, often obeying

a power-law distribution among the big players[88, 89, 90, 91].

Within the context of language as a natural competitive arena between various

words competing for reader attention, we extend the same line of investigation in

competitive dynamics. We judge each word’s success by how often the word is used

relative to other words, an attribute which can convey information about the word’s

linguistic utility. For this approach to be meaningful, clearly, large amounts of data

are necessary.

Several statistical laws describing the properties of word use, such as Zipf’s law

[92, 93, 94, 95, 96, 97] and Heaps’ law [98, 99], have been exhaustively tested and

modeled. However, since these laws are based on static snapshots aggregated over

relatively small time periods and derived from corpora of relativity small size - from

individual texts [92, 93] to collections of topical texts [94] and a relatively small

snapshot of the British corpus [95] - little is known about the dynamical aspects of
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language, including whether statistical regularities also occur in the time domain.

Do words, in all their breadth and diversity, display common patterns that are

consistent with fundamental classes of competition dynamics? The data resulting

from massive book digitization efforts allows us for the first time to probe this question

in depth. Specifically, Google Inc. has recently unveiled a database of words, in

seven languages, after having scanned approximately 4% of the world’s books [100].

The massive project [101] allows for a novel view into the growth dynamics of word

use and the birth and death processes of words in accordance with evolutionary

selection laws [102]. Our focus is quantity ui(t), the number of uses of word i in

year t, which we regard as a proxy for the word’s underlying linguistic value. Using

the comprehensive Google dataset, we are able to analyze the growth of ui(t) in a

systematic way for every word digitized over the 209-year time period 1800 – 2008 for

the English, Spanish, and Hebrew text corpuses, which together comprise over 1×107

distinct words. This period spans the incredibly rich cultural history that includes

several international wars, revolutions, and a number of paradigm shifts in technology.

Here we use concepts from economics to gain quantitative insights into the role of

exogenous (external) factors on the evolution of language, and we use methods from

statistical physics to quantify the role of correlations both across words[106, 107, 108]

and within a word itself. [103, 104, 105]

Since the number of books and the number of distinct words have grown dramat-

ically over time (Fig. 12.1), we work mostly in terms of the relative word use, fi(t),

(which we also refer to as the “fitness”) defined as the fraction of uses of word i out

of all word uses in the same year,

fi(t) ≡ ui(t)/Nu(t) , (12.1)

where Nu(t) ≡
∑Nw(t)

i=1 ui(t) is the total number of indistinct word uses digitized from

books printed in year t, and Nw(t) is the total number of distinct words digitized

from books printed in year t. The relative use of a word depends on the intrinsic

grammatical utility of the word (related to the number of “proper” sentences that

can be constructed using the word), the semantic utility of the word (related to the

number of meanings a given word can convey), and the context of the word’s use. To

quantify the dynamic properties of word prevalence at the micro- scale and its relation
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Figure 12.1: Since 1800, the number of books and the number of words has under-

gone approximately constant exponential growth with about 2% and 1% respectively.

to socio-political factors at the macro- scale, we analyze the logarithmic growth rate

ri(t) ≡ ln fi(t+∆t)− ln fi(t) = ln
(fi(t+∆t)

fi(t)

)

, (12.2)

a measure inspired by economic growth theory.

We treat words with equivalent meanings but with different spellings (e.g. color

versus colour) as distinct words, since we view the competition among synonyms and

alternative spellings in the linguistic arena as a key ingredient in complex evolutionary

dynamics [109, 102]. A prime example of fitness-mediated evolutionary competition is

the case of irregular and regular verb use in English. By analyzing the regularization

rate of irregular verbs through the history of the English language, Lieberman et

al. [110] show that the irregular verbs that are used more frequently are less likely

to be overcome by their regular verb counterparts. Specifically, they find that the

irregular verb death rate scales as the inverse square root of the word’s relative use.

Additionally, in neutral null models for the evolution of language [111], the fitness is

the sole determining factor behind the survival capacity of the word in relation to its

competitors.

We note also that the forces impacting the fitness have changed significantly over

the years. With the advent spell-checkers in the digital era, words with spellings that
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a spell-checker deems as standardized now receive a significant boost in their fitness

at the expense of their “misspelled” counterparts. But not only “defective” words can

die: even significantly used words can go extinct. For example, Fig. 13.5 shows three

once-significant words, “Radiogram”, “Roentgenogram” and “Xray”, which competed

in the linguistic arena for the majority share of nouns referring to what is now com-

monly known as an “Xray.” The word“Roentgenogram” has since become extinct,

even though it was the most common term for several decades in the 20th century. It

is likely that two factors – (i) communication and information efficiency bias toward

the use of shorter words [112] and (ii) the adoption of English as the leading global

language for science – secured the eventual success of the word “Xray” by the year

1980.



Chapter 13

Results

Quantifying the birth rate and the death rate of words. Just as a new species

can be born into an environment, a word can emerge in a language. Evolutionary

selection laws can apply pressure on the sustainability of new words since there are

limited resources (here books) for the use of words. Along the same lines, old words

can be driven to extinction when cultural and technological factors limit the use of a

word, in analogy to the environmental factors that can limit the survival capacity of

a species by altering the ability of the species to obtain food in order to survive and

reproduce.

We define the birth year y0,i as the year t corresponding to the first instance of

fi(t) ≥ 0.05fm
i , where fm

i is median word use fm
i = Median{fi(t)} of a given word

over its recorded lifetime in the Google database. Similarly, we define the death year

yf,i as the last year t during which the word use satisfies fi(t) ≥ 0.05fm
i . We use the

relative word use threshold 0.05fm
i in order to avoid anomalies arising from extreme

fluctuations in fi(t) over the lifetime of the word.

The significance of word births ∆b(t) and word deaths ∆d(t) for each year t is

related to the size of a language. We define the birth rate rb and death rate rd by

normalizing the number of births and deaths in a given year t to the total number of

distinct words Nw(t) recorded in the same year t, so that

rb ≡ ∆b(t)/Nw(t) , (13.1)

rd ≡ ∆d(t)/Nw(t) .
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This definition yields a proxy for the rate of emergence and disappearance of words

with respect to their individual lifetime use. We restrict our analysis to words with

lifetime Ti ≥ 2 years and words with a year of first recorded use t0,i that satisfies the

criteria t0,i ≥ 1700, which biases for relatively new words in the history of a language.

