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ABSTRACT

This thesis employs methods of statistical mechanics and numerical simulations to study

some aspects of dynamic and interacting complex networks. The mapping of various social

and physical phenomena to complex networks has been a rich field in the past few decades.

Subjects as broad as petroleum engineering, scientific collaborations, and the structure of

the internet have all been analyzed in a network physics context, with useful and universal

results. In the first chapter we introduce basic concepts in networks, including the two

types of network configurations that are studied and the statistical physics and epidemio-

logical models that form the framework of the network research, as well as covering various

previously-derived results in network theory that are used in the work in the following

chapters.

In the second chapter we introduce a model for dynamic networks, where the links or

the strengths of the links change over time. We solve the model by mapping dynamic

networks to the problem of directed percolation, where the direction corresponds to the

time evolution of the network. We show that the dynamic network undergoes a percolation

phase transition at a critical concentration pc, that decreases with the rate r at which the

network links are changed. The behavior near criticality is universal and independent of r.

We find that for dynamic random networks fundamental laws are changed: i) The size of

the giant component at criticality scales with the network size N for all values of r, rather

than as N2/3 in static network, ii) In the presence of a broad distribution of disorder, the
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optimal path length between two nodes in a dynamic network scales as N1/2, compared to

N1/3 in a static network.

The third chapter consists of a study of the effect of quarantine on the propagation

of epidemics on an adaptive network of social contacts. For this purpose, we analyze the

susceptible-infected-recovered model in the presence of quarantine, where susceptible indi-

viduals protect themselves by disconnecting their links to infected neighbors with probabil-

ity w and reconnecting them to other susceptible individuals chosen at random. Starting

from a single infected individual, we show by an analytical approach and simulations that

there is a phase transition at a critical rewiring (quarantine) threshold wc separating a

phase (w < wc) where the disease reaches a large fraction of the population from a phase

(w > wc) where the disease does not spread out. We find that in our model the topology of

the network strongly affects the size of the propagation and that wc increases with the mean

degree and heterogeneity of the network. We also find that wc is reduced if we perform

a preferential rewiring, in which the rewiring probability is proportional to the degree of

infected nodes.

In the fourth chapter, we study epidemic processes on interconnected network systems,

and find two distinct regimes. In strongly-coupled network systems, epidemics occur si-

multaneously across the entire system at a critical value βc. In contrast, in weakly-coupled

network systems, a mixed phase exists below βc, where an epidemic occurs in one network

but does not spread to the coupled network. We derive an expression for the network and

disease parameters that allow this mixed phase and verify it numerically. Public health

implications of communities comprising these two classes of network systems are also men-

tioned.
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Chapter 1

Introduction

Network Science is a growing, interdisciplinary, field bringing together tools from Statistical

Physics and Graph Theoretical Mathematics along with the frameworks and understanding

of fields such as Psychology, Sociology, Computer Science, Epidemiology, and Geology. One

can ask “Why study networks”, or specifically relevant to this thesis, “Why should physicists

study networks?”

Throughout much of the twentieth century, reductionism has been the driving force

behind scientific advancement. Atomic and later quantum theory discarded molecular dy-

namics and moved towards pure particle-particle interactions. Condensed matter moved out

of high temperature and bulk statistical properties into low dimensional and low tempera-

ture effects. Biology moved into sequencing genes and mapping the structures of individual

proteins. While much important work remains to be done in these areas, it is clear that

complete understanding will not solely be found in understanding the building blocks of

the universe and of life. How these basic pieces interact is crucial to expanding our knowl-

edge of ourselves and the world around us. It is also clear that purely random or largely

regular statistical models are insufficient. While the behavior of gases is well described

by a random statistical distribution, and the arrangement of atoms in a graphene layer

is a regular lattice (with perhaps some defects), protein-protein interaction networks and

emergent human structures such as transportation networks, social interaction networks,

and communication networks all have non-trivial structural properties: they are complex.

1
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These complex networks have unique behaviors that must be taken into account in order

to understand how they act, and how they can be used to our benefit.

Aside from the fundamental need to understand the interconnections of physical systems,

the social and technological environment we find ourselves in has brought networks to the

forefront. The war on terror is largely about mapping and destroying the Al Queda terrorist

network [1]. Recurrence of previously rare diseases such as whooping cough [2] demand

understanding of epidemiological networks, where the small world nature of social networks

exposes the vulnerability of the population to even a small number of the unvaccinated [3].

This thesis approaches three distinct, yet related topics in complex networks: 1) General

properties of dynamic networks, where the network changes over time. 2) Quarantine, where

the network is dynamically altered specifically to avoid infected sites. 3) Epidemic properties

on interacting networks, where two or more networks are connected.

1.1 What and Where are Complex Networks

A definition of complex networks must start with first defining what a network is. The core

features all networks share are nodes and links (Fig. 1.1). Nodes represent the fundamental

units of the system in question (pores in rock, scientists in a field, routers on the Internet)

and links establish which of the nodes are connected to other nodes (channels between

pores in rock, scientific collaborations, or cabling between routers). All information about

a network is contained in the list of nodes and the links between them, however, there

are many derived properties that are useful to refer to, much as it is useful to talk about

the temperature of a gas rather than the kinetic energy of each individual particle. The

degree k of a node is the number of links it has, which is to say, the number of nodes it

has as nearest neighbors on the network. The degree distribution of a network (P (k)), or

the probability that a random node will have a degree k is a further characteristic of all

networks, and is often used to classify networks. Other quantities that are of interest are

the first moment⟨k⟩ and the ratio of the second moment to the first moment κ = ⟨k2⟩/⟨k⟩

of the degree distribution.
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Figure 1.1: A schematic illustration of nodes, links, and degree.
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So if a network is anything that can be represented by a collection of nodes and the

links between them, what makes a network complex? A complex network is any network

that is not uniform. A chessboard forms a network, but not a complex one. Each square

is connected to exactly four other squares. Pure crystals such as diamonds or ice are again

simple networks, as each atom has exactly the same links to its neighbors as every other

atom. The US highway network, on the other hand, is a complex network. Different cities

have different numbers of highways,and it is not possible to draw a map of US highways

by looking solely at a small portion of them. Knowing where the highways are in MA does

not tell you where they are located in TX. Complex networks are all around us, in our

metabolisms, in our power and transport grids, and in our social interactions. A variety of

models have been used to study them.

1.1.1 Erdös-Rènyi Graphs

While network science has only recently entered the mainstream, and its roots can be

traced back centuries, the modern foundations of network theory were certainly laid in the

1900s by Paul Erdös and Alfred Rènyi. “On Random Graphs” [4] introduced a network

formation model with N nodes, each of which was randomly linked to every other node

with probability p. For p = 0, one had the empty graph, and for p = 1, the complete

graph. In the range 1 < p < 0 lies the simplest family of non-trivial graphs. Each node

has N − 1 potential neighbors, and thus the average degree of each node for large N is

⟨k⟩ = p(N − 1) ≈ pN . When dealing with large networks, the average degree is often

specified instead of the connection probability, due to p being very small in most large real-

world networks, whereas ⟨k⟩ is a more tractable number. The degree distribution generated

by the Erdös-Rènyi (ER) model follows a Poisson distribution in the limit N → ∞.

P (k) =
⟨k⟩ke−⟨k⟩

k!
(1.1)

with ⟨k⟩ = Np.

The ER model was the primary model of networks for decades. It was assumed to
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represent models of acquaintance formation in small social situations, such as parties or

conferences, and was used a simplified model for the evolution of communication networks.

It is still used today, as it is well known, forms a standard, is analytically well tractable,

and even has real world examples, such as highway or railway systems [5]. However, while

examples of ER networks in the real world exist (Fig. 1.2), many if not most networks are

not adequately represented by the ER model.

1.1.2 Scale-Free Graphs

In the 1990s, the World Wide Web (WWW) brought networks into the center of most of our

lives. While scale-free (SF) networks certainly predate the Internet (scientific collaboration

networks are scale free as far back as the records reach), the WWW provided an immediate

and tangible example that most nodes in a network do not have a typical or average number

of links. Consider the front pages of the New York Times, the Microsoft Network, the British

Broadcasting Corporation, Facebook, or any one of hundreds of popular pages. Those hub

pages have thousands of links or more, whereas most pages are personal Geocities pages

with only a few links, or news articles that may only link back to the original site, or a

few related articles. When the WWW was analyzed, it was indeed found that the degree

distribution did not follow a Poisson distribution but rather, for a large range of k, a power

law distribution [6].

P (k) ∼ k−λ (1.2)

Many other networks were later found to be scale free, such as metabolic networks[7], the

human sexual interaction network[8], and even human language[9]. However, despite being

scale free over a large range of degrees k, real-world networks often have a largest degree

kmax that is smaller on average than one would expect from a pure power law degree

distribution with a matching λ [10, 11]. In addition, for SF networks, the second moment

⟨k2⟩ → ∞ as N increases for fixed ⟨k⟩ which, in addition to failing to match the behavior

of physical networks, makes many properties impossible to calculate analytically. Thus, for

both mathematical simplicity and model accuracy, it is useful to introduce an exponential



6

Number of Links (k)

N
u

m
b

e
r 

o
f 

N
o

d
e

s 
w

it
h

 k
 L

in
k

s

N
u

m
b

e
r 

o
f 

N
o

d
e

s 
w

it
h

 k
 L

in
k

s

Erdős-Rényi (ER) and Scale-Free (SF) Degree Distributions

Number of Links (k)

EXAMPLE: US Highway System
SOURCE: US Department of Transportation

EXAMPLE: US Airline Routes
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Figure 1.2: Degree distributions and real world network examples of Erdös-Rènyi (ER) and
scale-free (SF) graphs. The highway network is an example of an ER graph, whereas the
direct flight network is SF.



7

cutoff for degrees above a threshold K which keeps ⟨k2⟩ finite as N increases, and ensures

that the probability of extremely high degree nodes is realistically small. Networks following

such an exponential cutoff are known as finite scale-free networks, and will be used in this

thesis instead of infinite SF networks. The degree distribution of finite scale-free networks

is

P (k) =
[
k−λ exp(−k/K)

]
/
[
Liλ(e

−1/K)
]
, (1.3)

where Liλ(x) is the λth polylogarithm of x. For degrees below the threshold K, the distri-

bution is power law, and for degrees above K, the distribution is exponential.

1.2 The Configuration Model

While ER graphs, as random graphs, can be constructed simply by picking two nodes at

random and connecting them until the desired ⟨k⟩ is reached, graphs that do not follow

a Poisson degree distribution cannot be constructed in this fashion. The configuration

model [12] is a method of constructing networks that follow an arbitrary degree distribution

P(k) (See Fig. 1.3.

