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NETWORK THEORY

AND

ITS APPLICATION IN ECONOMIC SYSTEMS

(Order No. )

XUQING HUANG
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Major Professor: H. Eugene Stanley, Professor of Physics

ABSTRACT

This dissertation covers the two major parts of my Ph.D. research: i) developing a the-

oretical framework of complex networks; and ii) applying statistical physics concepts and

methods to quantitatively analyze complex systems.

In part I, we focus on developing theories of interdependent networks, which includes

two chapters: 1) We develop a mathematical framework to study the percolation of interde-

pendent networks under targeted attack and find that when the highly-connected nodes are

protected and have lower probability to fail, in contrast to single scale-free (SF) networks

where the percolation threshold pc = 0, coupled SF networks are significantly more vulner-

able, with pc significantly larger than zero. 2) We analytically demonstrate that clustering,

which quantifies the propensity for two neighbors of the same vertex to also be neighbors

of each other, significantly increases the vulnerability of the system.

In part II, we apply concepts and methods developed in statistical physics to study eco-

nomic systems, which also includes two chapters: 1) Centrality measures are widely studied

in statistical physics to describe the importance of certain nodes in complex systems. We

apply centrality measure concepts to study the influence of directors in the US corporate

governance network, in which nodes represent directors and links between two directors

represent their service on common company boards. 2) Using concepts of percolation and
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cascading failure, we study the robustness of the interconnected banking system as a com-

plex network. With empirical banks’ balance sheet data in 2007 as input to the model, we

find that our bipartite network model efficiently identifies a significant portion of the actual

failed banks during the financial crisis between 2008 and 2011. The results suggest that

complex network models could be useful for systemic risk stress testing of banking systems.

We also find first-order-like phase transition in the banking system, which means that the

banking system can experience an abrupt collapse under certain circumstances.
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Chapter 1

Introduction

Networks are present in almost every aspect of our life, i.e. communication networks of

telephones and cellular phones, the electrical power grid, computer communication networks

in technological world; the network of friendship between individuals, working relations or

common hobbies, and the network of business relations between persons and firms in the

social and economic world.

This dissertation develops theoretical framework of complex networksand applies com-

plex networks models to quantitatively analyze economics systems. This thesis is separated

into two major parts: i) theoretical development of complex networks models, ii) application

of complex networks models.

In part I, we focus on developing theories of interdependent networks. Due to tech-

nological progress, modern systems are becoming more and more mutually coupled and

depend on each other to provide proper functionality [1–3]. For example, a power station

network and a communication network are coupled, since nodes rely for power supply on

the power stations, while the power stations depend for their control on the communication

nodes [4]. While in the past the study of single networks has been dominant in the net-

works field, the question of robustness of interdependent networks has recently become of

large interest [5–8]. In interdependent networks, nodes from one network depend on nodes

from another network and vice versa. Consequently, when nodes from one network fail they

cause nodes in the other network to fail too. When some initial failure of nodes happens,

1
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this may trigger a recursive process of cascading failures that can completely fragment both

networks. This part includes two chapters: 1) We develop a mathematical framework to

study the percolation of interdependent networks under targeted-attack and find that when

the highly connected nodes are protected and have lower probability to fail, in contrast to

single scale-free (SF) networks where the percolation threshold pc = 0, coupled SF networks

are significantly more vulnerable with pc significantly larger than zero. 2) We analytically

demonstrates that clustering, which quantifies the propensity for two neighbours of the

same vertex to also be neighbours of each other, significantly increases the vulnerability of

the system.

In part II, we apply the complex network models to study economic systems. In the

wake of the recent global financial crisis, increased attention has been given to the study

of the dynamics of economic systems and to systemic risk in particular. The widespread

impact of the current EU sovereign debt crisis and the 2008 world financial crisis show

that as economic systems become increasingly interconnected, local exogenous or endoge-

nous shocks can provoke global cascading system failure that is difficult to reverse and that

cripples the system for a prolonged period of time. Thus policy makers are compelled to

create and implement safety measures that can prevent cascading system failures or soften

their systemic impact. Based on the success of complex networks in modelling intercon-

nected systems, applying complex network theory to study economical systems has been

under the spot light [9–14]. This part includes two chapters: 1) We study the US corporate

governance network, in which nodes representing directors and links between two directors

representing their service on common company boards, and proposed a quantitative influ-

ence measure to identify the most influential directors in the network. 2) We propose a

bipartite networks model to simulate the risk propagation process during financial crisis.

With empirical bank’s balance sheet data in 2007 as input to the model, we find that our

model efficiently identifies a significant portion of the actual failed banks reported by Fed-

eral Deposit Insurance Corporation during the financial crisis between 2008 and 2011. The

results suggest that this model could be useful for systemic risk stress testing for financial
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systems. The model also identifies that commercial rather than residential real estate assets

are major culprits for the failure of over 350 US commercial banks during 2008 - 2011.

The rest of this introduction will first present some basic definitions of complex networks

and its properties. Then we introduce the generating function method which is extensively

used in this thesis for deriving percolation properties of networks. At last, we will introduce

the framework and some developments in interdependent networks research.

1.1 Random Networks and Properties

The mathematical concepts describing networks are graphs. Graphs represent the essential

topological properties of a network by treating the network as a collection of nodes and links

among nodes. The number of links that a node is attached is defined as the degree of this

node. Before 1960 the work on graph theory has mainly dealt with the properties of special

individual graphs. In the 1960s, Paul Erdős and Alfred Rényi initiated a systematic study

of random graphs [15–17]. Random graph theory is, in fact, not the study of individual

graphs, but the study of a statistical ensemble of graphs. A property is said to exist for a

class of graphs is the fraction of graphs not having it in the ensemble is of zero measure.

An interesting characteristic of the ensemble is that many of its properties have a related

threshold pc(N), such that the property exists, in the thermodynamic limit of N → ∞, with

probability 0 if p < pc, and with probability 1 if p > pc. This phenomenon is the same as

the physical concept of a percolation phase transition. For example, the giant component

of a network, i.e. a set of connected nodes, is such a property.

Two types of random graphs are mostly widely studied: Erdős Rényi networks (ER

networks) and scale-free (SF networks) networks. The Erdős Rényi networks are firstly

studied by Paul Erdős and Alfred Rényi in 1960s. It has been traditionally the dominant

subject of study in the field of random graphs. A well-known result for the ER networks is

that the degree distribution is Poissonian,

P (k) = e−zzk/k!, (1.1)
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where z = 〈k〉 is the average degree. The critical threshold for a giant component to exist

in ER networks is 〈k〉 > 1. If 〈k〉 < 1 only small components exist, and size of the largest

component is proportional to logN [16]. Direct measurement of the degree distribution for

real networks, such as the Internet [18, 19], WWW [20], e-mail networks [21], citations of

scientific articles [22], metabolic networks [23], airline networks [24], neuronal networks [25]

and many more, show that Poisson distribution does not apply. Instead, these networks

exhibit a power-law degree distribution,

P (k) = ck−γ , k = m, ...,K, (1.2)

where c ≈ (γ − 1)mγ−1 is a normalization factor, and m and K are the lower and upper

cutoffs for the degree of a node. The divergence of moments higher than (γ−1) is responsible

for many of the anomalous properties attributed to scale-free networks.

Degree distribution alone is not enough to characterize the network. There are other

quantities, such as the closeness (average distance between each pair of nodes), degree-degree

correlation (between connected nodes), betweenness centrality and clustering coefficient.

Since these properties are studied in this thesis, here we introduce the brief definition of

these properties of networks.

Distance

In a network, distance between two nodes is defined as the length of the shortest path

between these two nodes. To find the distance from a origin node to all the other nodes, we

just need to build a minimum spanning tree from the network. The distance from a node

to the origin node is the number of steps spanning the tree when this node is reached.