Fig. 13.6 is a log-linear plot of the relative birth and death rates for the 208-year

period 1800–2007. The modern era of publishing, which is characterized by more

strict editing procedures at publishing houses and very recently computerized word

editing with spell-checking technology, shows a drastic increase in the death rate of

words, along with a recent decrease in the birth rate of new words. This phenomenon

reflects the decreasing marginal need for new words, consistent with the sub-linear

Heaps’ law exponent calculated for all Google 1-gram corpora in [113].

Fig. 13.6 illustrates the current era of heightened word competition, demonstrated

through an anomalous increase in the death rate of existing words and an anomalous

decrease in the birth rate of new words. In the past 10–20 years, the total number

of distinct words has significantly decreased, which we find is due largely to the

extinction of both misspelled words and nonsensical print errors, and simultaneously,

the decreased birth rate of new misspelled variations. This observation is consistent

with both the decreasing marginal need for new words and also the broad adoption of

automatic spell-checkers and corresponds to an increased efficiency in modern written

language. Figs. 13.1 and 13.7 show that the birth rate is largely comprised of words

with relatively large median fc (i.e. words that later became very popular) while

the death rate is almost entirely comprised of words with relatively small median fc

(words that never were very popular). Sources of error in the reported birth and

death rates could be explained by OCR (optical character recognition) errors in the

digitization process, which could be responsible for a certain fraction of the misspelled

words. Also, the digitization of many books in the computer era does not require

OCR transfer, since the manuscripts are themselves digital, and so there may be a

bias resulting from this recent paradigm shift. Nevertheless, many of the trends we

observe are consistent with the trajectories that extend back several hundred years.

Complementary to the death of old words is the birth of new words, which are

commonly associated with new social and technological trends. Such topical words

in modern media can display long-term persistence patterns analogous to earthquake
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shocks [114, 115], and can result in a new word having larger fitness than related

“out-of-date” words (e.g. log vs. blog, memo vs. email). Here we show that a com-

parison of the growth dynamics between different languages can also illustrate the

local cultural factors (e.g. national crises) that influence different regions of the world.

Fig. 13.8 shows how international crisis can lead to globalization of language through

common media attention. Notably, such global factors can perturb the participating

languages (here considered as arenas for word competition), while minimally affecting

the nonparticipating regions, e.g. the Spanish speaking countries during WWII, see

Fig. 13.8(a). Furthermore, we note that the English corpus and the Spanish corpus

are the collections of literature from several nations, whereas the Hebrew corpus is

more localized.

The lifetime trajectory of words. Between birth and death, one contends with the

interesting question of how the use of words evolve when they are “alive”. We focus

our efforts toward quantifying the relative change in word use over time, both over

the word lifetime and throughout the course of history. In order to analyze separately

these two time frames, we select two sets of words: (i) relatively new words with “birth

year” t0,i later than 1800, so that the relative age τ ≡ t− t0,i of word i is the number

of years after the word’s first occurrence in the database, and (ii) relatively common

words, typically with t0,i prior to 1800. We analyze dataset (i) words, summarized

in Table 13.1, so that we can control for properties of the growth dynamics that are

related to the various stages of a word’s life trajectory (e.g. an “infant” phase, an

“adolescent” phase, and a “mature” phase). For comparison, we also analyze dataset

(ii) words, summarized in Table 13.2, which are typically in a stable mature phase.

We select the relatively common words using the criterion 〈fi〉 ≥ fc, where 〈fi〉 is

the average relative use of the word i over the word’s lifetime Ti, and fc is a cutoff

threshold which we list in Table 13.2. In Table 13 we summarize the entire data for

the 209-year period 1800–2008 for each of the four Google language sets analyzed.

Modern words typically are born in relation to technological or cultural events,

such as “Antibiotics.” We ask if there exists a characteristic time for a word’s general

acceptance. In order to search for patterns in the growth rates as a function of

relative word age, for each new word i at its age τ , we analyze the “use trajectory”
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fi(τ) and the “growth rate trajectory” ri(τ). So that we may combine the individual

trajectories of words of varying prevalence, we normalize each fi(τ) by its average

〈fi〉 =
∑Ti

τ=1 fi(τ)/Ti over the word’s entire lifetime, obtaining a normalized use

trajectory f ′
i(τ) ≡ fi(τ)/〈fi〉. We perform the analogous normalization procedure for

each ri(τ), normalizing instead by the growth rate standard deviation σ[ri], so that

r′i(τ) ≡ ri(τ)/σ[ri] (see SI).

Since some words will die and other words will increase in use as a result of the

standardization of language, we hypothesize that the average growth rate trajectory

will show large fluctuations around the time scale for the transition of a word into

regular use. In order to quantify this transition time scale, we create a subset {i |Tc}
of word trajectories i by combining words that meets an age criteria Ti ≥ Tc. Thus,

Tc is a threshold to distinguish words that were born in different historical eras and

which have varying longevity. For the values Tc = 25, 50, 100, and 200 years, we select

all words that have a lifetime longer than Tc and calculate the average and standard

deviation for each set of growth rate trajectories as a function of word age τ . In

Fig. 13.9 we plot σ[r′i(τ |Tc)] which shows a broad peak around τc ≈ 30–50 years for

each Tc subset. Since we weight the average according to 〈fi〉, we conjecture that

the time scale τc is associated with the characteristic time for a new word to reach

sufficiently wide acceptance that the word is included in a typical dictionary. The

results of computing the mean first passage time to the critical frequency fc (i.e. the

average time a word requires to achieve a critical amount of usage from its birth year)

corroborate this conjecture (Fig. 13.9).

Empirical laws governing the growth rates of word use. How much do the

growth rates vary from word to word? The answer to this question can help dis-

tinguish between candidate models for the evolution of word utility. Hence, we an-

alyze the probability density function (pdf) for the normalized growth rates R ≡
r′i(τ)/σ[r

′(τ |Tc)] so that we can combine the growth rates of words of varying ages.