1. Assign each node n a degree drawn at random from the degree distribution, if the

total degree of all nodes is odd, replace a node’s degree with a new random degree

until the total degree is even.

2. Create a list where each node appears a number of times equal to its degree.

3. While this list still has elements remaining, pick and remove two elements randomly

from this list and place a link between them.

The procedure described does not proscribe self-links or repeated links. However, as will

be seen from Eq. (1.5), the probability of a self link is k2i /(N⟨k⟩) and the probability of a

repeat link is kikj/(N⟨k⟩). Both of these probabilities go to zero for increasing N , and the

cut-off K for the finite scale free networks used here ensures that the probability of either

of these events occurring is exponentially unlikely, even for finite N .
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The Con� guration Model

A B C D E

A B C D E

B

A
C

E
D

Figure 1.3: A schematic illustration of the configuration model. Nodes are first assigned a
degree. In this case kA = 3, kB = 2, kC = 3, kD = 1, and kE = 1. Next, two nodes with links
not yet assigned are picked at random and connected, in this case B and C. This process is
repeated until all nodes have a degree equal to that assigned to them originally, producing
one of the possible network configurations that satisfies the chosen degree distribution.
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1.3 Percolation and Directed Percolation

As mentioned earlier, one possible system modeled by a network is a porous material,

such as pumice, foam rubber, or a sponge, with the pores as nodes and channels between

them as links. A fundamental question for such as system is: If a liquid is introduced

at one edge, will that liquid be able to make it through the pores of the material and

emerge from the opposite side? Investigations into questions of this nature have historically

formed the field known as Percolation Theory. To model this question, Broadbent and

Hammersley introduced a lattice with regular nodes where each node was connected to its

nearest neighbors randomly with probability p, and disconnected with probability (1− p).

The liquid will be able to percolate through the material if an unbroken path exists from

nodes on one edge to nodes on the other. For infinite systems, this is only possible if a

fraction of all nodes are connected into one large cluster, as the odds of a finite number of

nodes reaching from one side to another decreases exponentially with system size. There is

thus a critical p = pc at which a first-order phase transition occurs in the infinite size limit:

below pc the largest cluster consists of a finite number of nodes, and percolation occurs

with probability 0; above pc the largest cluster occupies a fraction of the infinite nodes, and

percolation occurs with probability 1. For the square lattice in two dimensions, it has been

shown that pc = 0.5 [13]. For finite lattices the percolation transition is still very sharp,

even for system sizes as small as 10x10. For systems with d ̸= 2, the value of pc varies until

a critical dimension is reached, above which the system behaves according to mean field

theory, and the dimensionality no longer plays a role.

There are many varieties of percolation processes; directed percolation (DP) is a par-

ticularly notable one in which the dimensions are no longer isotropic. Along one of the

dimensions, the perpendicular dimension, spreading is restricted to travel in only one direc-

tion. This can be interpreted either spatially, as in the case of a liquid penetrating a porous

medium where capillary action is insufficient to overcome gravitational forces, so that the

fluid may only flow downwards, or temporally, as when modeling the spread of some agent
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Figure 1.4: Schematic diagram of percolation and directed percolation (DP). Percolation
occurs only if an unbroken line exists between the bottom and the top. In DP, only paths
that advance along the direction of the arrows are allowed.

through time, where connections that existed in the past cannot be traversed, or nodes

that were neighbors in the past are now separated. DP has a percolation transition similar

to isotropic percolation, although the value of pc is necessarily higher, as the directional

requirement invalidates some paths that would exist otherwise. Figure (1.4) shows two

lattices, one with regular percolation and the other with DP at the same p. Note that the

regular percolation lattice has a path connecting the upper and lower edges, and so is above

pc, but the DP lattice is not.

Just as results that were originally found for simple lattices in graph theory came to be

extended to complex networks in network theory, one can likewise extend percolation models

past the lattice model into complex networks, such as ER and SF networks. In percolation

theory, the condition of traversing from one side of the lattice to the other requires a

large, connected cluster of sites. In complex networks, there are no longer “sides”, but if a

parameter (such as the average degree, or the chance of deleting links) is varied, the point
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at which a giant cluster – a cluster where the fraction of connected nodes does not decrease

with increasing system size N– emerges is still referred to as the percolation threshold. If

the network were to be embedded in a physical space, the giant cluster would necessarily

span it. In complex networks, the percolation threshold is pc = 1/(κ− 1), the derivation of

which follows.

1.3.1 Percolation Threshold in Networks

This method of calculating the percolation threshold follows the methods of Newman [14] .

First, assume a start from a random node i with degree ki. What is the probability that a

random link leading from i leads to a node j with degree kj? The probability that i is not

connected to j is the probability that none of the ki links of node i are any of the kj links

of node j, out of ⟨k⟩N total links, or

P (i ̸↔ j|ki, kj) =
(
1− kj

⟨k⟩N

)ki

≃ 1− kikj
⟨k⟩N

(1.4)

for N → ∞ with kj ≪ N . The probability that i does link to j is thus

P (i ↔ j|ki, kj) =
kikj
⟨k⟩N

. (1.5)

The probability that an arbitrary node i of unknown degree connects to a node j with

degree kj is

P (i ↔ j|kj) =
∑
i

P (ki)kikj
⟨k⟩N

=
kj
N

, (1.6)

and, lastly, the probability of two arbitrary nodes being nearest neighbors is

P (i ↔ j) =
∑
kj

P (kj)kj
N

=
⟨k⟩
N

. (1.7)

If it is known that node i is connected to a random node j, what is the probability P (kj |i ↔

j) that node j has degree kj? Bayesian probability tells us

P (kj |i ↔ j)P (kj) = P (i ↔ j|kj)P (i ↔ j). (1.8)
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Substituting in from Eq. (1.6) and Eq. (1.7) gives

P (kj |i ↔ j) =
P (kj)kj

⟨k⟩
. (1.9)

Next, to calculate the point at which the largest cluster emerges, the concept of the

generating function G0(x) of a degree distribution p(k) is introduced.

G0(x) =
∑
k

pkx
k. (1.10)

The generating function is a polynomial of degree kmax where the coefficient of each term is

the normalized probability that a random site has that degree. The generating function for a

network that is composed of one-half degree one nodes and one-half degree two nodes would

thus be .5x + .5x2, as a trivial example. Some general properties of generating functions

are:

1. Moments: The nth moment of a generating function is its nth derivative at 1

⟨kn⟩ =
∑
k

knpk = G
(n)
0 (1). (1.11)

2. Powers: The distribution of the sum of m independent realizations of a property is

equal to the mth power of a generating function for that property.

∑
j1...jm

pj1 . . . pjmx
j1...jm = [G0(x)]

m. (1.12)

Let G1(x) be the generating function of the probability that a randomly chosen link connects

to a node of degree k. From Eq. (1.9) we know that the probability of this is P (k)k/⟨k⟩.

This gives us

G1(x) =
∑
k

kpkx
k

⟨k⟩
=

G′
0(x)

G′
0(1)

. (1.13)

Now there are k nearest neighbors, each with the distribution G1(x); therefore, using the

powers property and ignoring the possibility of self-links or repeated links, which decreases
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as N−1, the generating function for the second nearest neighbors G2(x) is

G2(x) =
∑
k

pk[G1(x)]
k = G0(G1(x)). (1.14)

Let H1(x) now be the generating function for the distribution of sizes of all the groups of

nodes, not just neighbors, reachable from a random link. The generating function for the

probability that a link is connected to a node of size k is G1(x); therefore by the powers

property

H1(x) = xG1(H1(x)). (1.15)

A random node has a number of these groups equal to its degree, and so the generating

function for the size of the whole component H0(x) is related to the probability of that

degree

H0(x) = xG0(H1()). (1.16)

Taking the first moment of the component size ⟨s⟩ = H ′
0(1) we find, with normalization,

H ′
0(1) = 1 +G′

0(1)H
′
1(1). (1.17)

Where Eq. (1.15) shows

H ′
1(1) =

1

1−G′
1(1)

. (1.18)

This gives

⟨s⟩ = 1 +
G′

0(1)

1−G′
1(1)

(1.19)

which becomes infinite, signaling the emergence of the percolation cluster, when

G′
1(1) = 1 (1.20)
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from Eq. (1.13) this is equivalent to ∑
k

pkk
2∑

k

pkk
= κ = 2. (1.21)

Suppose that we have a system above the percolation threshold, and we want to know

how many links we can remove at random before the giant component is destroyed. Starting

from an initial degree distribution Pk and removing links with probability q, we arrive at a

new distribution P ∗
k for the altered network with

P ∗
k =

∞∑
k0=k

Pk0

(
k0
k

)
q(k0−k)(1− q)k. (1.22)

We can derive the critical failure probability, qc, by substituting in the first and second

moments of this degree distribution into Eq. (1.21) These first and second moments are

⟨k∗⟩ = ⟨k⟩(1− q) (1.23)

and

⟨(k∗)2⟩ = ⟨k⟩q(1− q) + ⟨k2⟩(1− q)2. (1.24)

Setting κ∗ = 2 and solving, we find

qc = 1− 1

κ− 1
. (1.25)

This is the complex network equivalent of the pc = 1/2 found for the 2-d square lattice. Of

note is that complex network theory predicts pc = 1− qc = 1/3 for the square lattice, which

has κ = 4. Even ER complex networks (ones where every node has nearly the same degree)

cannot be treated simply as uniform networks. The question of how much heterogeneity

is necessary for complex network theory to be valid, instead of the results from uniform

percolation theory, will be examined as part of Chapter 5.
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1.4 Monte-Carlo Methods

Many real problems on complex networks, while straightforward in principle, are intractable

in practice. Real-world networks are finite, and many properties which are simple to cal-

culate for infinite systems become difficult or impossible in finite systems. As a specific

example, take Eq. (1.25) from the preceding section. For an ER network, κ = ⟨k⟩ + 1,

and so for an infinite network, we know that if we start from a network with ⟨k⟩ = 1, the

probability of it have a giant component is 1. However, for finite networks, the same is not

true. Consider a sample network with N = 6. There are 15 ( N(N − 1)/2 ) possible links,

and 455 (
(
15
3

)
) possible networks with ⟨k⟩ = 1. It is fairly trivial to go through the possible

networks by hand and show that 10 out of these 455 possible networks have only three sets

of linked pairs, with no giant component, giving the probability of a giant component as

pGC(6) ≈ .978. However, while the N = 6 case is simple enough to compute by hand, as

an NP-Hard problem[15], it rapidly becomes intractable. Double the size, to N = 12 and

there are now over ninety thousand network configurations, requiring a computer to iterate

through them. Double the size of the network once more, to N = 24, and there are now

over 3.2× 1020 different configurations, obviously impossible to compute explicitly even for

this still very small network.