Degree-degree correlation

Degree-degree correlation is defined as the degree correlation of all pairs of linked nodes,

ρD =

∑

all links(kl − 〈k〉)(kr − 〈k〉)

σ2k
, (1.3)
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where kl and kr are the degree of nodes at the two ends of a link, 〈k〉 is the average degree

of nodes in the network and σk is the standard deviation of degrees of nodes. When degree-

degree correlation is larger than zero, that means high (low) degree nodes tend to connect

with high (low) degree nodes. This case is called assortative. Otherwise, the system is

disassortative.

Betweenness centrality

Betweenness is a centrality measure of a vertex within a graph. Betweenness centrality

quantifies the number of times a node is on the shortest path between two other nodes.

The betweenness of a vertex i is dened to be the fraction of shortest paths between pairs

of vertices in a network that pass through i. If, as is frequently the case, there is more

than one shortest path between a given pair of vertices, then each such path is given equal

weight such that the weights sum to unity. To be precise, suppose that gi(st) is the number

of geodesic paths from vertex s to vertex t that pass through i, and suppose that nst is the

total number of geodesic paths from s to t. Then the betweenness of vertex i is [26],

bi =

∑

s<t g
st
i

n(n− 1)/2
, (1.4)

where n is the total number of nodes in the network. Betweenness centrality can be regarded

as a measure of the extent to which a node has control over information owing between

others.

Clustering

Clustering quantifies the propensity for two neighbours of the same vertex to also be neigh-

bors of each other, forming triangle-shaped configurations in the network [27–29]. The

clustering is high if two nodes sharing a neighbor have a high probability to be connected

to each other. There are two common definitions of clustering. The first is global,

c =
3× (number of triangles in network)

number of connected triples
, (1.5)
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where a “connected triple” means a single vertex with edges running to an unordered pair

of other vertices. A second definition of clustering is based on the average of the clustering

for single nodes. The clustering for a single node is the fraction of pairs of linked negihbors

out of the total number of pairs of neighbors,

ci =
number of triangles connected to vertex i

numberoftriplescenteredonvertexi
. (1.6)

Then the clustering coefficient for the whole network is the average of ci.

Bonacich power centrality

Bonacich argued that a node’s centrality in a network should depend on three criteria:1)

the number of links to other nodes; 2) the intensity of the link; and 3) the centrality of

those with whom one is linked. If we have the adjacent matrix M for a network, then the

Bonacich centrality for a node i is defined as [30]

Bi =
1

λ

N
∑

j=1

MijBj , (1.7)

where N is the size of the network, λ is the largest eigenvalue of the matrix M .

Later, Bonacich interpret the power centrality [31] in another way, in terms of random

walks that have a xed probability of dying per step. The power centrality of vertex i is the

expected number of times such a walk passes through i, averaged over all possible starting

points for the walk.

1.2 Generating Function Method

Generating function method is very powerful and commonly used to describe random graphs

with arbitrary degree distributions. Newman Strogatz and Watts comprehensively intro-

duced this technique in ref. [32]. Here we introduce the results that we can use. Suppose

that we have a unipartite undirected graph of N vertices, with N large. We dene the
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generating function of G0(x) for the probability distribution of node degree k as

G0x =
∞
∑

k=0

P (k)xk, (1.8)

where P (k) is the probability that a randomly chosen node on the graph has degree k. The

probability P (k) is given by the kth derivative of G0 according to

pk =
1

k!

dkG0

dxk
|x=0. (1.9)

Thus the generating function encapsulates all the information contained in the discrete

probability distribution P (k).

If the distribution of a property k of an object is generated by a given generating

function, then the distribution of the total of k summed over m independent realizations

of the object is generated by the mth power of that generating function. As an example,

considering the generating function of the total degree of two nodes:

[G0x]
2 =

[

∑

k

P (k)xk

]

=
∑

jk

P (k)P (j)xj+k

= P (0)P (0)x0 + (P (0)P (1) + P (1)P (0)) x1

+ (P (0)P (2) + P (1)P (1) + P (2)P (0)) x2

+ (P (0)P (3) + P (1)P (2) + P (2)P (1) + P (3)P (0)) x3 + ...

(1.10)

It is easy to see that the coefficient of the power of xn in this expression is precisely the sum

of all products P (i)P (k) such that j+ k = n, which correctly gives the probability that the

sum of the degrees of the two vertices will be n.

If we start at a randomly chosen node and follow each of the edges at that vertex to reach

the k nearest neighbors, then the nodes arrived at each have the distribution of remaining

outgoing edges generated by G1(x). The generating function is

G1(x) =
G′

0(x)

G′
0(1)

=
1

〈k〉
G′

0(x), (1.11)
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where 〈k〉 is the average node degree.

When a giant component exists in a network, the generating function formalism still

works. And the size of the giant component (S), which is the fraction of the graph occupied

by the giant component, can be found by

S = 1−G0(u),

u = G1(u).
(1.12)

And the phase transition, when the giant component in a network first to emerge, is at the

point

G′
1(1) = 1. (1.13)

1.3 Interdependent Networks

Before 2010, after many years of intense study on networks, almost all work done has

concentrated on the limited case of a single network which does not interact with other net-

works. Such situations rarely, if ever, occur in nature. Just as in the case of idealized gas,

when interactions are present as in nature, new physical laws appear. In 2010, Buldyrev

and etc. [7] firstly proposed a mathematical framework to study the robustness of interde-

pendent networks. This mathematical framework is the basis of the theoretical research on

interdependent networks in this thesis.

The interdependent networks model consists of two networks A and B, and assume

that the functioning of a node in network A depends on the ability of one or more nodes in

network B to supply a critical resource to the node in network A. Similarly, a node in network

B depends on a set of nodes in network A. The networks can be connected in different ways;

in the most general configuration one could specify the distributions of connections between

the nodes from both networks. The networks can have the same, or different, typologies.

The model can easily be extended to an arbitrary number of interacting networks each

with its own specific topology and dependence on the other networks. For example, an

interesting dependence for three interacting networks could be a circular dependency in
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which the nodes in network B depend on network A for a resource, the nodes of network

C depend on the nodes of network B for a resource and the nodes of network A depend on

network C for resources.

The giant component and critical threshold of interdependent networks can be solved

analytically using the apparatus of generating functions. We assume the nodes in two

interdependent networks are one to one correspondent. If one node fails, the corresponding

node fails. The generating functions of degree distribution of networks A and B are defined

as

GA0(x) =
∑

k

PA(k)x
k

GB0(x) =
∑

k

PB(k)x
k.

(1.14)

The generating functions of the underlining branching process, Eq.1.11, are

GA1(x) = G′
A0(x)/G

′
A0(1),

GB1(x) = G′
B0(x)/G

′
B0(1).

(1.15)

Random removal of fraction 1 − p of nodes will change the degree distribution of the re-

maining nodes [33]

GA0(x, p) = GA0(1− p(1− x)),

GB0(x, p) = GB0(1− p(1− x)),

GA1(x, p) = GA1(1− p(1− x)),

GB1(x, p) = GB1(1− p(1− x)).

(1.16)

According to Eq. 1.12, the giant component of the network A after removing 1− p fraction

of nodes is

pA(p) = 1−GA0(fA, p), (1.17)

where fA satisfies equation

fA(p) = GA1(fA, p). (1.18)
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Next, we present the formalism for the cascade process step by step, as shown in fig. 1.1.

On the first step, after the initial attach which removes (1 − p) fraction of nodes (the red

part in network A in fig. 1.1) from networks A, the remaining network is named A0, with

a size of ψ′
1 = p fraction of the network A, number of nodes N0 = pN . The orange part

in fig.1.1 are the fraction of nodes detached from the giant component after the red part

is removed. The giant component of the remaining network is thus of size ψ1 = ψ′
1pA(ψ

′
1),

number of nodes is N1 = N0pA(ψ
′
1). In the second stage of the cascading failure, the failed

node in network A cause their corresponding nodes in network B to fail. Thus (1 − ψ1)

fraction of nodes in network B fail, which cause the green part disconnected from the giant

component. The remaining fraction of network B is φ′1 = ψ1, and the fraction of nodes

in the giant component of network B is φ1 = φ′1pB(φ
′
1), number of nodes N2 = N1pB(φ

′
1).