The empirical pdf P (R) shown in Fig. 13.10 is remarkably symmetric and is centered

around R ≈ 0, just as is found for the growth rates of institutions governed by eco-

nomic forces [116, 117, 118, 119]. Since the R values are normalized and detrended

according to the age-dependent standard deviation σ[r′(τ |Tc)], the standard deviation

by construction is σ(R) = 1.
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A candidate model for the growth rates of word use is the Gibrat proportional

growth process [118], which predicts a Gaussian distribution for P (R). However,

we observe the “tent-shaped” pdf P (R) which is a double-exponential or Laplace

distribution, defined as

P (R) ≡
1√

2σ(R)
exp[−

√
2|R− 〈R〉|/σ(R)] . (13.2)

Here the average growth rate 〈R〉 has two properties: (a) 〈R〉 ≈ 0 and (b) 〈R〉 /
σ(R). Property (a) arises from the fact that the growth rate of distinct words is quite

small on the annual basis (the growth rate of books in the Google English database

is γw ≈ 0.011 calculated in [113]) and property (b) arises from the fact that R is

defined in units of standard deviation. The Laplace distribution predicts a pronounced

excess number of very large events compared to the standard Gaussian distribution.

For example, comparing the likelihood of events above the 3σ event threshold, the

Laplace distribution displays a five-fold excess in the probability P (|R− 〈R〉| > 3σ),

where P (|R−〈R〉| > 3σ) = exp[−3
√
2] ≈ 0.014 for the Laplace distribution, whereas

P (|R−〈R〉| > 3σ) = Erfc[3/
√
2] ≈ 0.0027 for the Gaussian distribution. The large R

values correspond to periods of rapid growth and decline in the utility of words during

the crucial “infant” and “adolescent” lifetime phases. In Fig. 13.10(b) we also show

that the growth rate distribution P (r′) for the relatively common words comprising

dataset (ii) is also well-described by the Laplace distribution.

For hierarchical systems consisting of units each with complex internal structure

[120] (e.g. a given country consists of industries, each of which consists of companies,

each of which consists of internal subunits), a non-trivial scaling relation between the

standard deviation of growth rates σ(r|S) and the system size S has the form

σ(r|Si) ∼ S−β
i . (13.3)

The theoretical prediction in [120, 121] that β ∈ [0, 1/2] has been verified for several

economic systems, with empirical β values typically in the range 0.1 < β < 0.3 [121].

Since different words have varying lifetime trajectories as well as varying rela-

tive utilities, we now quantify how the standard deviation σ(r|Si) of growth rates r

depends on the cumulative word frequency

Si ≡
Ti
∑

τ=1

fi(τ) (13.4)
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of each word. To calculate σ(r|Si), we group words by Si and then calculate the

standard deviation σ(r|Si) of the growth rates of words for each group. Fig. 13.11(b)

shows scaling behavior consistent with Eq. 13.3 for large Si, with β ≈ 0.10 – 0.21

depending on the corpus. A positive β value means that words with larger cumulative

word frequency have smaller annual growth rate fluctuations. The emergent scaling

is surprising, given the fact that words do not have internal structure, yet still display

the analogous growth patterns of larger economically-driven institutions that do have

complex internal structure. To explain this within our framework of words as analogs

of economic entities, we hypothesize that the analog to the subunits of word use are

the books in which the word appears. Hence, Si is proportional to the number of

books in which word i appears. As a result, we find β values that are consistent

with nontrivial correlations in word use between books. This phenomenon may be

related to the fact that books are topical [94], and that book topics are correlated

with cultural trends.

Quantifying the long-term cultural memory. Recent theoretical work [122]

shows that there is a fundamental relation between the size-variance exponent β and

the Hurst exponent H which quantifies the auto-correlations in a stochastic time

series. The unexpected relation 〈H〉 = 1 − β > 1/2 (corresponding to β < 1/2)

indicates that the temporal long-term persistence, whereby on average large values are

followed immediately by large values and smaller values followed by smaller values,

can manifest in non-trivial β values (i.e. β '= 0 and β '= 0.5). Thus, the fi(τ) of

common words with large Si display strong positive correlations and have β values

that cannot be explained by a either a Gibrat proportional growth, which predicts

β = 0, or a Yule-Simon Urn model, which predicts β = 0.5.

To test this connection between memory (H '= 1/2) and size-variance scaling

(β < 1/2), we calculate the Hurst exponent Hi for each time series belonging to the

more relatively common words analyzed in dataset (ii) using detrended fluctuation

analysis (DFA) [123, 124, 122]. We plot the relative use time series fi(t) for the words

“polyphony,” “Americanism,” “Repatriation,” and “Antibiotics” in Fig. 13.2A, along

with DFA curves (see SI section) from which H is derived in Fig. 13.2B. The Hi

values for these four words are all significantly greater than Hr = 0.5, which is the
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expected Hurst exponent for a stochastic time series with no temporal correlations.

In Fig. 13.3 we plot the distribution of Hi values for the English fiction corpus and the

Spanish corpus. Our results are consistent with the theoretical prediction 〈H〉 = 1−β

established in [122] relating the variance of growth rates to the underlying temporal

correlations in each fi(t). This relation shows that the complex evolutionary dynamics

we observe for words use growth is fundamentally related to the dynamics of cultural

topic formation [125, 105, 114, 115] and dynamic bursting [126, 127].
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Figure 13.1: The birth and death rates of a word depends on the relative

use of the word. For the English corpus, we calculate the birth and death rates

for words with median lifetime relative use Med(fi) satisfying Med(fi) > fc. The

difference in the birth rate curves corresponds to the contribution to the birth rate

of words in between the two fc thresholds, and so the small difference in the curves

for small fc indicates that the birth rate is largely comprised of words with relatively

large Med(fi). Consistent with this finding, the largest contribution to the death

rate is from words with relatively low Med(fi). By visually inspecting the lists of

dying words, we confirm that words with large relative use rarely become completely

extinct (see Fig. 13.5 for a counterexample word “Roentgenogram” which was once

a frequently used word, but has since been eliminated due to competitive forces with

other high-fitness competitors).
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Figure 13.2: Measuring the social memory effect using the trajectories of

single words. (a) Four example fi(t), given in units of the average use 〈fi〉, show
bursting of use as a result of social and political “shock” events. We choose these four

examples based on their relatively large Hi > 0.5 values. The use of “polyphony” in

the English corpus shows peaks during the eras of jazz and rock and roll. The use

of “Americanism” shows bursting during times of war, and the use of “Repatriation”

shows an approximate 10-year lag in the bursting after WWII and the Vietnam War.