A common method to resolve problems of computational complexity is the Monte Carlo

(MC) technique. Originally developed to calculate neutron penetration distances at Los

Alamos National Laboratory, the technique was first named in 1949[16]. The MC label

applies to a wide variety of methods, but what they all have in common is random sampling

of a configuration space according to certain probabilities. In this thesis, MC methods are

used two solve two main classes of problems.

The first class is similar to the problem above: networks are repeatedly generated ac-

cording to the configuration model (Sec. 1.2), and each network has its properties (presence

of a giant component, average degree, shortest path distances, etc..) computed. These prop-

erties are then averaged to obtain an estimate for the exact value that would be obtained
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by calculating over all possible network configurations.

The second class of problems involves network dynamics, such as the number of infected

individuals in an epidemic. In this case, not only is a random initial network configuration

generated, but the network is also allowed to evolve forward in time repeatedly from the

same initial conditions. As the number of time steps in the time evolution is often small

compared to the size of the network, (typically scaling as Nα, with α < 1), this offers

a substantial speed increase, as network construction is computationally more expensive,

which typically scales with N .

1.5 Shortest Paths; Ordered and Disordered

From previous sections we know that above the percolation transition most nodes are con-

nected into a giant component. We can thus reach almost every node from any given node.

But mere knowledge that a path exists often is not the only topic of concern. We often want

to know how many links we must take to get from node to node on average. Obviously, if

the nodes aren’t simply connected in a ring, there will be multiple paths of varying lengths.

Out of all of these possible paths, one often only cares about the one with the fewest num-

ber of links: the shortest path. There is a shortest path between all nodes on the giant

component, and of these NGC(NGC − 1)/2 shortest paths we can take various values: the

maximum value to define the diameter of the network, which is the longest shortest path,

or the average to calculate the average shortest path l. In a lattice, l scales as l ∼ N1/d.

For complex networks, the average shortest path length is

l =
−2⟨ln k⟩+ ln(⟨k2⟩ − ⟨k⟩) + lnN − γ

ln(κ− 1)
+

1

2
(1.26)

where γ = 0.5772 is Euler’s constant [20]. For ER networks, this reduces to

lER =
lnN − γ

ln⟨k⟩k
+

1

2
(1.27)
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For SF networks, the exact expression does not simplify, but in the limit of large N , two

general regimes emerge depending on λ. For λ > 3,the shortest path scales like an ER

network, with l ∼ lnN . For 2 < λ < 3, however l ∼ ln(lnN).

The distance from node to node in terms of links may not necessarily capture all of

the relevant information about distances. Links are not necessarily uniform, they may

also have weights attached to them. In a communications network, the latency (travel

time) is different between different nodes. Transportation networks are also heterogeneous.

LA is connected via direct flights to both San Fransisco and Sydney, but the flight times

differ greatly. Social networks can also feature links with different weights. I have many

friends, but the frequency with which I see them differs greatly. If one wanted to send

information or objects via direct person-to-person interactions, this heterogeneity may need

to be considered. Networks with weights on the links are called weighted or disordered

networks. We model this disorder by assigning different weights to the links, to represent

either a cost or a time associated with traversing it. These costs can be generated by

assigning each link i a random number ri uniformly distributed between 0 and 1. The cost

of the link τ is τi = eari . In disordered networks, the shortest path length (smallest number

of links) is of less interest than the optimal path length, lopt, which is the smallest sum of the

link weights. If a ≪ 1, the weak disorder case, the costs are all roughly equivalent, and the

optimal path length has the same scaling as the shortest path length. If a ≫ 1, the strong

disorder case, then the cost distribution is very broad, and the total cost will be dominated

by the single highest cost. (The crossover between weak and strong disorder is not relevant

to this thesis, but has been addressed [17]). The optimal path in this case lies along the

Minimal Spanning Tree (MST), which is the tree connecting clusters at the percolation

threshold of the network. The optimal path between two nodes will be comprised mainly of

links along the MST, and thus the average optimal path will scale with the average distance

within the giant component lGC , where

lGC ∼ Nνopt . (1.28)
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For ER networks νopt = 1/3, and thus under strong disorder:

lER
opt ∼ N1/3. (1.29)

1.6 Epidemic Models

An epidemic is an occurrence of a disease in excess of normal expectancy; however, com-

municable disease models of all types are often referred to as epidemic models, just as the

general study of disease is called epidemiology. In modeling diseases in a population, the

population in question is divided into disjoint classes. In this work we consider three pos-

sible classes: The susceptible (S) class, which consists of individuals who are vulnerable

to a disease, but are not currently infected; The infected (I) class, which consists of those

individuals currently infected with the disease, and capable of infecting other individuals,

and the recovered or removed class (R), which comprises those individuals who have been

infected, and can no longer infected others or be reinfected. Various models can be con-

structed depending on allowable transitions between these three (or other) states, but the

susceptible/infected/recovered (SIR) model [18] is the most common, and will be addressed

here (See Fig. 1.5). It represents diseases to which exposure results in recovery and im-

munity (or death), such as HIV, influenzas such as H1N1, scarlet fever, and measles. The

spread of the disease is governed by two parameters: infected individuals come into contact

and infect all susceptible individuals with rate βI , and infected individuals recover (or die)

at rate γ.

For large populations with full mixing and no birth/death rate, the SIR model is gov-

erned by three coupled nonlinear differential equations:

ds

dt
= −βI is,

di

dt
= βIis− γi,

dr

dt
= γi, (1.30)

where s(t), i(t), and r(t) are the relative fraction of the population in each state. To find

the conditions on an epidemic (which is to say, when s < 1), assume s ≈ 1. Then di
dt is

positive if βI > γ, meaning that the infected population will increase until a substantial
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Infection in the SIR Model
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Figure 1.5: The SIR process on a network. Infected nodes (grey) infect their susceptible
neighbors (white) with a certain probability at each time step. After remaining infected for
the recovery time infected nodes become recovered (black). The final network state consists
of only susceptible and recovered nodes.
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fraction of the population has been infected, indicated by s < 1. The epidemic threshold in

this model is simply βI > γ.

The equations above makes the assumption that every individual is connected to, and

can infect, every other individual. Realistically, every individual is connected only to certain

other individuals. For ease of comparison to simulation, let us move to discrete time, with

the average time of recovery being tR, and let β be the chance of infection per time step.

The tranmissibility T, or the total chance that an infected individual will transmit the

infection to a susceptible neighbor is then

T = 1− (1− β)tR . (1.31)

Now, we vary the number of connections that each person has by assuming they are nodes

on a network with a particular degree distribution P (k). Imagine that we start with a single

infected individual of degree k0. The probability of this node infecting exactly k of its k0

edges is given by a binomial probability distribution
(
k0
k

)
T k(1 − T )(k0−k). The probability

distribution of all possible infected nodes is

Pk0

(
k0
k

)
T k(1− T )(k0−k), (1.32)

which is simply Eq. (1.22) with T = (1 − q). Thus, we can immediately conclude from

Eq. (1.25) that

Tc =
1

κ− 1
. (1.33)

It can be shown [19] that if β or tR are independently identically distributed random vari-

ables drawn from some distributions P (β) and P (tR), the epidemic threshold depends simply

on the first moment of T

⟨T ⟩ =
∫ ∞

0
P (tR)dtR

∞∑
β=0

P (β)P (tR)(1− β)tR (1.34)

and the critical condition is ⟨T ⟩c = (κ− 1)−1.
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1.7 Appendix: Directed Percolation Scaling Laws

According to Janssen and Grassberger, all models that meet the following four conditions

are members of the Directed Percolation (DP) universality class.

1. The existence of a continuous phase transition from a fluctuating active state into a

unique absorbing state.

2. A positive one-component order parameter.

3. No long-range interactions.

4. No additional symmetries or quenched disorder.

The susceptible-infected-susceptible (SIS) model satisfies all of these properties, and so it

will be used to derive the scaling exponents for DP in general. Equations (1.30) become

ds

dt
= −βIis+ γi,

di

dt
= βIis− γi, (1.35)

and, making use of the condition i+ s = 1, we arrive at a single rate equation

di

dt
= (βI − γ)i− βIi

2. (1.36)

Approaching criticality (βI = γ) from above (0 < i ≪ 1), the stationary density of i vanishes

as istat ∼ βI . The mean field density is thus linear in the order parameter, and the density

exponent is β′ = 1. Approaching criticality from below, we have

di

dt
≈ −δi. (1.37)

Which shows the density in the inactive phase decaying with time as i(t) ∼ e−t = e−t/ξ∥ ,

and thus the temporal scaling exponent is ν∥ = 1. In order to determine the spatial scaling

exponent ν⊥, a term for particle diffusion must be added:

di(x, t)

dt
= (βI − γ)i(x, t)− βi2(x, t) +D∇2i(x, t), (1.38)
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where D is the diffusion constant and corresponds to nearest-neighbor interactions in a

lattice model. Eq. (1.38) should be invariant under the rescaling x → Λx, t → Λν⊥/ν∥ and

i(x, t) ≃ tβ/ν∥ [21], which gives us ν⊥ = 1/2.

Lastly, from the generalized hyperscaling relation [22]

dν⊥ = 2β′ (1.39)

we find the upper critical dimension dc = 4. The volume of the active cluster S(t) at

criticality is thus

S(t) ∼ (ξ⊥)
4 ∼ t2. (1.40)

These relations will be used in the following section to confirm that Dynamic Networks are

a member of the DP universality class.



Chapter 2

Dynamic Networks and Directed

Percolation

2.1 Introduction

Network theory has answered many questions concerning static networks [3, 8, 10, 19, 23–

32], but many real networks are dynamic in the sense that their links, or the strengths of

their links, change with time. For example, in social networks friendships are formed and

dissolved, while in communication networks, such as the Internet, the load (weight) on the

links changes continually. Models for dynamic networks have been studied in the context of

epidemic models in biology [33], as well as for routing and gossiping algorithms in computer

science [34]. In social networks, dynamic models such as the reciprocity model and the

actor-oriented model [35–38], include rate and objective functions that allow the control

and optimization of the changes in the network.

In this section we focus on the general physical aspects of dynamic networks. Funda-

mental questions that have been extensively studied in static networks are still open for

dynamic networks. Here we ask: i) Does the dynamic network undergo a percolation phase

transition, above which order N of the network nodes are still connected and below which

the network breaks into small clusters? ii) If so, what is the critical concentration of links

for which the transition occurs, and how does it depend on the dynamics? iii) What are

the properties near criticality?