In the third step of the cascading failure, the nodes in the giant component of network A

corresponding to the green part in network B is removed. The removal of these nodes from

ψ1 causes the purple part in network A to be disconnected from the giant component, which

leaves a giant component size of ψ2. That is equivalent to the removal of the same fraction

of nodes from A0. To achieve the same giant component size ψ2, the total number of nodes

that must be removed from network A is (1 − pB(ψ1))N0 nodes from A0 plus the number

of the initially attacked nodes (1 − p)N (green and red part in the right bottom figure in

fig. 1.1), which causes the blue part to be detached from the giant component. Thus, the

total number of nodes that must be removed from network A is (1−ppB(ψ1))N . Hence the

third-stage failure is equivalent to a random attack in which p is replaced by φ′1 = ppB(ψ1).

The following steps repeats the above procedure.

Following this approach, we can construct the sequence of giant components of networks,

ψ′
1 = p, ψ1 = ψ′

1pA(ψ
′
1), (1.19)

φ′1 = ppA(ψ
′
1), φ1 = φ′1pB(φ

′
1), (1.20)

ψ′
2 = ppB(φ

′
1), ψ2 = ψ′

2pA(ψ
′
2), ... (1.21)



11

Figure 1.1: Illustration of cascading failure in interdependent networks.

At the end of the cascade process, ψ′
n = ψ′

n+1, φ
′
n = φ′n+1. Thus we arrive to a system of

x = ppA(y), y = ppB(x), (1.22)

which also gives equation

x = ppA(ppB(x)). (1.23)

This equation can be solved graphically. After we find x, the size of the mutually con-

nected giant component of the interdependent networks can be found by S = xpB(x).

The critical condition when the giant component of the interdependent networks exists is

1 = p2p′A(ppB(x))p
′
A(x), where p

′
A(x) is the derivative of function pA(x).



Chapter 2

Robustness of Interdependent Networks

Under Targeted Attack

2.1 Introduction

Modern systems due to technological progress are becoming more and more mutually cou-

pled and depend on each other to provide proper functionality [2–4]. For example, blackouts

are usually caused by cascading failures between the power grid and its communication sup-

port system [4]. While cascade of failures in one network, e.g., overload failure, can cause

dramatic damage to a system [34, 35], social disruptions caused by recent disasters, ranging

from hurricanes to large-scale power outages and terrorist attacks, have shown that the

most dangerous vulnerability is hiding in the many interdependencies across different net-

works [1, 36]. The question of robustness of interdependent networks has recently become

of interest [5–8]. In interdependent networks, nodes from one network depend on nodes

from another network and vice versa. Consequently, when nodes from one network fail they

cause nodes in the other network to fail, too. When some initial failure of nodes happens,

this may trigger a recursive process of cascading failures that can completely fragment both

networks.

Recently, a theoretical framework was developed [7] to study the process of cascading

failures in interdependent network caused by random initial failure of nodes. They show that

due to the coupling between networks, interdependent networks are extremely vulnerable

12
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to random failure. However, when we consider real scenarios, initial failure is mostly not

random. It may be due to a targeted attack on important central nodes. It can also

occur to low central nodes because important central nodes are purposely defended, e.g.

in internet networks, heavily connected hubs are purposely more secured. Indeed, it was

shown that targeted attacks on high degree nodes [37–41] or high betweenness nodes [42, 43]

in single networks have dramatic effect on their robustness. The question of robustness of

interdependent networks under targeted attack or defence has not been addressed.

2.2 Targeted Attack Model

In this chapter, we develop a mathematical framework for understanding the robustness of

interdependent networks under initial targeted attack which depends on degree of nodes.

The framework is based on a general technique we develop to solve targeted attack problems

in networks by mapping them to random attack problems. A value Wα(ki) is assigned to

each node, which represents the probability that a node i with ki links is initially attacked

and become inactive. We focus on the family of functions [40]

Wα(ki) =
kαi

∑N
i=1 k

α
i

,−∞ < α < +∞. (2.1)

When α > 0, nodes with higher degree are more vulnerable and those nodes are intention-

ally attacked, while for α < 0, nodes with higher degree are defended and so have lower

probability to fail. The case α = 0, W0 = 1
N , represents the random removal of nodes [7]

and the case α → ∞ represents the targeted attack case where nodes are removed strictly

in the order from high degree to low degree. For the α < 0 case, nodes with zero degree

should be removed before analysis begins. An important special case α = 1 corresponds to

the acquaintance immunization strategy [44].
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2.3 Interdependent Networks Model

Our model consists of two networks, A and B, with the same number of nodes, N . The

N nodes in each network are connected to nodes in the other network by bidirectional

dependency links, thereby establishing a one-to-one correspondence. The functioning of a

A-node in network A depends on the functioning of the corresponding B-node in network

B and vice versa. Within each network, the nodes are randomly connected with degree

distributions PA(k) and PB(k) respectively. We begin by studying the situation where only

network A is attacked. We initially remove a fraction, 1 − p, of the A-nodes of network

A with probability Wα(ki) (Eq.(2.1)) and remove all the A-links that connect to those

removed nodes. As nodes and links are sequentially removed, network A begins to fragment

into connected components. Nodes that are not connected to the giant component are

considered inactive and are removed. Owing to the dependence between the networks, all

the B-nodes in network B that are connected to the removed A-nodes in network A are then

also removed. Network B also begins to fragment into connected components and only the

nodes in the giant component are kept. Then network B spreads damage back to network

A. The damage is spreaded between network A and B, back and forth until they completely

fragment or arrive to a mutually connected component and no further removal of nodes and

links occurs.

2.4 Mapping Method

The main idea of our approach is to find an equivalent network A′, such that the targeted

attack problem on interdependent networks A and B can be solved as a random attack

problem on interdependent networks A′ and B. We start by finding the new degree dis-

tribution of network A after removing, according to Eq.(2.1), 1 − p fraction of nodes but

before the links of the remaining nodes which connect to the removed nodes are removed.

Let Ap(k) be the number of nodes with degree k and Pp(k) be the new degree distribution
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of the remaining fraction p of nodes in network A,

Pp(k) =
Ap(k)

pN
. (2.2)

When another node is removed, Ap(k) changes as

A(p−1/N)(k) = Ap(k)−
Pp(k)k

α

〈k(p)α〉
, (2.3)

where 〈k(p)α〉 ≡
∑

Pp(k)k
α. In the limit of N → ∞, Eq.(2.3) can be presented in terms of

derivative of Ap(k) with respect to p,

dAp(k)

dp
= N

Pp(k)k
α

〈k(p)α〉
. (2.4)

Differentiating Eq.(2.2) with respect to p and using Eq.(2.4), we obtain

−p
dPp(k)

dp
= Pp(k)−

Pp(k)k
α

〈k(p)α〉
, (2.5)

which is exact for N → ∞. In order to solve Eq.(2.5), we define a function Gα(x) ≡

∑

k P (k)x
kα , and substitue f ≡ G−1

α (p). We find by direct differentiation that [45]

Pp(k) = P (k)
fk

α

Gα(f)
=

1

p
P (k)fk

α

, (2.6)

〈k(p)α〉 =
fG′

α(f)

Gα(f)
, (2.7)

satisfy the Eq.(2.5). With this degree distribution, the generating function of the nodes left

in network A before removing the links to the removed nodes is

GAb(x) ≡
∑

k

Pp(k)x
k =

1

p

∑

k

P (k)fk
α

xk. (2.8)

Because network A is randomly connected, the probability of a link emanating from a

remaining node is equal to the ratio of the number of links emanating from the remaining
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nodes to the total number of links emanating from all the nodes of the original network:

p̃ ≡
pN 〈k(p)〉

N 〈k〉
=

∑

k P (k)kf
kα

∑

k P (k)k
, (2.9)

where 〈k〉 is the average degree of the original network A, 〈k(p)〉 is the average degree

of remaining nodes before the links that are disconnected are removed. Removing the

links which connect to the deleted nodes of a randomly connected network is equivalent

to randomly removing a (1 − p̃) fraction of links of the remaining nodes. Using the same

approach as in ref. [33], on can show that the generating function of the remaining nodes

after random removal of (1− p̃) fraction of links is equal to the original distribution of the

network with a new argument z = 1 − p̃ + xp̃. Thus the generating function of the new

degree distribution of the nodes left in network A after their links to the removed nodes are

also removed is

GAc(x) ≡ GAb(1− p̃+ p̃x). (2.10)