The use of the word “Antibiotics” is related to technological advancement. The top 3

curves are vertically displaced by a constant so that the curves can be distinguished.

(b) We use detrended fluctuation analysis (DFA) to calculate the Hurst exponent Hi

for each word to quantify the long-term correlations (“memory”) in each fi(t) time

series. Fig. 13.3 shows the probability density function P (H) of Hi values calculated

for the relatively common words found in English fiction and Spanish, summarized

in Table 13.2.
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Figure 13.3: Hurst exponent indicates strong correlated bursting in word

use. Results of detrended fluctuation analysis (DFA)[123, 124, 122] on the common

[dataset (ii)] words analyzed in Fig. 13.10(b) show strong long-term memory with

positive correlations (H > 0.5), indicating strong correlated bursting in the dynamics

of word use, possibly corresponding to historical, social, or technological events. We

calculate 〈Hi〉 ± σ = 0.77 ± 0.23 (Eng. fiction) and 〈Hi〉 ± σ = 0.90 ± 0.29 (Span-

ish). The size-variance β values calculated from the data in Fig. 13.11 confirm the

theoretical prediction 〈H〉 = 1− β. Fig. 13.11 shows that βEng.fict ≈ 0.21± 0.01 and

βSpa. ≈ 0.10± 0.01. For the shuffled time series, we calculate 〈Hi〉± σ = 0.55± 0.07

(Eng. fiction) and 〈Hi〉± σ = 0.55± 0.08 (Spanish), which are consistent with time

series that lack temporal ordering (memory).
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Figure 13.4: Statistical laws for the growth trajectories of new words. The

“trajectory” of a words gives the word’s popularity over its life. We show the word

trajectories for dataset (i) words in the English corpus, although the same qualitative

results hold for the other languages analyzed. Tc denotes the lower bound on a word’s

lifetime (i.e. Ti ≥ Tc), so that two trajectories calculated using different thresholds

T (1)
c and T (2)

c only vary for τ < Max[T (1)
c , T (2)

c ]. The average is weighted according

to 〈fi〉. (a) The relative use increases with time, consistent with the definition of the

weighted average which biases towards words with large 〈fi〉. For words with large Ti,

the trajectory has a minimum around τ ≈ 40 years, possibly reflecting the amount of

time it takes to reach a critical fitness threshold of competition. (b) The variations

in 〈f(τ |Tc)〉 decrease with time reflecting the transition from the insecure “infant”

phase to the more secure “adult” phase in the lifetime trajectory. (c) The average

growth trajectory is qualitatively related to the logarithmic derivative of the curve in

panel (a), and confirms that the region of largest positive growth is τ ≈ 30–50 years.

(d) The variations in the average trajectory are largest for 30 <
∼ τ <

∼ 50 years and are

larger than 1.0 σ for 10 <
∼ τ <

∼ 80 years. Evidence shown in Fig. 13.9 supports that

this is the time period for a word to be accepted into a standard dictionary.
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Table 13.1: Summary of annual growth trajectory data for varying threshold Tc,

and sc = 0.2, Y0 ≡ 1800 and Yf ≡ 2008.
Annual growth R(t) dataCorpus,

(1-grams) Tc(years) Nt(words) % (of all words) NR(values) 〈R〉 σ[R]

English 25 302,957 4.1 31,544,800 2.4× 10−3 1.00

English fiction 25 99,547 3.8 11,725,984 −3.0× 10−3 1.00

Spanish 25 48,473 2.2 4,442,073 1.8× 10−3 1.00

Hebrew 25 29,825 4.6 2,424,912 −3.6× 10−3 1.00

English 50 204,969 2.8 28,071,528 −1.7× 10−3 1.00

English fiction 50 72,888 2.8 10,802,289 −1.7× 10−3 1.00

Spanish 50 33,236 1.5 3,892,745 −9.3× 10−4 1.00

Hebrew 50 27,918 4.3 2,347,839 −5.2× 10−3 1.00

English 100 141,073 1.9 23,928,600 1.0× 10−4 1.00

English fiction 100 53,847 2.1 9,535,037 −8.5× 10−4 1.00

Spanish 100 18,665 0.84 2,888,763 −2.2× 10−3 1.00

Hebrew 100 4,333 0.67 657,345 −9.7× 10−3 1.00

English 200 46,562 0.63 9,536,204 −3.8× 10−3 1.00

English fiction 200 21,322 0.82 4,365,194 −3.5× 10−3 1.00

Spanish 200 2,131 0.10 435,325 −3.1× 10−3 1.00

Hebrew 200 364 0.06 74,493 −1.4× 10−2 1.00

Table 13.2: Summary of data for the relatively common words that meet the cri-

terion that their average word use 〈fi〉 over the entire word history is larger than

a threshold fc, defined for each corpus. In order to select relatively frequently

used words, we use the following three criteria: the word lifetime Ti ≥ 10 years,

1800 ≤ t ≤ 2008, and 〈fi〉 ≥ fc.
Data summary for relatively common wordsCorpus,

(1-grams) fc Nt(words) % (of all words) Nr′(values) 〈r′〉 σ[r′]

English 5× 10−8 106,732 1.45 16,568,726 1.19 ×10−2 0.98

English fiction 1× 10−7 98,601 3.77 15,085,368 5.64 ×10−3 0.97

Spanish 1× 10−6 2,763 0.124 473,302 9.00 ×10−3 0.96

Hebrew 1× 10−5 70 0.011 6,395 3.49 ×10−2 1.00
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Table 13.3: Summary of Google corpus data. Annual growth rates correspond to

data in the 209-year period 1800–2008.
Annual use ui(t) 1-gram data Annual growth r(t) dataCorpus,