23
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2.2 Dynamic Networks

Consider an N -node network with M links where each link has a weight w chosen from

a given distribution. In the particular example of a percolation process, we consider the

percolating fluid to be a walker on our dynamic network. Our dynamic processes occur at

a time scale such that the walker can traverse a single link in one unit time step. At the

end of each time step, links are rewired with probability r. Without loss of generality1,

we assume that a walker traversing the network cannot remain at a given node, and must

advance to a new node in each time step. If a walker is unable to do so in a given time

step, it is removed from the network. Now even if there is no path between nodes A and

B at a specific time, a walker traversing the network may be able to pass from point A to

point B because new links are continually appearing. Likewise, even if a path between A

and B exists at a given time it may be disconnected before a walker is able to traverse it.

Moreover, even if a path between two nodes always exists, the shortest path and optimal

paths may change. Figure (Fig. 2.1) demonstrates a scenario where the path between node

A and E after four steps is the optimal path, rather than the shorter path that existed

between the two nodes after two steps.

In a percolation process on a dynamic network, after the links are rewired on each

step, each link is set to be traversable with probability p. We now argue that percolation

on a dynamic network is equivalent to the problem of DP (see Section 1.3) in infinite

dimensions[21, 40]. To show this, the time evolution of the network is represented by adding

another axis, which corresponds to a time axis. In this extended representation, every

two successive rows along the time axis represent a layer that corresponds to the network

configuration at a different time step. As a result, each node in the original network is

represented by a set of nodes, one for each time step, in the extended representation. In a

percolation process in this extended representation, walkers are restricted to advance only in

one direction, along the time axis (fig 2.1) and therefore the percolation process is actually

1The critical exponents do not change regardless of the time the walker is allowed to remain at a given
node, as long as that time is a finite number of time steps
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Figure 2.1: (a) A five-node dynamic network at different time steps with weights w = a ∗ ri
(b) The y axis corresponds to the time dimension and each successive layer of two rows
corresponds to a network configuration at a different time step. The solid-line path is the
optimal path (sum of its weights is minimal) between node A and node E, even though a
shorter path exists, shown as the dashed line. Note that not all links from (a) are presented,
only the links along the paths from A to E, and the weights remain the same as in (a)

a directed percolation process, where the time t is equivalent to step t. This correspondence

between dynamic networks and DP not only gives a meaning to DP in networks but, more

importantly, allows us to apply the results known from the critical scaling of DP to dynamic

networks.

Networks can be regarded as infinite dimensional structures, since no spatial constraints

exist. Therefore, since our mapping is exact, we expect the critical properties of dynamic

networks to be the same as DP in infinite dimensions. The relevant critical properties

for DP are [21, 40]: S(t), the giant component size, scales as S(t) ∼ t2; and Ps(t), the

survivability (the probability of reaching layer t when growing a cluster), scales as Ps(t) ∼
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Figure 2.2: Simulation results for the survivability Ps(t) and its cutoff, at criticality, for
dynamic networks of different network sizes. From left to right: N = 100, 400, 1600, 6400,
25600. The data collapse shown in the inset demonstrates that Ps(t) in dynamic networks
is universal when scaled by N1/2.

t−1. Figures 2.2(b) and 2.3(a) present simulation results confirming these scaling relations.

To learn about the size-dependent properties of dynamic networks we determine the

DP properties as a function of the network size N , rather than as a function of t. In DP

at criticality, the infinite dimensional relationship between w, the width in the transverse

axes, and t, the length in the longitudinal axes, is w ∼ t1/2. The upper critical dimension

dc is the lowest dimension for which the system has the properties of an infinite dimensional

system. For DP this value is dc = 4 + 1 (1 corresponds to the longitudinal axis), so the

relation between the system size at the upper critical dimension and the size of a dynamic

network is given by N ∼ w4 (the power 4 comes from the 4 transverse dimensions of dc).

Since w ∼ t1/2 we conclude that:

t ∼ N1/2. (2.1)

Therefore, for a dynamic network of size N at criticality, Ps(t) decays exponentially after
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a time t×, with t× ∼ N1/2 2. Figure 2.2(b) presents simulation results for the survivability

of the giant cluster in a dynamic network at criticality. The figure shows that, for different

values of N and t > t×, Ps(t) ∼ t−1, as expected from DP in infinite dimensions. The

exponential decay for t× > N1/2 can also be seen, in agreement with Eq. (2.1). The inset of

Fig. 2.2(b) shows the collapse of survivability data after scaling by N1/2, supporting again

Eq. (2.1).

The size of the giant component S(N), at criticality, is derived by substituting Eq. (2.1)

in the DP relation S(t) ∼ t2.

S(N) ∼ N. (2.2)

Figure 2.3(b) presents simulation results illustrating this scaling relationship, compared to

the known relationship for static networks, where S(N) is known to scale as S(N) ∼ N2/3

[23, 39]. Ps(t) for static networks is also known to decay exponentially after a time t× ∼

N1/3. The two systems clearly have different behavior and properties at criticality, and

thus belong to two different universality classes.

We find that the behavior of dynamic networks at criticality is universal and independent

of the rate r with which the links are changed. [inset of Fig. 2.4(a)]. However, the critical

concentration, pc, for which the phase transition occurs does depend on r [Fig. 2.4(a)].

The dependence of pc on r can be derived as follows: For simplicity assume that—instead

of rewiring each link independently at rate r—with probability r, all the links are rewired

at a given step, and with probability 1 − r, no links are rewired at that step. Consider a

node i with degree k0 reached by traversing a link on a step followed by a rewiring. Since all

links were rewired, this node has k0 links to new neighbors with probability [(N − 1)/N ]k0 ,

which is approximately unity for large N. Each of these links is thus new, and the average

branching factor is ⟨kp⟩ = p⟨k⟩k.

Now suppose that instead there had been no rewiring after traversing a link. In ER

2Reversing the relation from DP we get t(w) ∼ w2, implying that if we limit the distance w (instead of
the conventional way in DP of limiting the time t) we will obtain a cutoff in the known critical exponents
after time t× ∼ w2. The equivalent for networks would be a cutoff after a crossover time t× ∼ N1/2 (based
on Eq. (2.1)).
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the relation S(N) ∼ N (Eq. 3) (upper dashed line), the cluster size in dynamic networks,
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networks, each node has on average p⟨k⟩ outgoing neighbors as before, in addition to the

link through which it was reached that points to the originating (parent) node3 Links to the

parent node, however, also exist for all other nodes reachable from the same parent (siblings).

The number of neighbors, x, of the parent (excluding node i) is Poisson distributed with

mean ⟨k⟩. Assuming node i has already reached its parent, the other k0 siblings each have

a probability pto be reached and then a probability p to return. Thus, the number of

neighbors, x, that can return to the parent is binomially distributed as

P (x) =

(
k0
x

)
p2x(1− p2)x. (2.3)

When calculating the branching factor at each step, we should count the parent node only

once. The contribution of the link back to the parent to the branching factor of each of

the parent’s siblings is therefore inversely proportional to the total number of siblings. The

3For static ER networks, the link back to the parent would not be counted, since revisiting a node will
not lead to exploring new paths. For dynamic networks (where the links are rewired) even if a zero fraction
of the nodes are rewired at that step, revisiting a node will eventually lead to exploring new paths and to
a change in pc. Since the formula for pc assumes that a node can be revisited for all values of r, the limit
pc⟨k⟩ = 1 is not recovered for r = 0.
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average contribution of a sibling with degree k0 is

⟨
1

x+ 1

⟩
k0

=

k0∑
x=0

(
x

k0

)
p2x(1− p2)x

x+ 1
=

1− (1− p2)k+1

(k + 1)p2
. (2.4)

Using the fact that x is Poisson distributed, the average contribution from all nodes is

⟨
1

x+ 1

⟩
=

∞∑
k0=0

⟨ 1

x+ 1
⟩k0

e−⟨k⟩⟨k⟩k0
k0!

=
1− e−p2⟨k⟩

p2⟨k⟩k
≡ f(p). (2.5)

After n steps, we have on average nr steps with rewiring and n(1 − r) steps without

rewiring. Thus, the branching factor is

(p ⟨k⟩)nr (p⟨k + f(p)⟩)n(1−r). (2.6)

For the process to be at criticality, this factor should be 1, leading to

pc⟨k⟩g(pc) = 1, (2.7)
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where

g(pc) =

[
1 +

f(pc)

⟨k⟩

]1−r

. (2.8)

The agreement of our simulations with the solution of Eq. (2.7) for pc is shown in Fig. 2.4(a).

Fig. 2.4(b) presents simulation results for S(N) at different values of p indicating the net-

work undergoes a phase transition at some critical value of p. The inset of Fig. 2.4(a) shows

that for several different values of r S(N) ∼ N at pc, as expected due to the universality of

the critical exponent in dynamic networks.

The correspondence to DP can also predict the general scaling of the optimal path in

a dynamic network with a broad distribution of disorder. In a network where weights are

assigned to links, the optimal path between any two nodes is defined as the path along

which the sum of the weights is minimal. In the limit of a broad distribution of disorder,

Ref. [41] has shown that, at criticality, the optimal path exists mainly along the giant

cluster. Therefore for static networks the optimal path length scales with the average

distance between nodes on the percolation cluster: ℓopt ∼ N1/3 (See Sec. 1.5). In our

dynamic network model the average distance between nodes on the percolation cluster

scales as ⟨ℓ⟩ ∼ N1/2, suggesting that in dynamic ER networks the optimal path scales as

ℓopt ∼ N1/2. (2.9)

Figure 2.5 shows simulation results for the optimal path length in a dynamic network

compared to a static network. The results for dynamic networks are in full agreement with

Eq. (2.9).

What makes the results in a dynamic network so different from the static case? The

difference lies in the number of available configurations. While in static networks the per-

colation cluster is composed from paths built from N network nodes, in dynamic networks

the network is represented by N3/2 nodes [42]. The evolution of the network over time

generates many more possible configurations, enabling the percolation cluster to become

much larger. Substituting N ′ = N3/2 in the percolation cluster formula for static networks,
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Figure 2.5: The optimal path for strong disorder scales as ℓ(N) ∼ N1/2 in dynamic networks
compared to ℓ(N) ∼ N1/3 in static networks.

S(N) ∼ N2/3, yields S(N ′) ∼ S(N3/2) ∼ N , which further confirms our results for S(N) in

dynamic networks.