The only difference in the cascading process under targeted attack from the case under

random attack is the first stage where the initial attack is exerted on the network A. If

we find a network A′ with generating function G̃A0(x), such that after a random attack

with (1 − p) fraction of removed, the generating function of nodes left in A′ is the same

as GAc(x), then the targeted attack problem on interdependent networks A and B can be

solved as a random attack problem on interdependent networks A′ and B. We find G̃A0(x)

by solving the equation G̃A0(1− p+ px) = GAc(x) and from Eq.(2.10),

G̃A0(x) = GAb(1 +
p̃

p
(x− 1)). (2.11)

Up to now, we have mapped the problem of cascade of failures of nodes in interdependent

networks caused by an initial targeted attack to the problem of a random attack. Since the

derivation of equations only depends on the generating function of network A, this approach

can be generally applied to study both single networks with dependency links [46] and other

more general interdependent network models, as long as the nodes in those networks are
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randomly connected.

2.5 Results

Next we can apply the framework developed in Ref. [7], gA(p) = 1−G̃A0[1−p(1−fA)], where

fA is a function of p that satisfies the transcendental equation fA = G̃A1[1 − p(1 − fA)].

Analogous equations exist for network B. As the interdependent networks achieve a mutually

connected giant component, the fraction of nodes left in giant component is p∞. The system

satisfies the equations

x = pgA(y),

y = pgB(x),
(2.12)

where the two unknown variables x and y satisfy p∞ = xgB(x) = ygA(y). Eliminating y

from these equations, we obtain a single equation

x = pgA[pgB(x)]. (2.13)

The critical case (p = pc) emerges when both sides of this equation have equal derivatives,

1 = p2
dgA
dx

[pgB(x)]
dgB
dx

(x)|x=xc,p=pc. (2.14)

which, together with Eq.(2.13), yields the solution for pc and the critical size of the gi-

ant mutually connected component, p∞(pc) = xcgB(xc). In general, there is no explicit

expression as a solution and pc and xc can be found numerically.

We now analyze the specific classes of Erdős-Rényi (ER) [15, 16] and scale-free (SF) [18,

47–49] networks. The lines in Fig. 2.1 represent the critical thresholds, pc, for coupled

coupled SF networks with different α obtained by solutions of Eq.(2.13) and Eq.(2.14),

which are in excellent agreement with simulations. Several conclusions from Fig. 2.1 are as

follows: (i) Remarkably, while pc for a single SF network approaches to 0 quickly when α

becomes zero or negative (see also [40]), pc for interdependent networks is non-zero for the

entire range of α (Fig. 2.1(a)). This follows from the fact that failure of the least connected
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Figure 2.1: (a) Dependence of pc on α for SF single and interdependent networks with
average degree 〈k〉 = 4. The lower cut-off of the degree is m = 2. The horizontal lines
represent the upper and lower limits of pc. The black dashed line represents pc for SF free
network. (b) Values of pc vs α for SF interdependent networks with different λ and lower
cut-off m = 2. The λ in the legends of both the graphs are approximate numbers.

nodes in one network may lead to failure of well connected nodes in the other network, which

makes interdependent networks significantly more difficult to protect compared to a single

network. (ii) targeted attacks (α > 0) and defense strategies (α < 0) are more effective for

interdependent networks with broader degree distributions. In Fig. 2.1(b), comparing the

lines of λ = 2.5, λ = 2.8 and λ = 3.4 with m = 2, one can see that the lower is λ the more

sensitive is pc to the change of α. Accordingly, robustness of interdependent networks with

broader degree distributions decreases more under the same targeted attacks.

Simplified forms for GAb(x), GAc(x) and G̃A0(x) from Eqs.(2.8),(2.10) and (2.11) exist

when α = 1,

GAb(x) =
1

p

∑

k

P (k)fkxk =
1

p
GA0(fx), (2.15)

GAc(x) =
1

p
GA0(f(1− p̃+ p̃x)), (2.16)

G̃A0(x) =
1

p
GA0(

p̃

p
f(x− 1) + f). (2.17)
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where GA0(x) is the original generating function of the network A, f = G−1
A0(p) and p̃ =

G′

A0
(f)

G′

A0
(1) f .

Explicit solutions of percolation quantities exist for the case of interdependent Erdős-

Rényi networks, when α = 1 and both of the two networks are initially attacked simu-

taneously. The two networks originally have generating functions GA0(x) and GB0(x).

Initially, (1 − p1) and (1 − p2) fraction of nodes are targeted (according to Eq. (1) and

α = 1) and removed from network A and B respectively. Similarly, we start by finding

the equivalent networks A′ and B′ such that a fraction (1− p1p2) of random initial attack

on both of the networks has the same effect as (1 − p1) and (1 − p2) fraction of nodes are

intentionally removed from network A and network B respectively. After removal of initially

failed nodes and all the links that connect to the removed nodes, according to Eq.(2.16),

the generating function of the nodes left in network A is

GAc(x) =
1

p1
GA0(f1(1− p̃1 + p̃1x)), (2.18)

where f1 ≡ G−1
A0(p1), p̃1 ≡ f1

G′

A0
(f1)

G′

A0
(1) . Furthermore, (1 − p2) fraction of the remaining A-

nodes are randomly removed. Because each remaining A-node’s corresponding B-node in

network B has a possibility (1− p2) to be initially attacked, which leads to fail this A-node.

The generating function of the nodes left in network A is

GAd(x) ≡ GAc(1− p2 + p2x) =
1

p1
GA0(f1 + p̃1f1p2(x− 1)). (2.19)

Now we can find the generating function of the equivalent network A′ by G̃A0(1 − p1p2 +

p1p2x) = GAd(x):

G̃A0(x) =
1

p1
GA0(

p̃1
p1
f1(x− 1) + f1). (2.20)

The same holds for network B′.

For ER networks, the generating function is G0(x) = e〈k〉(x−1) [33], so f1 =
ln(p1)
〈k〉

1

+1,f2 =

ln(p2)
〈k〉

2

+ 1, G̃A0(x) = G̃A1(x) = e〈k〉1f
2

1
(x−1) and G̃B0(x) = G̃B1(x) = e〈k〉2f

2

2
(x−1). From
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Eq.(2.12),

x = p1p2gA(y) = p1p2(1− fA),

y = p1p2gB(x) = p1p2(1− fB),
(2.21)

where
fA = e〈k〉1f

2

1
y(fA−1),

fB = e〈k〉2f
2

2
x(fB−1).

(2.22)
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Figure 2.2: Values of p∞ vs p when both networks are initially attacked. Both networks
in the interdependent networks are ER or SF networks with the same average degree.
The symbols represent simulation data (N = 106 nodes). The solid lines are theoretical
predictions, Eq.(2.23). The dashed line represents simulation data for interdependent scale-
free networks with λ = 2.8, 〈k〉 = 4. All results are for α = 1. Inset: Values of pc vs average
degree of ER networks. The symbols represent simulation data, while the line is the theory,
Eq.(2.24).

In the case 〈k〉1 = 〈k〉2 = 〈k〉 and p1 = p2 = p, we find that

p∞ = p2(1− e〈k〉f
2p∞). (2.23)
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where f1 = f2 ≡ f = ln(p)
〈k〉 + 1, and pc satisfies relation:

〈k〉 p2cfc = 2.4554, (2.24)

with fc =
ln(pc)
〈k〉 +1. Fig. 2.2 shows that the simulation confirms well the theory. Compared

to the case of random attack on one network, where pc = 2.4554/ 〈k〉 [7], in Eq.(2.24),

the factor fc reflects the effect of targeted attack on high degree nodes to increase pc.