(1-grams) Nu(uses) Yi Yf Nw(words) Max[ui(t)] Nr(values) 〈r〉 σ[r]

English 3.60× 1011 1520 2008 7,380,256 824,591,289 310,987,181 2.21× 10−2 0.98

English fiction 8.91× 1010 1592 2009 2,612,490 271,039,542 122,304,632 2.32× 10−2 1.03

Spanish 4.51× 1010 1532 2008 2,233,564 74,053,477 111,333,992 7.51× 10−3 0.91

Hebrew 2.85× 109 1539 2008 645,262 5,587,042 32,387,825 9.11× 10−3 0.90
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Figure 13.5: Word extinction. The extinction of the English word

“Roentgenogram” as a result of word competition with two competitors, “Xray” and

“Radiogram.” The average of the three fi(t) is relatively constant over the 80-year

period 1920–2000, indicating that these 3 words were competing for limited linguistic

“market share.” We conjecture that the higher fitness of “Xray” is due to the effi-

ciency arising from its shorter word length and also due to the fact that English has

become the base language for scientific publication.
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Figure 13.6: Dramatic shift in the birth rate and death rate of words.

The birth rate rb and the death rate rd of words demonstrate the inherent time

dependence of the competition level between words in each of 4 corpora analyzed.

The modern print era shows a marked increase in the death rate of words (e.g. low

fitness, misspelled and outdated words). There is also a simultaneous decrease in the

birth rate of new words, consistent with the decreasing marginal need for new words.

This fact is also reflected by the sub-linear Heaps’ law exponent b < 1 calculated for all

languages in [113]. Note the impact of the Second Aliyah of immigration to Palestine

ending in 1914 and the Balfour Declaration of 1917, credited with rejuvenating the

Hebrew language as a national language.

.
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Figure 13.7: Survival of the fittest in the entry process of words. Trends in

the relative uses of words that either were born or died in a given year show that the

degree of competition between words is time dependent. For the English corpus, we

calculate the average median lifetime relative use 〈Med(fi)〉 for all words i born in

year t (top panel) and for all words i that died in year t (bottom panel), which also

includes a 5-year moving average (dashed black line). The relative use (“utility”) of

words that are born shows a dramatic increase in the last 20–30 years, as many new

technical terms, which are necessary for the communication of modern devices and

ideas, are born with relatively high intrinsic fitness. Conversely, with higher editorial

standards and the recent use of word processors which include spelling standardization

technology, the words that are dying are those words with low relative use, which we

also confirm by visual inspection of the lists of dying words to be misspelled and

nonsensical words.
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Figure 13.8: Historical events are a major factor in the evolution of word

use. The variation σ(t) in the growth rate ri(t) of relative word use defined in

Eq. (12.2) demonstrates the increased variation in growth rates during periods of

international crisis (e.g. World War II). The increase in σ(t) during the World War

II, despite the overall decreasing trend in σ(t) over the 159-year period, demonstrates

a“globalization” effect, whereby societies are brought together by a common event and

a unified media. Such contact between relatively isolated systems necessarily leads to

information flow. (a) The variation σ(t) calculated for the relatively new words with

Tc = 100. The Spanish corpus does not show an increase in σ(t) during World War

II, indicative of the relative isolation of South America and Spain from the European

conflict. (b) σ(t) for four sets of post-1800 words i that meet the criteria Ti ≥ Tc.

The oldest “new” words, corresponding to Tc = 200, demonstrate the strong increase

in σ(t) during World War II, with a peak around 1945. (c) The standard deviation

σ(t) in the growth rates ri(t) for the most common words, defined by words such that

〈fi〉 > fc over the entire lifetime. (d) We compare the variation σ(t) for common

words with the 20-year moving average over the time period 1820–1988, which also

demonstrates an increasing σ(t) during times of national/international crisis, such as

the American Civil War (1861–1865), World War I (1914–1918) and World War II

(1939–1945), and recently during the 1980s and 1990s, possibly as a result of new

digital media which offer new environments for the dynamics of word use. D(t) is the

difference between the moving average and σ(t).
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Figure 13.9: Quantifying the tipping point for word use. (a) The maximum

in the standard deviation σ of growth rates during the “adolescent” period τ ≈ 30–50

indicates the characteristic time scale for words being incorporated into the standard

lexicon, i.e. inclusion in popular dictionaries. In Fig. 13.4 we plot the average growth

rate trajectory 〈r′(τ |Tc)〉 which also shows relatively large positive growth rates during

approximately the same period τ ≈ 30–50 years. (b) The first passage time τ1 [143]

is defined as the number of years for the relative use of a new word i to exceed for

the first time a given f -value, defined here by the first instance in the corpus that the

a given word i satisfies fi[τ1(f)] ≥ f , can also be used to quantify the thresholds for

sustainability for new words. The average first-passage time 〈τ1(f)〉 to fc ≡ 5× 10−8

for the English corpus, (recall fc represents the threshold for a word belonging to

the “kernel” lexicon), roughly corresponds to the peak time τ ≈ 30 − 50 years in

σ(τ) shown in panel (a). This feature supports our conjecture that the peak in σ(τ)

reflects the time scale over which a word is accepted into the standard lexicon.
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Figure 13.10: Common growth distribution for new words and common

words. (a) We find Laplace distributions, defined in Eq. (13.2), for the annual word

use growth rates for relatively new words, as well as for relatively common words for

English, Spanish and Hebrew. These growth distributions, which are symmetric and

centered around R ≈ 0, exhibit an excess number of large positive and negative values

when compared with the Gaussian distribution. The Gaussian distribution (dashed

blue) is the predicted distribution for the Gibrat growth model.[117]. We analyze

word use data over the time period 1800-2008 for new words i with lifetimes Ti ≥ 100

years years (see SI methods section and Table 13.1 for a detailed description). (b)

PDF P (r′) of the annual relative growth rate r′ for dataset ii words which have average

relative use 〈fi〉 ≥ fc. These select words are relatively common words. In order to

select relatively frequently used words, we use the following criteria: Ti ≥ 10 years,