The same explanation is also true for the optimal path, where a longer more optimal

path is available due to the increased number of available configurations. For example, an

optimal path reaching some node A may find it optimal not to advance to the near neighbor

B at the next step, but rather to first visit C, and then only later come back to B, since at

the later time node B is more optimally connected to the destination node.

Representing a dynamic network as a directed network [Fig. 2.2(a)] composed of N3/2

nodes allows the “same” node to be counted more then once in the percolation cluster,

therefore requiring that the distinct number of nodes on the percolation cluster also scale

with N . To determine the number of different nodes of the original network in a component

of size M on the directed network, consider the following argument: The links between

consecutive layers of the directed network are chosen randomly. Therefore, each link leads

to a random node in the original network independently and with uniform distribution. The
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probability to reach a new node by following a link, assuming thatD nodes have already been

visited, is 1−D/N . The expected number of distinct nodes E(D) reached after λ links have

been followed from the starting node is therefore E(Dλ)/N = E(Dλ−1) +E(1−Dλ−1/N).

This reduces to E(Dλ) = 1 + (1− 1/N)E(Dλ−1) which indicates that for large M

E(DM )

N
= 1−

(
1− 1

N

)M

≈ 1− e−M/N . (2.10)

Thus, when the size of a component in the directed network is of order N a finite fraction

of the visited nodes are new and the size of the induced component on the original network

is also of order N .

In summary, we introduced a model for dynamic networks which was solved by a com-

parison with directed percolation in 4+ 1 dimensions. The DP longitudinal axis is mapped

to the time axis along which the dynamic network evolves. We showed that dynamic net-

works exhibit different properties and critical exponents near criticality. Therefore they

belong to a different universality class than static networks. While in static networks S(N),

the size of the giant component at criticality, scales as S(N) ∼ N2/3, in dynamic networks

S(N) ∼ N . Even though the properties of dynamic networks are universal and independent

of the rate r at which the links are changed, the critical concentration, pc, for which the

phase transition occurs, depends on r. We also showed that the optimal path in dynamic

networks scales as ℓopt ∼ N1/2, compared to ℓopt ∼ N1/3 in static networks.



Chapter 3

Quarantine Generated Phase Transition in

Epidemic Spreading

3.1 Introduction

The representation of interactions in a human society as a complex network, where nodes

and links play the respective roles of individuals and their contacts, has been useful for

modeling, studying, and understanding many problems in epidemiology [19, 43]. Usually it is

assumed that diseases evolve faster than the topological evolution of the underlying network,

so that the links of the network can be regarded as static. With modern mass media,

however, the presence of an epidemic can be broadcast much faster than disease propagation.

This information will inevitably change the behavior of the individuals comprising this

network as, for example, they try to avoid contacts with infected people. In this way a

feedback loop between the state of individuals and the topology of the network is formed.

Networks that exhibit such feedback are called adaptive or coevolutionary networks [44–48].

Public health services are constantly searching for new ways to try to reduce the spread

of diseases. Interventions like vaccination [49] or total closure of workplaces and schools

are very effective, but come with a high economic cost. As a less expensive alternative we

examine here the effectiveness of a “quarantine”strategy, where healthy people are “advised”

to avoid contacts with individuals that carry the disease. That is, a healthy person has a

chance to suppress a contact with an infected neighbor and form a new tie with another

33
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healthy peer (rewiring). The value of this rewiring probability could depend, for instance, on

the concern that the society has about the disease and, as suggested above, in a globalized

world this concern will depend on the how broadly the news is published. The degree of

media attention about the disease is a parameter that could be controlled by public health

services. Indeed, it is known that spontaneous quarantine in the recent H1N1 pandemic

was found to have a large impact in reducing the final size of the epidemic [50].

Based on these observations, we propose two strategies for the propagation of epidemics

on an adaptive network, in which individuals alter their local neighborhoods with constant

quarantine probability w as described above, and systematically study the effect that the

quarantine has on epidemic spreading. We find a phase transition at a critical threshold

wc above which the epidemic is stopped from spreading. We show also how the epidemic

spreading in the presence of quarantine depends on the contagion and recovery parameters.

More importantly, we find that the initial structure of the network plays an essential role in

disease propagation at criticality, unlike in previous related models [47, 51–53] where results

only depend on the average network connectivity. We also introduce a generalized form of

quarantine, where the probability of rewiring is proportional to the degree of the infected

nodes, producing a more efficient isolation of the nodes with high degree. This preferential

rewiring is more efficient than the case with w constant.

3.2 Analytical Approach

We consider the susceptible-infected-recovered (SIR) epidemic spreading model, which is

well established and accurately describes diseases such as seasonal influenza, SARS, or AIDS

[49, 54]. Initially, all nodes are in the susceptible state (s), with one node chosen at random

(seed) in the infected state (i). In the first strategy, strategy A, at each time unit, every

infected node i in the network tries to transmit the disease to each susceptible neighbor s

with infection probability β. If s does not get infected, then with rewiring probability w it

disconnects its link from i and reconnects it to another randomly chosen susceptible node,

different from its present neighbors. Thus, the rewiring probability w measures how fast



35

susceptible nodes react to the disease (the quarantine probability). Infected nodes recover

(r) after a fixed recovery time tR since they first became infected, remaining in the recovered

state forever.

To estimate wc we start by assuming that the network has a tree structure, so that

the disease spreads out from the seed and reaches a susceptible node s through only one

of its neighbors i. This assumption is valid at and below criticality, as the low density

of infected nodes makes collisions between infected branches (loops) unlikely.Then, if i

becomes infected at time t0, the probability that s becomes infected by i at time t0 + n,

with n = 1, 2, ..tR, is β(1 − β)n−1(1 − w)n−1. This is the probability that s has neither

become infected nor disconnected from i up to time t0 + n− 1, times the probability that i

succeeds in transmitting the disease to s at time t0 + n. Therefore, the overall probability

that s becomes infected before i recovers is given by the sum

TA
β,w ≡

tR∑
n=1

β(1− β)n−1(1− w)n−1

=
β
{
1− [(1− β)(1− w)]tR

}
1− (1− β)(1− w)

. (3.1)

This expression for the transmissibility TA
β,w is equivalent to the corresponding expression

in the standard SIR model
∑n=tR

n=1 β(1 − β)n−1 [19], but with a non-infection probability

(1− β)(1− w), instead of (1− β). When w = 0, Eq. (3.1) reproduces the known value for

the transmissibility T = 1 − (1 − β)tR for the SIR model on static networks [19]. In this

formulation, w plays the role of a control parameter of the transmissibility: for fixed values

of tR and β, TA
β,w can be reduced by increasing w. By reducing TA

β,w we can go from a regime

in which the epidemic spreads over the population (epidemic phase) to another regime where

the disease cannot spread (disease-free phase). The transition from the disease-free phase to

the epidemic phase corresponds to the average number of secondary infections per infected

node becoming larger than one, allowing the long-term survival of the disease and thus

ensuring the epidemic spreads to a large fraction of the population. In our problem, the

expected number of susceptible neighbors that a node has when it just becomes infected is
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given by κ− 1,where κ− 1 ≡ ⟨k2⟩/⟨k⟩ − 1 is called the branching factor, and ⟨k⟩ and ⟨k2⟩

are the first and second moments, respectively, of the degree distribution P (k). Since TA
β,w

is the overall probability to infect a neighbor, the mean number of secondary infections per

infected node is

NA
I (w) = (κ− 1)TA

β,w. (3.2)

The infection will die out if each infected node does not spawn on average at least

one replacement, so for a very large system, the critical point is given by the relation

(κ− 1)TA
β,wc

= 1, or

(κ− 1)β
{
1− [(1− β)(1− wc)]

tR
}

1− (1− β)(1− wc)
= 1. (3.3)

The transition between free-disease phase and epidemic phase is analogous to the static

link percolation problem [30], in which each link in a network is occupied with probability p

and empty with probability q = (1−p). When p becomes lower than a percolation threshold

pc, the giant connected component disappears. In general, pc depends on the size of the

network N [55], but in the thermodynamic limit it can be expressed as pc = 1/(κ − 1) [3].

Identifying p with the transmissibility TA
β,w, and using the relation between pc and κ we

find that on the epidemic/disease-free transition line:

TA
β,wc

= pc. (3.4)

This result shows that the transition point depends on the initial topology of the network

through the moments of the degree distribution, as we shall confirm via simulation.

A better strategy would be to try and avoid contact between susceptible and infected

individuals before the attempt at infection, i.e., only avoid the contact when you know an

individual is sick. In this second strategy, strategy B, at each time unit every susceptible

node attached to an infected node disconnects its link from i with probability w and recon-

nects it to another randomly chosen susceptible node, different from its present neighbors.
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Figure 3.1: β-w phase diagram for pc = 0.25. The curves correspond to tR = 1 (upper) and
tR = ∞ (lower). The dark gray region will always be an epidemic phase, and the light gray
always a disease-free phase: (a) strategy A, (b) strategy B.

If s does not rewire its link, the infected node i tries to infect it with infection probability

β. Notice that NB
I (w) = (1− w)NA

I (w). For this strategy Eq.(3.1) is replaced by

TB
β,w ≡

β(1− w)
{
1− [(1− β)(1− w)]tR ,

}
1− (1− β)(1− w)

. (3.5)

Comparing Eq.(3.1) and Eq.(3.5) we see that TB
β,w < TA

β,w for identical values of β and w.

The new condition for the disease to die out in strategy B follows from Eq.(3.5)

(κ− 1)β(1− wc)
{
1− [(1− β)(1− wc)]

tR
}

1− (1− β)(1− wc)
= 1. (3.6)

The two strategies represent different scenarios depending on knowledge of the state of

infection of the nodes. For strategy A, susceptible nodes have no information about the

state of their neighbors until they are in physical contact. By contrast, for strategy B,

susceptible nodes know the state of their neighbors before they are in physical contact. We

will show that this difference in the knowledge of the states of the nodes results in strategy

B being more effective at stopping epidemic spreading.

Fig. 3.1 shows phase diagrams in the w−β plane for strategy A and strategy B, obtained
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by the numerical solutions of Eq. (3.3) and Eq. (3.6) respectively, for a network with κ = 5

(pc = 0.25). Two phases emerge: the epidemic phase for TA,B
β,w > pc, and the disease-

free phase for TA,B
β,w ≤ pc. The location of the critical line separating the two phases

depends on the recovery time tR. Fig. 3.1(a) illustrates the two limiting cases for strategy

A: tR = 1 (upper curve) and tR = ∞ (lower curve), which are given by the expressions

β(tR = 1) = 1/(κ − 1) and β(tR = ∞) = w/(κ + w − 2). Therefore, the pairs of (w, β)

values in the region above the curve β(tR = 1) are always in the epidemic phase, and below

the curve β(tR = ∞) are always in the disease-free phase. A striking consequence is that if

β is larger than the percolation threshold 1/(κ− 1), the propagation of an epidemic cannot

be stopped, even with the largest rewiring probability w = 1. Thus, strategy A is not an

efficient mechanism to control an epidemic when β is higher than pc.