The term p2c in Eq.(2.24) is since we are initially attacking both networks simutaneously

instead of only attacking one network. Indeed for the case of initial random attack on two

networks simultaneously, from Eq.(2.21) and fA = e〈k〉1y(fA−1), fB = e〈k〉1y(fB−1) [7] we

obtain 〈k〉 p2c = 2.4554.

2.6 Summary

In summary, we developed a theoretical framework for understanding the robustness of

interdependent networks under targeted attacks on specific degree nodes. We introduce a

method and show that targeted-attack problems in networks can be mapped to random-

attack problems by transforming the networks which are under initial attack. It provides a

routine method (if the random-attack case is solvable) to study the targeted-attack problems

in both single networks and randomly connected and uncorrelated interdependent networks,

i.e. (i) the case of three or more interdependent networks, (ii) the case of partially coupled

interdependent networks, (iii) the case in which a node from network A can depend on more

than one node from network B. By applying the method, we find that in contrast to single

networks, when the highly connected nodes are defended (α < 0), the percolation threshold

pc has a finite non-zero value which is significantly larger than zero. For example, when

the degrees of all nodes are known and nodes can only be damaged from lower degree to

high degree (α → −∞), pc ≈ 0.46 for coupled SF networks with λ = 2.8 and 〈k〉 = 4 while

pc for the same single SF network is 0 (Fig. 2.1). The implications of the present study

are dramatic. The current methods applied to design robust networks and improve the
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robustness of current networks, i.e. protecting the high degree nodes, need to be modified

to apply to interdependent network systems.



Chapter 3

The Robustness Of Interdependent

Clustered Networks

3.1 Introduction

In a system of interdependent networks, the functioning of nodes in one network is depen-

dent upon the functioning of nodes in other networks of the system. The failure of nodes

in one network can cause nodes in other networks to fail, which in turn can cause further

damage to the first network, leading to cascading failures and catastrophic consequences.

For example, power blackouts across entire countries have been caused by cascading fail-

ures between the interdependent communication and power grid systems [4, 50]. Because

infrastructures in our modern society are becoming increasingly interdependent, under-

standing how systemic robustness is affected by these interdependencies is essential if we

are to design infrastructures that are resilient [1, 6, 51, 52]. Another example is the human

organism is an integrated network where complex physiological systems, each with its own

regulatory mechanisms, continuously interact, and where failure of one network can trig-

ger a breakdown of the entire system [53]. In addition to research carried out on specific

systems [54–62], a mathematical framework [7] and its generalizations [8, 63, 64] have been

developed recently. These studies use a percolation approach to analyse a system of two

or more interdependent networks subject to cascading failure [65, 66]. It was found that

interdependent networks are significantly more vulnerable than their stand-alone counter-

23
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parts. The dynamics of cascading failure are strongly affected by the structure patterns of

network components and by the interaction between networks. This research has focused

almost exclusively on random interdependent networks in which clustering within compo-

nent networks is small or approaches zero. Clustering quantifies the propensity for two

neighbours of the same vertex to also be neighbors of each other, forming triangle-shaped

configurations in the network [27–29]. Unlike random networks in which there is very lit-

tle or no clustering, real-world networks exhibit significant clustering. Recent studies have

shown that, for single networks, both bond percolation and site percolation in clustered

networks have higher epidemic thresholds compared to the unclustered networks [67–73].

Here we present a mathematical framework for understanding how the robustness of

interdependent networks is affected by clustering within the network components. We

extend the percolation method developed by Newman [67] for single clustered networks to

coupled clustered networks. We find that interdependent networks that exhibit significant

clustering are more vulnerable to random node failure than networks without significant

clustering. We are able to simplify our interdependent networks model—without losing its

general applicability—by reducing its size to two networks, A and B, each having the same

number of nodes N . The N nodes in A and B have bidirectional dependency links to each

other, establishing a one-to-one correspondence. Thus the functioning of a node in network

A depends on the functioning of the corresponding node in network B and vice versa. Each

network is defined by a joint distribution Pst (generating function G0(x, y) =
∑∞

s,t=0 Pstx
syt)

that specifies the fraction of nodes connected to s single edges and t triangles [67]. The

conventional degree of each node is thus k = s+ 2t. The clustering coefficient c is

c =
3× (number of triangles in network)

number of connected triples

=
N

∑

st tPst

N
∑

k





k

2



Pk

. (3.1)
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3.2 Site Percolation of Single Clustered Networks

We begin by studying the generating function of remaining nodes after a fraction of (1− p)

nodes is randomly removed from one clustered network. After the nodes are removed, we

define t′i to be the number of triangles of which node i is a part, d′i to be the number

of single edges that form triangles prior to attack, and n′i to be the number of stand-

alone single edges prior to attack. This network is thus defined by the joint distribution

Pn′,t′,d′ . The probability that a node has n′ single edges from single edges is the sum of

all the probabilities that nodes with more than n′ single edges will have exactly n′ edges

remaining, which is Q1(n
′) ≡

∞
∑

s=n′





s

n′



 pn
′

(1 − p)s−n′

. Similarly, the probability that a

node has t′ triangles is the sum of all the probabilities that nodes with more than t′ triangles

will have exactly t′ triangles remaining. Since the probability that a triangle will survive is

p2, the sum is Q2(t
′) ≡

∞
∑

t=t′





t

t′



 p2t
′

(1 − p2)t−t′ . The probability that a triangle corner

will have one edge broken is 2p(1−p)
1−p2

and the probability that it will have both edges broken

is (1−p)2

1−p2
. Thus the probability that a node had d′ single edges forming triangles prior to

their destruction is Q3(d
′) ≡





t− t′

d′



 [2p(1−p)
1−p2

]d
′

[ (1−p)2

1−p2
]t−t′−d′ . Combining these three,

we have the corresponding generating function

G(x, y, z, p) =
∑

n′,t′,d′

Pn′,t′,d′x
n′

yt
′

zd
′

=

∞
∑

n′=0

xn
′

Q1(n
′)

∞
∑

t′=0

yt
′

Q2(t
′)

t−t′
∑

d′=0

zd
′

Q3(d
′)Ps,t

= G0(xp+ 1− p, yp2 + 2zp(1− p) + (1− p)2). (3.2)

We define s′ = n′ + d′ to be the total number of single links of a node after attack.

The joint degree distribution after attack is P ′
s′,t′ which satisfies P ′

s′,t′ =
∑s′

n′=0 Pn′,t′,d′ , with
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d′ = s′ − n′. The generating function of P ′
s′,t′ is

G0(x, y, p) =
∑

s′,t′

P ′
s′,t′x

s′yt
′

=

∞
∑

s′=0

s′
∑

n′=0

∑

t′

Pn′,t′,d′x
s′yt

′

=
∑

n′,d′,t′

Pn′,t′,d′x
n′

yt
′

xd
′

= G(x, y, x, p). (3.3)

Therefore, the generating function of the remaining network after attack is

G0(x, y, p) = G0(xp + 1− p, yp2 + 2xp(1 − p) + (1− p)2). (3.4)

The size of the giant component g(p) of the remaining network according to Ref. [67] is

g(p) = 1−G0(u, v
2, p), (3.5)

where

u = Gq(u, v
2, p), (3.6)

v = Gr(u, v
2, p),

andGq(x, y, p) =
1
µ
∂G0(x,y,p)

∂x , Gr(x, y, p) =
1
ν
∂G0(x,y,p)

∂y where µ and ν are the average number

of single links and triangles per node, respectively.

As an example, consider the case when (1− p) fraction of nodes are removed randomly

from a network with doubly Poisson degree distribution

Pst = e−µµ
s

s!
e−ν ν

t

t!
, (3.7)

where the parameters µ and ν are the average numbers of single edges and triangles per ver-

tex, respectively. According to Eq. (3.1), the clustering coefficient is c = 2ν
2ν+(µ+2ν)2

. Then,
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Figure 3.1: Size of giant component g(p) in single networks with degree distribution Eq. (3.7)
and average degree 〈k〉 = 4, as a function of p, the fraction of remaining nodes after random
removal of nodes. Curves are from theory Eq. 3.8, symbols are from simulation.