1800 ≤ t ≤ 2008, and 〈fi〉 ≥ fc. There is no need to account for the age-dependent

trajectory σ[r′(τ |Tc)], as in the normalized growth defined in Eq. (15.5), for these

relatively common words since they are all most likely in the mature phase of their

lifetime trajectory.
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Figure 13.11: Scaling in the “volatility” of common words. The dependence

of growth rates on the cumulative word frequency Si ≡
∑t

t′=0 fi(t) calculated for a

combination of new [dataset (i)] and common [dataset (ii)] words that satisfy the

criteria Ti ≥ 10 years (similar results for threshold values Tc = 50, 100, and 200

years). (a) Average growth rate 〈r〉 saturates at relatively constant (negative) values

for large S. The negative values may represent a “crowding out” effect in taking place

in a dynamic corpus. (b) Scaling in the standard deviation of growth rates σ(r|S) ∼
S−β for words with large S, also observed for the growth rates of large economic

institutions [119, 121]. Here this size-variance relation corresponds to scaling exponent

values 0.10 < β < 0.21, which are related to the non-trivial bursting patterns and non-

trivial correlation patterns in literature topicality. We calculate βEng. ≈ 0.16± 0.01,

βEng.fict ≈ 0.21± 0.01, βSpa. ≈ 0.10± 0.01 and βHeb. ≈ 0.17± 0.01.



Chapter 14

Discussion

The digital era has brought forth a data deluge making possible empirical studies of

almost every aspect of human activity [128]. The digitization of written language has

resulted in a rapid increase in cultural trend analysis using word frequencies and other

quantities extracted from big data sources using natural language processing methods.

The amount of metadata extractable from internet feeds is dizzying and subject to

various definitions of relevance. For example, written language published in blogs on

the daily timescale can be vaguely categorized into “obscure blogs”, “more popular

blogs”, “tech columns”, and “mainstream news coverage.” As a result of this coarse

hierarchical schema, analysis of online corpora is subject to significance thresholds

that can be difficult to define. However, there are well-defined entry requirements

for published documents, which must meet editorial standards and conform to the

principles of market supply-demand.

Despite the careful guard of libraries around the world which house the writ-

ten corpora for almost every written language, little is known about the aggregate

dynamics of word evolution over the characteristic time scale of a human genera-

tion. Before the digitization of written language, the analysis of social and political

trends required painstaking brute force manual work and rules of thumb so that a

quantitative analysis of cultural trends would suffer from small sample effects since

quantitative measurements would miss the large number of topics at any given point

that are below the threshold for detection, and long-term analysis would suffer from
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repeatedly crossings of topics above and below reliable significance thresholds due

to intrinsic fluctuations. However, the massive Google Books database allows social

scientists to make reliable studies of word evolution at the ecosystem level which is

far beyond the level of individual word case studies.

Inspired by similar research on the growth of business firms and subsequent exten-

sions to a wide range of competition driven systems - from countries and bird popula-

tions to religious activity and scientific journals - we extend the concepts and methods

to the dynamics of word evolution. Might words be understood as competing actors in

a system of finite resources? Just as business firms compete for market share and sci-

entific journal compete for reader attention, could words demonstrate the same growth

statistics because they are competing for the use of the writer/speaker and competes

for the attention of the corresponding reader/listener [129, 130, 131, 111, 132]?

Indeed, we observe striking similarity between the distribution of growth rates

for words in the Google Books data and what was found in the various competing

dynamics mentioned above. We also document the case example of Xray (Fig. 1)

which suggests that a finite number of categorically related words will compete in a

zero-sum game. Further, such activity does not take place in a vacuum. We find that

the dynamics in this competitive arena are influenced by historical context, trends in

global communication, and the means for standardizing that communication. Just as

there are recessions and booms in a global economy, the marketplace for words waxes

and wanes with a global pulse as historical events unfold. And just as regulators put

limits on economic risk and market domination, standardization technologies such

as the dictionary and spell checkers serve as powerful arbiters in determining the

characteristic pace of word evolution. Since the context of word use is so important,

we anticipate that niches [125] in various language ecosystems (ranging from spoken

word to professionally published documents to various online forms such as chats,

tweets and blogs) have heterogeneous selection laws that may favor a given word

in one arena but not another. Moreover, the birth and death rate of words and

their close associates (misspellings, synonyms, abbreviations) also likely depend on

factors endogenous (internal) to the language domain such as correlations in word

use to other partner words and polysemous contexts [106, 107] as well as exogenous

(external) socio-technological factors and demographic aspects of the writers, such as
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age [107] and social niche [125].

One intrinsic timescale in evolutionary systems is the reproduction age of the

interacting hosts. Interestingly, we find a pronounced peak in the fluctuations of

word growth rates when a word has reached approximately 30-50 years of age, see Fig.

13.9(a), and posit that this the timescale for a word to be accepted into a standardized

dictionary which inducts words that are used above a threshold frequency, consistent

with the first-passage times to fc in Fig. 13.9(b), which is corroborated by the

related frequencies associated with standardized dictionaries compared in Michel et

al. [100]. This timescale roughly corresponding to a characteristic human lifetime

scale, and points to the generational features of cultural transmission as a strong

factor in the evolution of language. The prominent role of new generation of speakers

in language evolution has precedent in linguistics. For example, it has been shown

that primitive pidgin languages, which are little more than crude mixes of parent

languages, spontaneously acquire the full range of complex syntax and grammar once

they are learned by the children of a community as a native language. It is at this

point a pidgin becomes a creole, in a process referred to as nativization [109].

Nativization also had a prominent effect in the revival of the Hebrew language, a

significant historical event which also manifests prominently in our statistical analy-

sis. The birth rate of new words in the Hebrew language jumped by a factor of 5 in

just a few short years around 1920 following the Second Aliyah wave of immigration

to Israel and the Balfour Declaration of 1917. The combination of new communi-

ties of like-minded young people, living in relatively closed-off social cells speaking

Hebrew together with the Balfour Declaration, in which the British government ex-

plicitly endorsed the establishment of a national homeland for the Jewish people in

the Palestine Mandate, resulted in the group consensus along two issues: (i) that the

Hebrew language, hitherto used largely only for writing, was gaining official status as

a modern spoken language, and (ii) that a national community of Jews along with a

centralized culture would become an increasingly plausible notion. The unique his-

tory of the Hebrew language in concert with the Google Books data thus provide an

unprecedented opportunity to quantitatively study the emerging dynamics of what is

in some regards a new language.