For strategy B, Fig. 3.1(b) illustrates the two limiting cases tR = 1 (upper curve) and

tR = ∞ (lower curve), which are given by the expressions β(tR = 1) = 1/(κ−1)(1−w) and

β(tR = ∞) = w/(κ− κw + 2w − 2). In contrast to strategy A above, if κ does not diverge,

i.e., the network has finite pc, the epidemic can always be stopped, even for β → 1. Notice

that the maximum value of w needed to stop a epidemic is wc = (κ− 2)/(κ− 1) = 1− pc.

Our theoretical predictions illustrate a novel feature about the dynamics of adaptive

networks in SIR models. While previous adaptive SIS and SIRS models have transition

values that depend only on the average connectivity of the network ⟨k⟩ and are independent

of the heterogeneity or structural correlations of the initial topology [44], our SIR model

predicts dependence on the topological structure through the higher-order moments of the

degree distribution.

3.3 Simulation Results

Our analytical approach predicts, through Eq. (3.3) and Eq. (3.6), a dependence of wc on

the initial network. In order to test and explore this dependence, we performed extensive

numerical simulations of our model starting from different topologies. We first used Erdös-

Rényi (ER) networks with Poissonian degree distribution P (k) = e−⟨k⟩⟨k⟩k/k!. Even though
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Figure 3.2: Plot of nI(w)/nI(0) as a function of w for strategy A (⃝), and strategy B
(2), for a ER network with ⟨k⟩GC = 4.07, N = 104 and 104 realizations. As we predicted
previously, strategy B is better than strategy A, shown by wB

c < wA
c .

these types of homogeneous networks are common in nature, many real social networks

are well represented by heterogeneous networks. Thus, we also used finite scale-free (SF)

networks with degree distribution P (k) = k−λ exp(−k/K)/Liλ(e
−1/K), where K is the

degree cutoff. This distribution represents networks with a finite threshold pc, and appears

in a variety of real-world networks [23, 56]. We only consider epidemic propagation on the

largest connected cluster of the network, the giant component (GC).

In Fig. 3.2 we compare both strategies for ER networks. We plot, as a function of w, the

average fraction of infected nodes nI(w) = NI(w)/NGC , where NGC is the size of the giant

component, on a ER network. This fraction is normalized by the corresponding fraction

on an identical fixed network– i.e., for the SIR model without quarantine, nI(0). We can

see that wc for strategy B is lower than wc for strategy A, as expected. This relation will

hold for any topology with the same κ (see Eq.(3.3) and Eq.(3.6)). Since strategy B is

more effective, from here to the end of the section we will show only simulation results for

strategy B. Fig. 3.3 shows, nI(w)/nI(0) vs w for different β. In this figure, we can observe
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Figure 3.3: Fraction of nodes infected as a function of the applied quarantine parameter w
divided by the fraction of infected nodes at w = 0 for three different infection probabilities
β in an ER network. (⃝) β = 0.05, (2) β = 0.1 and (3) β = 0.15. Above a threshold
value of w, no finite fraction of the network becomes infected. (Inset) Data with w rescaled
by the appropriate wc calculated from Eq. (3.6). The curves collapse very well, showing
universal behavior and good agreement with the theory. In all simulations, ⟨k⟩GC = 4.07
(⟨k⟩ = 4 over all nodes), N = 104 and averages are over 104 realizations.

the strong effect of quarantine and the critical threshold wc above which nI(w) approaches

zero. Thus, in the disease-free phase (w ≥ wc) only a small number of individuals get

infected and the disease quickly dies out. We observe, as expected, that the values of

wc increase with β. This behavior matches the phase diagram of Fig. 3.1 (b), where the

critical line has a positive slope. Scaling the horizontal axis by the values of wc obtained by

numerically solving Eq. (3.6) collapses the curves, showing a excellent agreement between

theory and simulations, as well as a scaling behavior of the form nI(w) = nI(0)f (w/wc),

as shown in the inset of Fig. 3.3.

We also explored the dependence of wc on the connectivity of the network, by computing

nI(w)/nI(0) vs w for different ⟨k⟩ (see Fig. 3.4). The results show that wc increases with

⟨k⟩, due to the fact that propagation is facilitated by having more neighbors, as in the
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Figure 3.4: Fraction of nodes infected as a function of the applied quarantine parameter
w divided by the fraction of infected nodes at w = 0 for ER networks with three different
⟨k⟩: ⟨k⟩GC = 4.07 (⃝), ⟨k⟩GC = 6.015 (2) , ⟨k⟩GC = 10 (3). Again, while below wc a
finite fraction of the network become infected above wc the epidemic vanishes. (Inset) Data
rescaled by wc calculated from Eq(3.6) . In all simulations, β = 0.05, N = 104 and averages
are over 104 realizations.

original SIR dynamics. The inset of Fig. 3.4 shows the collapse of all curves. Again, the

good agreement between theory and simulation confirms that Eq. (3.6) is a valid expression

of the transition point for the adaptive SIR model on ER networks.

Given that the second moment, and therefore κ, is large in heterogeneous networks, the

critical value wc turns out to be larger in heterogeneous networks than in homogeneous

networks with the same mean degree ⟨k⟩ and size N , as seen by considering Eq. (3.6) in the

tR ≫ 1 limit, where

wc ≃
1

1
β(κ−2) + 1

. (3.7)

Since κ for heterogeneous networks is much bigger than in homogeneous networks we expect

that wc increases as the heterogeneity increases with larger K. For κ → ∞ we expect that

wc → 1 and that the transition will eventually disappear for large heterogeneous networks.

In Fig. 3.5, we show simulations on scale-free networks for different values of K. If we let
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Figure 3.5: Fraction of infected nodes still infected as a function of w for β = 0.05, tR = 20
on an SF network with K = 10 (⃝) and K = 20 (2), λ = 2.1 with N = 105. pc ∼= 0.375 for
K = 10 and pc ∼= 0.215 for K = 20. (Inset) Rescaled by wc. The result shows an excellent
agreement between the theory and the simulation.

K → ∞ we have to replace pc with pc(N) in Eq. (3.4). Recent observations show that only

in networks larger than ≈ 109 nodes is the approximation pc ∼= pc(N) valid [55]. However,

as we limit ourself to the case of small K this is not an issue in our simulations, and we

see that in good agreement with our predictions from Eq. (3.7), as κ increases with K, wc

increases. In the inset we rescale by wc obtained from Eq. (3.6), and find good collapse

(Fig. 3.5(inset)), confirming the general validity of Eq. (3.6) for heterogeneous SF networks.

In very heterogeneous networks it is well known that, due to high-degree nodes, propa-

gation processes are very difficult to stop [30, 31]. Thus, a constant probability of rewiring

is not effective for controlling epidemics in these networks, because such a strategy assumes

all nodes have the same importance in an epidemic, ignoring the function of higher-degree

nodes as superspreaders. It is also well known that removing the high-degree nodes of

the network (targeted percolation) [30, 57, 58] is a more efficient method to stop propaga-
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tion processes than random removal. This type of strategy is expected to be superior, but

requires global information about the network.

To test this prediction, we propose a new strategy of type B where w depends on the

degree k of the infected node, with wk given by the general form

wk ≡ wk(α) = γkα , (3.8)

where γ is a constant that controls the highest possible value of wk, and it is equal to or

smaller than k−α
max, where kmax is the largest degree of the network. For α = 0 and γ ∈ [0,1]

we recover the results for a constant value of w, with w = γ. For α > 0 and γ = k−α
max the

rewiring increases with the degree k of the infected node, and decreases with increasing α.

In the limit of α → ∞ the rewiring process is equivalent to a targeted rewiring where only

the links of the highest connected node(s) are rewired. To compare the cases with α = 0

and α > 0, we use the average ⟨w⟩ over the network, choosing α for the targeted case such

that ⟨w⟩ is equal to w in the uniform case.

In Fig. 3.6 we plot nI(w)/nI(0) as a function of ⟨w⟩ for SF networks with K = 10 and

K = 20. As expected, wc for α > 0 is lower than for α = 0. The preferential rewiring

reduces the value of wc because quarantine is more effective at isolating the superspreaders.

3.4 Summary and Conclusions

We have introduced and studied two strategies for the propagation of epidemics on evolv-

ing networks of social contacts. The states of the individuals are changed according to

SIR dynamics, while the network evolves according to a quarantine mechanism based on

local information, in which susceptible individuals replace their infected neighbors by other

susceptible peers with probability w. We demonstrated by an analytical approach, and con-

firmed by numerical simulations, that the size of the epidemics can be largely reduced by

increasing the probability of rewiring, and that the propagation can be eventually stopped

by using high enough values of w. In other words, quarantine is an effective way to halt
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Figure 3.6: Fraction of infected nodes still infected as a function of ⟨w⟩ for β = 0.05, tR = 20
on an SF network, λ = 2.1 , N = 104 and K = 10, 20. For general strategy B with α = 0,
(K = 10 (�) and K = 20 (N)), and with α > 0, (K = 10 (2) and K = 20 (△), each ⟨w⟩
represents a different α.

the appearance of epidemics that would otherwise emerge in the case of a static network.

For strategy A, when the infection probability is larger than a threshold, the quarantine

mechanism is not effective any more and disease propagation becomes unavoidable. This is

because the quarantine model only breaks contact after allowing for a chance of infection,

thus for high enough infection probability the spreading is irreversible, even with a rewiring

probability of unity. For strategy B, the quarantine mechanism is effective in homogeneous

networks and finite heterogeneous networks, even for infection probability equal to unity.

The transition disappears only for large, very heterogeneous networks. In these scale-free

networks, the critical rewiring probability becomes very large and the transition eventually

disappears for large enough systems; thus, only the epidemic phase is observed. This is

likely due to the presence of individuals with very large connectivity that can spread the

disease over a large fraction of the population, even for small infection probabilities. To

confirm this, we introduced a generalized form of strategy B, where the quarantine depends
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on the degree of the infected nodes. This preferential rewiring isolates the superspreaders

more efficiently, reducing wc and preserving a finite transition even for scale-free networks.