G0(x, y) = eµ(x−1)eν(y−1) andG0(x, y, p) = Gq(x, y, p) = Gr(x, y, p) = e[µp+2p(1−p)ν](x−1)eνp
2(y−1),

and u = v = 1− g(p), leading to

g(p) = 1− e[µp+2p(1−p)ν]g(p)eνp
2(g(p)2−2g(p)). (3.8)

This equation is a closed-form solution for the giant component g(p) and can be solved

numerically. The critical case appears when the derivatives of the both sides of Eq. (3.8)

are equal. That leads to the critical condition 〈k〉pc = 1, which is independent of clustering.

However the degree distribution of the doubly Poisson model changes as we keep the average

degree and change the clustering coefficient. When the degree distribution is fixed, the

critical threshold actually increases as clustering increases [70, 71]. Furthermore, Fig. 3.1
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shows the resulting giant component as a function of p. Note that single networks with

higher clustering have smaller giant components.

3.3 Degree-Degree Correlation

When constructing clustering in a network, it is usually impossible to avoid generating

degree-degree correlations. To better understand the effect of clustering on degree-degree

correlations, we present an analytical expression of degree correlation as a function of the

clustering coefficient for a doubly Poisson-clustered network—see Eq. (3.7).

The degree-degree correlation [74] can be expressed as

ρD =
N1N3 −N2

2

N1

N
∑

i=1
d3iN

2
2

(3.9)

where Nm is the total number of m hop walks between all possible node pairs (i, j) including

cases i = j.

The generating function of the degree of a node in the network is
∞
∑

s,t=0
Pstz

s+2t =

G0(z, z
2). Let qst be the fraction of nodes with s single edges and t triangles that are reached

by traversing a random single link, where s includes the traversed link and rst is the frac-

tion of nodes with s single edges and t triangles reached by traversing a link of a triangle,

qst =
sPs,t

〈s〉 , rst =
tPs,t

〈t〉 . Their corresponding generating functions are Gq(x, y) =
1
〈s〉

∂G0(x,y)
∂x x

and Gr(x, y) =
1
〈t〉

∂G0(x,y)
∂y y. Moreover, N3 =

∑

i

∑

j
aijN2(j), where N2(j) is the total num-

ber of two-hop walks starting from node j. The number of three-hop walks from a node

i is equal to the total number of two-hop walks starting from all of its neighbours. Thus,

N3 =
∑

j
kjN2(j), where the number of two-hop walks starting from a node j with degree kj

will be counted kj times in N3. Equivalently, N3 = N
∑

st
(s+ 2t)Ps,tN2(s, t), where N2(s, t)

is the number of two hop walks from a node with s single edges and t triangles. The gen-

erating function of the number of single edges and of triangles reached in two hops from

a random node is G2(x, y) =
∑

st
Ps,t · G

s
q(x, y) · G

2t
r (x, y). The generating function of the

total number of links and of triangles reached within three hops starting from all nodes is
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G3(x, y) = N
∑

st
Ps,t · (Gq(x, y))

s(s+2t) · (Gr(x, y))
2t(s+2t). The number Nk of k-hop walks

can be approximated by its mean in a large network

N1 = N〈k〉,

N2 = N
∂G2

∂x
|x = 1, y = 1 + 2N

∂G2

∂y
|x = 1, y = 1

N3 =
∂G3

∂x
|x = 1, y = 1 + 2

∂G3

∂y
|x = 1, y = 1

When both s and t follow a Poisson distribution,

G0(x, y) = eµ(x−1)eν(y−1)

Gq(x, y) = G0(x, y)x

Gr(x, y) = G0(x, y)y.

In this case,

N1 = N〈k〉

N2 = N 〈k〉

(

〈k〉

1− c
+ 1

)

N3 =
(

〈k〉3 + 2〈k〉2 + 4ν〈k〉 + 〈k〉+ 6ν
)

N

N
∑

i=1

d3i =
(

〈k〉3 + 3 〈k〉2 + (6ν + 1) 〈k〉+ 6ν
)

N,

which together with Eq. (3.9) leads to

ρD =
c− c2 − 〈k〉c2

1− c+ 〈k〉c− 2〈k〉c2
, (3.10)

where c is the clustering coefficient, Eq. (3.1).

Figure 3.2 shows the relation between the degree correlation and the clustering coefficient

c for a Poissonian network [see Eq. (3.7)], for two given average degrees (〈k〉 = 3 and 4).

The figure shows a positive degree-degree correlation across the entire range, which means

the model is assortative [70]. The degree-degree correlation increases until c achieves half
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Figure 3.2: Degree-degrees correlation as a function of the clustering coefficient for Poisson
network (Eq. (3.7)) with average degree 〈k〉 = 3 and 4. Curves are from theory (Eq. 3.10)
and symbols from simulations.

of its maximum and then decreases to zero when c reaches its maximum. When c is 0 or

the maximum, the nodes connect to either all single links or all triangles, respectively.

3.4 Percolation on Interdependent Clustered Networks

To study how clustering within interdependent networks affects a system’s robustness, we

apply the interdependent networks framework [7]. In interdependent networks A and B,

a fraction (1 − p) of nodes is first removed from network A. Then the size of the giant

components of networks A and B in each cascading failure step is defined to be p1, p2, ...,

pn, which are calculated iteratively

pn = µn−1gA(µn−1),n is odd,

pn = µngB(µn),n is even,
(3.11)
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where µ0 = p and µn are intermediate variables that satisfy

µn = pgA(µn−1),n is odd,

µn = pgB(µn−1),n is even.
(3.12)

As interdependent networks A and B form a stable mutually-connected giant component,

n → ∞ and µn = µn−2, the fraction of nodes left in the giant component is p∞. This

system satisfies

x = pgA(y),

y = pgB(x),
(3.13)

where the two unknown variables x and y can be used to calculate p∞ = xgB(x) = ygA(y).

Eliminating y from these equations, we obtain a single equation

x = pgA[pgB(x)]. (3.14)

The critical case (p = pc) emerges when both sides of this equation have equal derivatives,

1 = p2
dgA
dx

[pgB(x)]
dgB
dx

(x)|x=xc,p=pc, (3.15)

which, together with Eq. (3.14), yields the solution for pc and the critical size of the giant

mutually-connected component, p∞(pc) = xcgB(xc).

Consider for example the case in which each network has doubly-Poisson degree distri-

butions as in Eq. (3.7). From Eq. (3.13), we have x = p(1− uA), y = p(1− uB), where

uA = vA = e[µAy+2y(1−y)µA ](uA−1)+νAp2(v2A−1),

uB = vB = e[µBx+2x(1−x)µB ](uB−1)+νBp2(v2B−1).

If the two networks have the same clustering, µ ≡ µA = µB and ν ≡ νA = νB, p∞ is then

p∞ = p(1− eνp
2
∞
−(µ+2ν)p∞)2. (3.16)

The giant component, p∞, for interdependent clustered networks can thus be obtained
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Figure 3.3: (a) Size of mutually connected giant component as a function of cascading fail-
ure steps n. Results are for c = 1, p = 0.64 (below pc), p = 0.66 (at pc) and p = 0.7 (above
pc). Lines represent theory (Eqs. (3.11) and (3.12)) and dots are from simulations. Note
that at pc there are large fluctuations. (b) Size of giant component, p∞, in interdependent
networks with both networks having clustering via degree distribution Eq. (3.7) and average
degree 〈k〉 = 4, as a function of p. Dashed lines are number of iterations (NOI) before cas-
cading failure stops obtained by simulation. The star curve is for shuffled c = 0.2 network,
which keeps the same degree distribution but without clustering and without degree-degree
correlation. Inset: Green squares and solid line represents critical thresholds, pc, of interde-
pendent networks as a function of clustering coefficient c. Red dashed line represents critical
threshold of shuffled interdependent networks which originally has clustering coefficient c.
The shuffled networks have zero clustering and degree-degree correlation, but has the same
degree distribution as the original clustered networks. In all figures, symbols and dashed
lines represent simulation, solid curves represent theoretical results.

by solving Eq. (3.16). Note that when ν = 0 we obtain from Eq. (3.16) the result obtained

in Ref. [7] for random interdependent ER networks. Figure 3.3a, using numerical simula-

tion, compares the size of the giant component after n stages of cascading failure with the

theoretical prediction of Eq. (3.11). When p = 0.7 and p = 0.64, which are not near the

critical threshold (pc = 0.6609), the agreement with simulation is perfect. Below and near

the critical threshold, the simulation initially agrees with the theoretical prediction but then

deviates for large n due to the random fluctuations of structure in different realizations [7].