The impact of historical context on language dynamics is not limited to emerg-
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ing languages, however, but extends to languages that have been active and evolving

continuously for a thousand years. We find that historical episodes perturb the com-

petitive arena of existing languages much like exogenous shocks can perturb the stock

market [133, 114, 115]. Specifically, we find that the distribution of word growth rates

broadens markedly during times of large scale conflict, such as World War II. This can

understood as manifesting from the unification of public consciousness that creates

fertile breeding ground for new ideas. People are less likely to have their attention

drawn to local events and the language of business as usual and more likely to be

focused on the overwhelming impact of the current global conflict. Remarkably, these

effects do not leak over into unaffected regions and their associated languages, as we

observe no such broadening in the Spanish language corpus during World War II,

even as the war’s impact on English word selection is unequivocal. As most Spanish

speaking countries had minor if not absentee roles in WWII, it’s not surprising that

there was no endemic contribution from countries to the war’s linguistic effects, but

it is notable that the activity from one language should not show any ”leakage” into

another. However, this phenomenon too is not without analogous examples, as a large

number of the world’s ethnic groups are separated along linguistic lines, showing just

how effective a language barrier is in isolating populations.

This study is motivated by analogies with other competition driven systems sys-

tems, such as the growth dynamics of companies [116, 117, 118, 134, 135, 136], coun-

tries [119, 117, 137], universities [138], journals [139], religious activities [140], careers

[141] and animal populations [142]. We find a striking analogy between the relative

use of a word, which can quantitatively represent the intrinsic value of the word, and

the value of a company (e.g. measured by its market capitalization or sales). This

suggests a common underlying mechanism: just as firms compete for market share

leading to business opportunities, and animals compete for food and shelter leading

to reproduction opportunities, words are competing for use among the books that

constitute a corpus.



Chapter 15

Methods

Quantifying the word use trajectory. Next we ask how word use evolves through

the various stages of its lifetime. Since words appear to compete for use in a word-

space that is based on utility, we seek to quantify the average lifetime trajectory of

word use. The lifetime trajectories of different words will vary, since each trajectory

depends not only on the intrinsic utility of word i, but also on the “birth-year” t0,i of

word i.

Here we define the age or trajectory year τ = t− t0,i as the number of years after

the word’s first appearance in the database. In order to compare word use trajectories

across time and across varying utility, we normalize the trajectories for each word i

by the average use

〈fi〉 ≡
1

Ti

tf,i
∑

t=t0,i

fi(t) (15.1)

over the lifetime Ti ≡ tf,i − t0,i + 1 of the word, leading to the normalized trajectory,

f ′
i(τ) = f ′

i(t− ti,0|ti,0, Ti) ≡ fi(t− ti,0)/〈fi〉 . (15.2)

By analogy, in order to compare various growth trajectories, we normalize the relative

growth rate trajectory r′i(t) by the standard deviation over the entire lifetime,

σ[ri] ≡

√

√

√

√

1

Ti

tf,i
∑

t=t0,i

[ri(t)− 〈ri〉]2 . (15.3)
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Hence, the normalized relative growth trajectory is

r′i(τ) = r′i(t− ti,0|ti,0, Ti) ≡ ri(t− ti,0)/σ[ri] . (15.4)

Using these normalized trajectories, Fig. 13.4 shows the weighted averages 〈f ′(τ |Tc)〉
and 〈r′(τ |Tc)〉 and the weighted standard deviations σ[f ′(τ |Tc)] and σ[r′(τ |Tc)]. We

compute 〈· · · 〉 and σ[· · · ] for each trajectory year τ using all Nt trajectories (Table

13.1) and using all words that satisfy the criteria Ti ≥ Tc and ti,0 ≥ 1800. We compute

the weighted average and the weighted standard deviation using 〈fi〉 as the weight

value for word i, so that 〈· · · 〉 and σ[· · · ] reflect the lifetime trajectories of the more

common words that are “new” to each corpus.

We analyze the relative growth of word use in a fashion parallel to the economic

growth of financial institutions, and show in Fig. 13.10(b) that the pdf P (r′) for the

relative growth rates is not only centered around zero change corresponding to r ≈ 0

but is also symmetric around this average. Hence, for every word that is declining,

there is another word that is gaining by the same relative amount. Since there is an

intrinsic word maturity σ[r′(τ |Tc)] that is not accounted for in the quantity r′i(τ), we

further define the detrended relative growth

R ≡ r′i(τ)/σ[r
′(τ |Tc)] (15.5)

which allows us to compare the growth factors for new words at various life stages. The

result of this normalization is to rescale the standard deviations for a given trajectory

year τ to unity for all values of r′i(τ). Fig. 13.10 shows common growth patterns P (R)

and P (r′), independent of corpus. Moreover, we find that the Laplace distributions

P (R) found for the growth rates of word use are surprisingly similar to the distribu-

tions of growth rates for economic institutions of varying size, such as scientific jour-

nals, small and large companies, universities, religious institutions, entire countries

and even bird populations [119, 137, 136, 118, 116, 138, 134, 117, 139, 135, 141, 142].

Quantifying the long-term social memory. In order to gain understanding of

the overall dynamics of word use, we have focused much of our analysis on the dis-

tributions of fi and ri. However, distributions of single observation values discard

information about temporal ordering. Hence, in this section we also examine the
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temporal correlations in each time series fi(t) to uncover memory patterns in the

word use dynamics. To this end, we compare the autocorrelation properties of each

fi(t) to the well-known properties of the time series corresponding to a 1-dimensional

random walk.

In a time interval δt, a time series Y (t) deviates from the previous value Y (t−δt) by

an amount δY (t) ≡ Y (t)− Y (t− δt). A powerful result of the central limit theorem,

also known as Fick’s law of diffusion, is that if the displacements are independent

(uncorrelated corresponding to a simple Markov process), then the total displacement

∆Y (t) = Y (t)− Y (0) from the initial location Y (0) ≡ 0 scales according to the total

time t as

∆Y (t) ≡ Y (t) ∼ t1/2 . (15.6)

However, if there are long-term correlations in the time series Y (t), then the relation

is generalized to

∆Y (t) ∼ tH , (15.7)

where H is the Hurst exponent which corresponds to positive correlations for H > 1/2

and negative correlations for H < 1/2.