Lastly, in SIR dynamics the final frozen state, where everybody is either recovered or suscep-

tible, is reached rather quickly—in a time of order lnN according to our simulations—and

thus an SIR network does not evolve much, so the initial topology is preserved during the

entire evolution of the system. In contrast, in adaptive models with SIS or SIRS dynamics,

the system evolves for a very long time in the epidemic phase—times that grow exponen-

tially larger with N—thus the network moves towards a stationary topology similar to an

Erdös-Rényi network, independent of the initial topology, and rendering the initial topology

irrelevant. Therefore, unlike other adaptive network models of epidemic spreading, in our

model the epidemic threshold has a strong correlation with the topology of the network,

which remains relatively unchanged at criticality, and the social structure of connections

when epidemics begin to propagate is crucial in the state of the final outbreak. We are

currently extending this work to weighted networks [41].



Chapter 4

Epidemics on Interacting Networks

4.1 Introduction

Complex network models of the interactions in human society have been used to understand

many problems in epidemiology [19, 31, 43, 59–62]. These models have generally assumed

that all of the nodes have interacted on a single network with a single degree distribution.

Even when these degree distributions allow for large heterogeneities—as in the case of scale-

free networks [57], where hubs with large numbers of connections can arise—the assumption

remains that every node is part of a single network and is represented by a single underlying

topology. In reality, however, societies are composed of many interconnected networks, as in

Fig. 4.1, which may be communities within a larger population or separate systems entirely.

A disease can spread through the network of direct personal contacts, via the water utilities

network, and through travel from city to city over highway or airline networks. These

interconnected network systems may be comprised of different types of nodes, which may

have degrees drawn from distinct degree distributions, and may have different connectivities

between them.

Interconnected network systems have been of interest to researchers in numerous dif-

ferent ways [63, 65–67]. Interconnected dependency networks, where failure in nodes in

one network causes failures in connected nodes in the connected network, exhibit failure

cascades, where the cross network dependencies result in a network much more easily frag-

46
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Figure 4.1: An interconnected network system with two networks: A and B. Nodes have
intranetwork links within their own network, but also internetwork links connecting them
to the other network.

mented than single networks of the same degree distribution [68]. Interconnected power

networks, where transport capacity and failure vulnerability are competing properties, were

examined and an optimal level of interconnection found [69]. Networks without depen-

dencies, such as interconnected social networks, where populations exist at city, state, and

national levels, have also been examined. In these networks, the level of movement between

cities (the interconnections between them) have been shown to affect the epidemic transi-

tion on the metapopulation level [54, 70], although in this case the low-level networks were

treated in a mean field fashion, classified only by rate equations and infection numbers, with

no internal network features. In addition, the percolation threshold in interacting networks

was found to be lower than in single networks, with a giant cluster appearing for a smaller

total number of links [71].

In this work we consider a group of interconnected networks (or, alternately, intercon-

nected communities within a single, larger network). We pose the question: Under what

conditions will an epidemic spread only on the sub-networks, with minimal isolated infec-

tions on other network components, and under what conditions will it spread across the
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entire interconnected network system? Depending on the parameters of the individual net-

works and their interconnections, connecting one network to another can have a profound

or a small effect on the spread of an epidemic. Identifying the conditions in which these

cases occur is vital to our understanding and management of epidemic processes.

We define two different interconnected network regimes, strongly and weakly coupled,

and find the interaction strength value separating these two regimes. Our primary result

is to show that in the strongly-coupled case, we find that all networks are simultaneously

either disease free or part of an epidemic, while in the weakly-coupled case a new ”mixed”

phase can exist. In this mixed phase, the disease is epidemic on only one network, and

not in other networks, despite the interconnections. The applications to public health are

straightforward. If two neighboring communities comprise a strongly-coupled network sys-

tem, then an outbreak in any community is cause for immediate concern in the other. Due

to this, in the strongly-coupled case it becomes important to pursue a strategy of communi-

cation and joint action between public health agencies, and perhaps even intervention from

a single agency with higher authority.

4.2 Model

In this section, we consider the case of only two interconnected networks of equal size, but

it is easily possible to extend the model to an arbitrary number of networks of any size.

We form our interconnected network systems in the following way:

1. Generate two networks, A and B, with their own intranetwork (A ↔ A and B ↔ B)

degree distributions PA(k) and PB(k) according to the standard Molloy-Reed config-

uration model [12].

2. Draw a degree from the internetwork (A ↔ B) degree distribution PAB(k), for all the

nodes in both networks.

3. If the total degree assigned to nodes in network A is not equal to the total number

degree assigned to nodes in network B, randomly reassign a node in B until the total
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numbers in each network are equal.

4. Randomly connect nodes in network A to nodes in network B to form the intercon-

nected network.

This method generates random, uncorrelated, interconnected network systems with spec-

ified inter- and intra-network degree distributions. While this method works for any ar-

bitrary degree distribution, Px(k), we present results only for random Poissonian degree

distributions.

The susceptible-infected-recovered (SIR) epidemic model is used here to study the ef-

fects of interconnected network structure on epidemic threshold. The SIR model is well

established and describes diseases such as HPV, seasonal influenza, or H1N1 [49, 54]. In

this model, each node has three possible states: susceptible (s), infected (i), or recovered

(r). Each node begins in state s, except for a single node in one network chosen in state

i. Nodes in state i infect their neighbors in state s with probability β at each time step,

changing them to i. Nodes enter state r after spending a recovery time tr in state i.

In order to find the threshold for an epidemic, we can think of epidemic spreading as a

bond percolation process [19, 72] on a network. In bond percolation, links between nodes

are activated with a certain probability p. If this probability is greater than a certain critical

value, pc, then a giant cluster emerges, where the existence of a path between any two nodes

is almost certain. In a disease-spreading model, nodes infect their neighbors, “activating”

the links between them with a certain probability, and a disease reaches nodes through this

entire network above a certain critical value, βc, just as in the case for percolation.

In networks, this critical threshold for percolation if all potential links are activated is

κ = 2, where κ is the expected number of nearest neighbors that a node chosen by following

an arbitrary link will have, and is calculated from the ratio between the second and the first

moments of the degree distribution: κ = ⟨k2⟩/⟨k⟩. For κ ≥ 2, a giant cluster exists, while

for κ ≤ 2 only small isolated clusters exist. If some subset of bonds is activated at random

with probability p, a giant cluster appears at a critical value of pc = 1/(κ− 1) [3].
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The SIR model likewise has an epidemic phase transition at a critical β = βc below

which the disease remains confined to the local neighborhood of the initial infection, and

above which the disease spreads throughout the network. This transition from the disease-

free phase to the epidemic phase depends on the average number of secondary infections

per infected node becoming larger than one. This allows the long-term survival of the

disease, as the infection density will grow over time on average, and thus ensure that

the epidemic spreads to a large fraction of the population. In our problem, the expected

number of susceptible neighbors that a node has when it just becomes infected is given

by κ − 1, since the total expected number of neighbors is κ, and one of them must be

excluded as the infected parent from which the current node descended. The transmissiblity

Tβ = 1− (1−β)tr is the probability to infect a neighbor before recovery. The mean number

of secondary infections per infected node is thus NI = (κ − 1)Tβ. The infection will die

out if each infected node does not spawn on average at least one replacement so, for a very

large network, the critical point is given by the relation (κ− 1)Tβ = 1. The simple network

model exhibits only a single transition at βc given by [19]

βc(κ) = 1−
[
1− (κ− 1)−1

]1/tR . (4.1)

In the interconnected network model, the behavior is more complicated, as the disease can

potentially be in epidemic in different combinations of the networks. The disease can either

be in the epidemic phase in both networks, in the disease-free phase in both networks, or

active in one network while the other remains disease free, called here the mixed phase.

The boundaries of these phases are controlled by κA, κB, and κT , where κA and κB are

calculated over the individual A and B networks, disregarding internetwork connections,

and κT is calculated over the entire coupled network system, including intra- and inter-

network links.
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4.3 Strongly-Coupled Network Systems

We consider an interconnected network system to be strongly-coupled if κT is larger than

κA, and κB. In strongly-coupled network systems, we expect any epidemic to emerge

simultaneously on networks A and B. Using Eq. 4.1 for each of the three κ, it can be shown

that for the strongly-coupled case, βc(κT ), the critical value of β for the disease to emerge

on the giant component formed by the entire interconnected network is smaller than both

βc(κA) and βc(κB), the critical values of β for epidemics to spread on networks A or B

ignoring internetwork links. As such, any pathogen virulent enough to spread in network A

or B alone will have already caused an epidemic occurring across the interconnected network

system. For this case, the disease spreads across the interconnected network system as a

single network, with the internetwork connections bringing an epidemic into existence before

any intranetwork connections can do so independently; the mixed phase will not be seen.

To support this, we plot the ratio of the largest connected infected cluster formed solely

from nodes connected with intranetwork links, compared to the size of the largest connected

cluster formed by nodes connected with all links, in Fig. 4.2. For a strongly-coupled network

system, the relative size of the largest connected infected component contained entirely

in a single network decreases initially, showing that the epidemic is occurring across the

interconnected network system, not locally in one of the networks. Thus in the strongly-

coupled case, epidemic spreading is enhanced due to internetwork connections.

4.4 Weakly-Coupled Network Systems

If κA or κB is larger than κT , we define the interconnected network system to be weakly

coupled. In interconnected network systems of this sort, βc(κA) or βc(κB) respectively

will be smaller than βc(κT ). Without loss of generality, we define network B as the more

intraconnected network. We thus have βc(κB) > βc(κT ) > βc(κA). In the weakly-coupled

case, we expect to see a mixed phase, with the boundaries dependent on the values of β

and ⟨kAB⟩. A mixed phase indicates that the addition of the interconnections between the
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Figure 4.2: Epidemics in strongly-coupled network systems spread across all networks,
remaining confined to one network in weakly-coupled network systems. We plot SB, the
size of the largest connected cluster solely in network B, divided by ST , the size of the
infected cluster across the interconnected network system, for both strongly- and weakly-
coupled network systems. The B only cluster decreases in relative size until criticality
(βc(κB) = .048), showing that the epidemic spreads throughout both networks rather than
remaining confined in B in the strongly-coupled system. By contrast, in the weakly-coupled
system, the relative size of the B only cluster grows until β = βc(κT ) = .054, showing
that growth is localized in the more strongly coupled network. For the strongly-coupled
network, ⟨kA⟩ = 1.5, ⟨kB⟩ = 2.5, and ⟨kAB⟩ = 2.5. For the weakly-coupled network, ⟨kA⟩ =
1.5, ⟨kB⟩ = 4.55, and ⟨kAB⟩ = 0.3. NA = NB = 104, tr = 5.

two networks is only affecting epidemic spreading on the network with weaker intranetwork

connections, with the epidemic on the network with stronger intranetwork connections

unchanged by the internetwork links.