By solving Eq. (3.16), we have p∞ as a function of p in Fig. 3.3b for a given average de-

gree and several values of clustering coefficients and in Fig. 3.4a for a given clustering and

for different average degree values. As the figure shows, when higher clustering within a
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network is introduced, the percolation transition yields a higher value of pc (see inset of

Fig. 3.3b).
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Figure 3.4: (a) Size of giant component as a function of p for fixed clustering coefficient
c = 0.1 and different average degrees. From right to left 〈k〉 = 3, 4, 5, ..., 9. (b) Critical
threshold pc as a function of average degree for different clustering coefficients. The solid
curves are for interdependent networks and the dashed curve is for single networks. Symbols
and curves represent simulation and theoretical predictions respectively.

When clustering changes in this doubly Poisson distribution model, degree distribution

and degree-degree correlation also change. First, to address the influence of the degree

distribution, we study the critical thresholds of shuffled clustered networks. Shuffled clus-

tered networks have neither clustering nor degree-degree distribution but keep the same

degree distribution as the original clustered networks. The brown dashed curve in Fig. 3.3b

represents the giant component of interdependent shuffled clustered networks with original

clustering c = 0.2. The figure shows that the difference in pc between the c = 0 network

and the shuffled c = 0.2 network is only 0.01, while the difference between the c = 0 and the

c = 0.2 networks is 0.12. In addtion, c = 0.2 clustered networks has no degree-degree corre-

lation (Fig. 3.2), which means the 0.12 shift of pc is due to clustering and not to a change in

degree distribution. We also show the critical thresholds of interdependent shuffled clustered

networks as the red dashed line in the inset of Fig. 3.3b. Note that the change of degree dis-

tribution barely shifts the critical threshold. We next discuss the effect of the degree-degree

correlation on the change of critical threshold. From Ref. [75], the degree assortativity alone
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monotonously increases the percolation critical threshold of interdependent networks. Be-

cause in our case degree-degree correlation first increases and then decreases (see Fig. 3.2),

while the critical threshold of interdependent networks increases monotonously as cluster-

ing increases (see inset of Fig. 3.3b), we conclude that clustering alone increases the value

of pc. Thus clustering within networks reduces the robustness of interdependent networks.

This probably occurs because clustered networks contain some links in triangles that do

not contribute to the giant component, and in each stage of cascading failure the giant

component will be smaller than in the unclustered case.

We also study the effect of the mean degree 〈k〉 on the percolation critical point. Fig-

ures 3.4a and 3.4b both show that, when clustering is fixed, the percolation critical point of

interdependent networks decreases as the average degree 〈k〉 of network increases, making

the system more robust. Figure 3.4b also shows that a larger minimum average degree is

needed to maintain the network against collapse without any node removal as clustering

increases.

3.5 Conclusion and Summary

To conclude, based on Newman’s single network clustering model, we present a generating-

function formalism solution for site percolation on both single and interdependent clustered

networks. We also derive an analytical expression, Eq. (3.10), for degree-degree correlation

as a function of the clustering coefficient for a doubly-Poisson network. Our results help

us better understand the effect of clustering on the percolation of interdependent networks.

We discuss the influence of a change of degree distribution and the degree-degree correlation

associated with clustering in the model on the critical threshold of interdependent networks

and conclude that pc for interdependent networks increases when networks are more highly

clustered. In the clustering model we are using, high clustering is hard to reach, because of

lack of higher order cliques than triangles. Recently, models which can have higher clustering

and are analytically solvable were proposed [73, 76], which are important complements to the

clustering model in this letter. We believe that with very high clustering, the relationship
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between the robustness of interdependent networks and clustering would be similar: keeping

the degree distribution the same, interdependent networks would be easier to break down

under random failure when clustering of the networks are higher.



Chapter 4

Identifying Influential Directors in the

United States Corporate Governance

Network

4.1 Introduction

Corporate governance is important for developing company policies and assuring business

growth and innovation. For successful industry positioning and competitiveness, companies

tend to elect directors who are influential and well known in the business world as well as

in the community. We assume that the influence of a director is reflected by the impact

that a director can have on the whole industry. Usually an influential director functions as

a model in the industry and can impose his/her philosophy to a wide range of companies.

Many rankings of powerful and influential people have been created by business magazines

based on interviews and public opinion. However, to the best of our knowledge, there are

no quantitative studies conducted on influence of corporate directors.

The influential directors, according to research done by economists, are usually those

who serve on many company boards, because they are more likely to be active in various

policy planning organizations and form a leading edge of the “capitalist class” [77]. These

directors also often constitute a vanguard of the corporate elite, typically they are often

in the forefront of innovation, and well integrated in the community [78, 79]. In addition,

36
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directors of large companies are considered to be more important than those who serve on

small company boards, which is emphasized by magazines that create lists of the “most

powerful people”.

Figure 4.1: Illustration of a subnetwork of the company-director bipartite network. Nodes
shown as quares represent directors, while nodes shown as circles depict companies. If a
director serves on the board of a company, a link exists between them. This subnetwork
includes Martha Stewart, the corporate boards on which she serves, and the other directors
who serve on common boards with Martha Stewart including the additional companies on
which boards these directors serve.

We define the total capitalization of all the companies (TCC) with which a director is
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affiliated as a quantity that contains both the number and the size of the companies on

which boards a director serves. We argue that the number and the size of the companies

with which a director is affiliated does not entirely reflect the influence of a director. To

illustrate this point, we show in Fig. 4.1 an example of Martha Stewart in the year 2001

when she was named the third most powerful woman in America by Ladies Home Journal.

As illustrated in this figure, Martha Stewart was director of only two companies, Revlon

Corp. and Martha Stewart Living Omnimedia. If we rank the directors by TCC, Martha

Stewart would only be ranked in the bottom 16th percentile in the Investor Responsibility

Research Center (IRRC) directors database. Fig. 4.1 shows that the directors who serve

on the same boards as Martha Stewart are also affiliated with many large companies. We

argue that Martha Stewart’s influence comes from her proximity to directors who serve on

the boards of these large companies. This indicates that the relative position of a director

(node) in the network contributes to this director’s influence, i.e. the influence of a director

depends not only on his/her own characteristics but also on the characteristics of the other

directors surrounding a specific director.

In this paper, we develop a systematic measure named influence factor (I), that incorpo-

rates both the topological and non-topological characteristics of directors in the network, to

quantitatively study the influence of directors. In our approach, the influence of a director

is based on the amount of information a director obtains from the other directors due to

his/her position in the network. In director’s network, nodes represent directors and links

between directors represent their service on common corporate boards. In such a network,

we assume that directors acquire information from the companies with which they are affil-

iated, and spread this information to other directors through information-sharing between

connected directors [80]. The influence factor measure is affected by common centrality

measures taken from complex network theory such as degree [81], betweenness [82], close-

ness [83] and the capitalization of companies. According to the influence factor method,

Martha Stewart is ranked in the 84th percentile in 2001, in contrast to only 16th percentile

when ranked by TCC. We also find that Douglas Leone, who was named as one of the
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top 10 venture capitalists in US by Forbes, is only in the 30th percentile when ranked by

TCC. However, based on the influence factor method, he is ranked in the 90th percentile

in 2001. We then statisticly compare the influence factor method with TCC and common

centrality measures, such as degree, betweenness, closeness, K-shell [84–86] and Bonacich

centrality [30, 31, 87], which are usually assumed to be equivalent to influence [88–90]. We

apply all these methods to identify the influential directors who are selected as powerful

people by popular business opinion, such as “Powerful Women in Business” from Fortune

magazine, “Powerful People in Networking” from Networking World magazine and “100

Most Influential People in Finance” from Treasury and Risk Management magazine. We

find that for all three cases the influence factor method is consistently among the most

efficient methods to identify the most influential directors.