Since there may be underlying social, political, and technological trends that

influence each time series fi(t), we use the detrended fluctuation analysis (DFA)

method [123, 124, 122] to analyze the residual fluctuations ∆fi(t) after we remove

the local linear trends using time windows of varying length ∆t. The time series

f̃i(t|∆t) corresponds to the locally detrended time series using window size∆t. Hence,

we calculate the Hurst exponent H using the relation between the root-mean-square

displacement F (∆t) and the window size ∆t [123, 124, 122],

F (∆t) =
√

〈∆f̃i(t|∆t)2〉 = ∆tH . (15.8)

Here ∆f̃i(t|∆t) is the local deviation from the average trend, analogous to ∆Y (t)

defined above.

Fig. 13.2 shows 4 different fi(t) in panel (a), and plots the corresponding Fi(∆t)

in panel (b). The calculated Hi values for these 4 words are all significantly greater

than the uncorrelated H = 0.5 value, indicating strong positive long-term correlations

in the use of these words, even after we have removed the local trends. In these cases,

the trends are related to political events such as war in the cases of “Americanism”
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and “Repatriation”, or the bursting associated with new technology in the case of

“Antibiotics,” or new musical trends in the case of “polyphony.”

In Fig. 13.3 we plot the pdf of Hi values calculated for the relatively common

words analyzed in Fig. 13.10(b). We also plot the pdf of Hi values calculated from

shuffled time series, and these values are centered around 〈H〉 ≈ 0.5 as expected from

the removal of the intrinsic temporal ordering. Thus, using this method, we are able

to quantify the social memory characterized by the Hurst exponent which is related

to the bursting properties of linguistic trends, and in general, to bursting phenomena

in human dynamics [114, 115, 126, 127].



Part VI

Conclusion



Chapter 16

Conclusion

This thesis covers work done in three distinct systems where the complex emergent

phenomena are fundamentally related to the large number of individual components,

interacting at various scales, often with a certain degree of internal hierarchy. Drawing

on methods and concepts from statistical physics, we search for statistical patterns

that emerge from the complex interactions between components in three distinct

settings: (i) earthquakes, (ii) financial systems, and (iii) human use of language.

The impact and applications for earthquake research are easily the most accessible.

As demonstrated by the tragic consequences of the Great East Japan Earthquake of

March 2011, the resulting tsunami and nuclear accidents of which making it the

most expensive natural disaster in human history, important improvements can still

be made in earthquake risk management today, more a century after seismology first

emerged as a field of study. While knowledge of plate boundaries, fault locations, and

slip rates are all improving, such knowledge is still sparse and by its nature difficult

to know with high precision and accuracy. Even given these, major earthquakes can

still evade mechanistic prediction. Importing the concept of network analysis, our

work shows additional factors to consider in connecting the great locational chain

of earthquake interdependence. While earthquakes may remain near impossible to

predict, improved risk analysis facilitated by our work may make for more judicious

planning in high-risk areas in the future.

Financial models and their application to both financial and nonfinancial systems
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too have implications on future research and knowledge. In the last century, economics

became an empirical science with the advent of macroscopic measures like country

GDP, and microscopic measures like the price of a stock on a market, which economists

have introduced “hard” quantitative modeling on through the use of econometrics.

At a high level, the physicists’ perspective, which includes concepts such as scaling,

universality, stationarity, symmetry, and random walk diffusion, may aide in drawing

helpful connections between otherwise unconnected observations. At a ground level,

physicists are free report unexplained, but nonetheless interesting observations while

economists are more cautious, often not reporting what cannot be explained by a new

formal model, commonly an analytically soluble one. Finally, the quantitative lens of

a statistical physicist has by its nature and history had a greater flexibility in being

applied to ostensibly unrelated disciplines like linguistics. Methods in physics may

prove a valuable supplement to the more conventional means of research in various

areas.

Of interest to anyone living in a modern interconnected society is the question of

what a large market crash looks like. Evidence that large crashes aren’t yet adequately

described is easily found in the form of the post-2008 world recession. According to

standard theories in economics, this crash and others like it essentially shouldn’t exist.

In terms of conventional description, the odds are simply too low, yet large crashes

typically occur once a decade. With this motivation in mind, a simple question to

ask is, “Are crashes universal in nature across countries?” A physics law observed in

one location presumably holds anywhere in the world and a physics law observed in

one system will hold in every other system of that same category. Extending beyond

spatial universality, we can also ask if characteristics of crashes are constant across

time, as many conserved quantities in physics are.

Finally, physics can help make sense of large sets of social and linguistic data

hitherto unavailable. The modern era is marked by an unprecedented ability to

quantify human behavior as it relates to everyday life. More and more, the limit

of understanding is not held back by dearth of data, but by the inability to make

headway through its over-lavish abundance. There is so much information in front

of us, we don’t know where to start. Here too, the concepts and tools of statistical

physics can provide an intuitive starting point and a guiding compass. The traditional



82

academic fields for studying these concepts (e.g. linguistics, sociology) have relied

qualitative rules-of-thumb and painstakingly eking out patterns while physics in many

cases has the power to draw emergent trends out of the aggregate. A linguist may

make note of when a particular word has passed his/her threshold for detection as

to have joined mainstream usage, but a statistical physicist can infer exactly how

long the majority of words take to reach the tipping point of popularity by observing

fluctuations and first passage times.

Of course, not everything that can be thought of is a good idea. Not all concepts

will map one-to-one from physics to related fields and there runs a risk of blindly

overinterpreting results from a field one is not trained in. But, paraphrasing George

E. P. Box, while all models may be wrong, some can prove useful. Given restraint and

due deference to the existing knowledge in the respective fields and a critical eye for

applicability, methods of physics offer an elegant complement to traditional studies.

The combination can easily be more quantitative, hence more actionable, and, at a

deeper level, more philosophically satisfying.
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