Epidemic spreading is a non-competitive process. Adding more links to a network can

only increase the spread of an epidemic, never decrease it, as the chance of a node infecting

its neighbors is constant regardless of degree. Thus, a disease with β above the individual

epidemic threshold of network B (βc(κB)) will enter the epidemic phase on that network,

regardless of the other network and the values of κT and κA. If β is below βc(κT ), however,

the disease cannot spread to more than isolated small clusters of network A. The disease is

in its mixed phase, where an epidemic is occurring on one local network, but not throughout

the entire interconnected network system. The weakly-coupled case in Fig. 4.2 shows this,
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Figure 4.3: Three distinct phases exist in weakly-coupled networks. Sample phase diagram
for two networks, with ⟨kA⟩ = 1.5 and ⟨kB⟩ = 6.0 as a function of infection strength β and
internetwork degree ⟨kAB⟩. Below βc(κB) no epidemic occurs. For βc(κB) < β < βc(κT ),
there exists a mixed phase, where an finite fraction of network B becomes infected, but
network A has only small infected clusters. Above βc(κT ), an epidemic occurs across the
entire network. NA = NB = 104, tr = 5

with the largest connected cluster contained entirely in B becoming larger compared to the

size of the giant component with increasing β until βc(κT ) is reached.

If β is increased to above βc(κT ), network B becomes capable of spreading the disease

to network A, which now enters the epidemic phase, even for β < βc(κA). This matches our

own strongly-coupled case, as well as the work done by Leicht and D’Souza [69] where a

giant cluster forms consisting of nodes in both networks, even when the less intraconnected

network is below its own percolation threshold. We plot a phase diagram describing these

three regions for a sample network in Fig. 4.3, showing the disease-free phase, the mixed

phase, and the epidemic phase. The existence of this mixed phase is important in the

real-world context of interacting networks, as the communities or systems that comprise

the components are likely to be governed by different bodies. If two cities, for example,

together form a weakly-coupled network system, the more highly connected city can more

safely disregard the links to, and response of, the less highly connected city, as the spread

of the epidemic will depend on local parameters only.
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Figure 4.4: In the mixed phase, the two networks have separate transition values. Ratio
of totel number of infected NI in each network to the size of the giant cluster NGC for
two weakly coupled networks with ⟨kA⟩ = 1.5, ⟨kB⟩ = 6.0 and ⟨kAB⟩ = .1. The respective
epidemic thresholds calculated from Eq. (4.1) are βc(κB) ≈ 0.035, βc(κT ) ≈ 0.0425. The
infection can be seen to become active in network B well before it does in network A. β for
κT . NA = NB = 104, tr = 5

We performed Monte-Carlo simulations to verify this result. First, Fig. 4.4, shows

infection densities at different β, corresponding to a vertical sweep across the phase diagram

seen in Fig. 4.3 at ⟨kAB⟩ = 0.1. The epidemic spreading first occurs at βc(κB), where the

disease enters the epidemic phase and spreads through network B, while the infection density

in network A remains negligible. This mixed region, in agreement with our predictions,

occurs in the region βc(κB) < β < βc(κT ). In this regime, network A plays no role in the

spreading of the infection on network B. Above βc(κT ), we see that the infection density in

network A begins to rise, showing that the entire interconnected network system is now in

the epidemic phase, as predicted.

In addition to infection density, the survival probability is often used to identify the

critical threshold in epidemics. At criticality, the probability of an infection started from a

single infected site remaining active at a later time t is expected to scale as P (t) ∼ t−1[21].

Fig.4.5, shows the survival probabilities of the networks comprising an interconnected with

β = βc(κB) for both the strongly- and weakly-coupled cases. In both cases, Network B
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Figure 4.5: Epidemics exhibit critical survival only in one network for weakly-coupled net-
works. Infection survival probabilities P (t) on the individual networks with internetwork
connectivity ⟨kAB⟩ = .1 at β = βc(κB). The survival probability in network A (lower curve,
with +), the less connected network, is a small fraction of that in network B (upper curve
with x), the more connected network. The survival probability in network B falls off as t−1,
as expected of a system at criticality. Network A does not show a smooth decrease towards
0 typical of a network much below criticality. The inset shows the survival probabilities
for each network with ⟨kAB⟩ = 1, in the strongly-coupled regime, showing the conver-
gence of the two survival probabilities. For both networks we have ⟨kA⟩ = 1.5, ⟨kB⟩ = 6.0,
NA = NB = 104, and tr = 5,

exhibits the expected t−1 fall-off in survivability with time that is expected of a system

at criticality, but in the weakly-coupled case, the survival probability in network A does

not fall off as expected, due to infrequent and non-epidemic instances of infections from

network B. The slope of the survival probability for network A thus cannot be used directly

to confirm when it enters epidemic, but the relative difference in survival probabilities can

be used instead, as, if both networks are participating in an epidemic, the disease should

be active in both networks at each time step. We thus introduce the survival probability

gap, ∆P (t) = PB(t)− PA(t), to examine the approach to criticality in Network A.

In Fig. 4.6 we plot this survival gap at different β, equivalent to horizontal slices across

the phase diagram seen in Fig. 4.3. We see that when ⟨kAB⟩ or β is increased and moves

outside the expected mixed phase region, the difference in survival probabilities between
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Figure 4.6: Survival probability gap shows mixed phase boundaries. Fractional size of
the minimum survival probability gap, ∆P (t)/P (tr), (minimum distance between the two
curves in Fig. 4.5 after the time tr has passed) between two interacting ER networks with
⟨kA⟩ = 1.5 and ⟨kB⟩ = 6.0 at various infection strengths. From top to bottom β = βc(κB) =
.0358, .038, .04, .042, βc(κT ) = .044. The gap shrinks with increasing interaction and with
increasing β, matching Fig. 4.3. At βc(κT ), the survival probability is the same in both
networks for all but ⟨kab⟩ = .01, where it remains distinct due to finite size effects. NA =
NB = 104, tr = 5.

the two networks vanishes. This confirms the assertion that there can only be a gap in

survival probablity when one network is in the epidemic phase and the other is not, i.e. in

the mixed phase. Thus a non-zero survival probability gap can serve as a good predictor

for the presence of the mixed phase.

Lastly, we addressed the question of universality under different values of inter- and

intra-network degree, finding that along the disease-free/mixed phase transition line, the

behavior of networks with different κ is universal under appropriate scaling. Fig.4.7 shows

three different networks, all with ⟨kB⟩ > ⟨kA⟩ and β = βc(κB). Rescaling the survival

probabilities by P (tr) and plotting κT /κB instead of ⟨kAB⟩ directly, the curves collapse,

showing identical approaches toward survival probability homogeneity, and thus identical

mixed phase disappearance. For small δκ = κT − κB, the gap grows identically, implying

survival probabilities in networks can be used as as a measure of network connectivities

near criticality, as the latter may be difficult to obtain for social and biological networks.
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Figure 4.7: Survival probability gap scaling is universal when rescaled by κB for different
networks. The data collapses onto a single curve, showing this universal behavior. The
ratio of κT to κB determines δP (t) along the disease-free / mixed phase border. For the
network systems with ⟨kB⟩ = 6.0, β = .0358, for ⟨kB⟩ = 12.0, β = .01725. Both are βc(κB)
of the respective systems. NA = NB = 104, tr = 5.

4.5 Conclusions

In summary, we introduced two classes for interconnected network systems, strongly coupled

and weakly coupled, and studied the behavior of epidemics on them. In strongly-coupled

network systems, epidemics occur always across the entire interacting network system ,

with the presence of interconnections enhancing epidemic spreading. In weakly-coupled

network systems, a mixed phase exists where epidemics do not always occur across the

full interconnected network system, and interconnections affect only epidemic spreading

across the less intraconnected network. We demonstrated the boundaries and behavior of

the mixed phase numerically as well as analytically. Proper analysis of which groups of

communities comprise strongly- or weakly-coupled systems could inform public policy and

highlight the necessity of cooperation between different governing bodies.
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4.6 Appendix: Interacting Square Lattices.

It is interesting to consider the special case of two interacting square lattices. Identical

networks are always strongly-coupled, so no mixed phase exists. The square lattice still

exhibits an epidemic phase transition, however. The critical value for the percolation tran-

sition in the square lattice is pc = 0.5 (see Sec. 1.3). From pc = T we can derive the critical

virulence in a square grid as βg
c = 1 − tR

√
.5, which is βg

c ≈ .129 for tr = 5 . The square

grid has κ = 4 and so from Eq. 4.1 we would expect βc(κ = 4) = 1 − tR
√

1− 1/3, which

is βc(4) ≈ .078 for tr = 5. The ratio of these two values isβg
c /βc(κ) ≈ 1.6 We conducted

simulations of two interacting square lattices, in which any node in lattice A could connect

to any node in Lattice B. Fig. 4.8 shows the ratio of βc determined from the simulations to

the value predicted by Eq. 4.1 at different interaction strengths. We can see that at very

low interaction strengths (kab < .001) we see the behavior of a pure grid; the interconnec-

tions are too rare to impact epidemic spreading. As the interaction strength is increased,

the system behaves more and more like a random network. Above kab = 1, the epidemic

threshold measured agrees well with Eq. 4.1, regardless of network size.
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Chapter 5

Summary and Future Work

We end with a brief overview of topics for future research building on the work done in this

thesis.

1. Growth of Interacting Networks: In Section 4.2 we introduced a method based

on the configuration model for generating interacting network systems given a fixed

number of nodes and links. It will be interesting to pose the question of how to

use a network growth model (such as the Barabàsi-Albert model) to generate these

networks following stochastic attachment methods. The question of how the network

parameters will depend on the attachment methods is also of interest.

2. Quarantine on Interacting Networks: Combining the topics of Chapter 3 and

Chapter 4, it would be of interest to look at the effects of internetwork vs intranetwork

quarantine efforts. The final result in Section 3.3 showed that quarantine preferen-

tially targeted at high-degree nodes was more effective than the same average level

of quarantine applied uniformly, due to the high-degree nodes functioning as super-

spreaders. It is likely that quarantine targeted at internetwork links will be more

effective at stopping epidemics in strongly-coupled network systems than a uniform

quarantine, and that it would be more effective at preventing the spread of an epi-

demic to the coupled network, expanding the mixed phase, in weakly-coupled network

systems.
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