4.2 Data

We build a network of directors based on the IRRC directors database [91] which contains

information about approximately 1,600 US corporations and 10,000 directors per year from

1996 to 2006.

We compare our results with popular rankings from magazines including:

1) The ranking of “50 most powerful women in business” from Fortune for 9 years

from 1998-2006. Each year, Fortune interviews industry experts, Wall Street analysts and

executive recruiters to identify powerful women. The importance of these business women

is broadly valued by revenues and profits controlled, their influence inside the company,

the importance of the business in the global economy, and its impact on American culture.

Each year the rankings include 50 female directors. We regard the same person in different

years as a different entity. Thus, there are 450 entities for 9 years, of which 193 entities are

included in the IRRC directors database.

2) The list of “the most powerful people in networking” from Network World for 9 years

from 1997-2006 except 2001 (due to magazine policy change in 2001). From 1997 to 2000,

the lists include 25 people and from 2002 to 2006, they include 50 people each year. Thus
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there are 350 entities, in which 112 entities are included in IRRC directors database.

3) The list of “100 most influential people in finance” from Treasury and Risk Manage-

ment for 4 years from 2003-2006. The lists include 400 entities, in which 47 are included in

IRRC directors database.

Less than half of the influential people listed in these business magazines are included in

the IRRC directors database, since many influential people selected by the magazines are

not directors. In this article, we focus only on the power of influential directors.

4.3 Directors’ Network and Its Properties

For each year, we create a bipartite network of companies and directors [92] based on the

IRRC database. As shown in Fig. 4.2, a node in this network represents alternatively a

director or a company. A link between a director and a company represents the fact that

the director serves on the board of the company. The largest connected cluster of the

bipartite network includes over 80% of the companies and directors in the database, while

the second largest cluster only contains less than 3% of companies and directors. Given this

topology, we only study the largest cluster of the network. In a typical year, e.g. 1999, the

largest cluster contains 1, 528 companies and 11, 116 directors. By projecting the bipartite

network into one-mode [93], we create a director’s network (Fig. 4.2). The existence of a

link between two directors means that they serve on at least one common board. Note that

in this network, directors within one company’s board form a fully connected cluster. The

overall network is constructed by attaching these fully connected clusters to each other.

Previous studies [92] analyze statistical properties of similar director’s networks, such as

degree distribution. Consistently, Fig. 4.3 shows that the tail of the CDF of degree in our

director’s network is exponential, exp(−k/kc), where k is the node degree of a director and

kc is the exponential decay parameter. Up to a degree of 8, all the CDFs for different years

display a plateau as a consequence of the fact that 8 is the characteristic degree of directors

for every year. This means that a large number of directors have degree around 8. Because

80% of directors serve on only one corporate board, the characteristic degree of directors
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is also the characteristic size of the boards. Directors who serve on many corporate boards

usually have large degree and their degree distribution is described by kc. We find that kc

decreases over time from 1997 to 2006. Since the characteristic size of the boards is stable,

this indicates a tendency for directors to serve on fewer boards [94].

4.4 Influence Factor Measure

We introduce a model to analyze the influence of directors by defining the influence factor

for each director based on the level of information that the director can obtain from the

entire network. The rationale for using the amount of information to value the influence

of directors is that (i) information is a valuable commodity in corporate governance, and

the more information the director has, the more valuable as a director she or he is; (ii)

a director who has access to company information tends to be able to impose his or her

influence on those companies, which indicates that the amount of information a director

obtains reflects the level of the influence he or she has. These two points coincides with our

view of influence of a director. The first point enables directors to impose their influence

well and strongly. The second point enables directors to impact a wide range of the whole

industry.

The influence factor model is defined as follows:

(i) Each company is considered a source of information, which can be obtained by the

directors who serve on the company’s board. The amount of information embedded in the

company is valued by the market capitalization of the company, based on the fact that

directors who can obtain information from and impose influence on large companies should

be more influential than directors who are affiliated with a marginal company.

(ii) After information is obtained by directors, it flows in the director’s network by

information-sharing between directors who are connected.

In Fig. 4.4, we demonstrate, as an example, how the influence factor of director u is

calculated:

(i) We determine the amount of information wj for each company by their market cap-
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italization. If we choose to study the influence of directors within the technology industry,

we set wj for the companies from other industries to 0, e.g. wA = 0, wD = 0, because A

and D are financial companies.

(ii) Distances between each director and director u are calculated in the director’s net-

work as shown in Fig. 4.4 and we define dj as the shortest distance between director u and

those directors who serve on the board of company j.

(iii) We reduce the information of each company by rj until it reaches director u. rj

is the information reduction rate per unit distance. Since this reduction rate differs from

pair of directors to another pair depending on people’s nature and relationship, we assume

rj to be some random number following certain possibility distribution. Without further

knowledge of how people share information with each other we assume for simplicity a

uniform distribution and choose rj to be a random number between 0 and 1. All information

relevant to company E can be accessed by director y (who sits on the board of E), but

only a fraction, (wE · rE1), is passed to director x (who sits with y on another board), and

so on. Thus, the amount of information about company E that director u can access is

SuE ≡ wE · rE1 · rE2 · rE3.

(iv) By adding the information of all the companies we find that the total information

that passes through director u is Su = SuA + SuB + SuC + SuD + SuE + SuF .

(v) Then the influence factor (I) is calculated as the percentage of total amount of

information that flows through director u by Iu ≡ Su/
∑

j wj .

In general, the influence factor I of a director i is defined as

Ii ≡

∑

j wjrj1rj2...rjdj
∑

j wj
, (4.1)

where wj is the amount of information embedded in company j based on market capitaliza-

tion, dj is the shortest distance between director i and the directors in company j, which

represents the number of intermediaries the information of company j has passed before it

reaches director i, and rj is the random information reduction rate. We obtain the influence

factor of director i as the average of 50 random realizations of Ii calculated by Eq. (1).
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The normalized influence factor (NIF) of each director is then defined as

Ĩi ≡
Ii− < I >

σ(I)
, (4.2)

where < I >≡
∑n

i=1 Ii/n is the annual average of the influence factor of all directors and

σ(I) is the standard deviation of influence factors of directors for one year. A negative

value of the NIF does not mean that a director has negative influence. Only the relative

rank is meaningful, e.g. a director with NIF −0.5 is more influential than a director who

has NIF −1.1.

4.5 Properties Of The Influence Factor

For different years, as shown in Fig. 4.5(a), the influence factor I of directors for all the

companies follows different cumulative distribution functions (CDF) because the sizes of

the networks are different from year to year. Hence, the influence factor of directors are not

comparable over the years. However, we find that the CDFs of the NIF Ĩ for different years

collapse to a single curve, which means that there is a scaling mechanism for Ĩ for different

years. As shown in Fig. 4.5(b), the scaled curve fits the complement cumulative function

of the Gaussian function. This scaling property enables us to compare NIF of directors for

different years.

As described in the previous section, the information reduction rate is a random pa-

rameter. However, we find that the rankings of directors given by different realizations are

consistent with each other, as shown in Fig. 4.6. For each realizations, we calculate the

influence factor of directors and choose the top 100 and 1000 directors out of around 10,000

directors each year. We then find the overlaping percentage of these top directors for every

pair of realizations and plot the average overlaping ratio and error bar in the graph. Out

of 10,000 directors each year, there is about 60% overlap for top 100 directors and more

than 80% overlap for top 1,000 directors. This result justifies our approach since it shows

that the microscopic detail of how much information is shared by a certain pair of directors
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is not critical for the process of finding the most influential directors, instead the network

property plays an important role.

The influence factor of a director is calculated based on a progressively-reduced infor-

mation exchange process, which is relevant to director’s network topological properties.

We now compare the influence factor to TCC and to the other centrality measures such

as degree, K-shell, closeness, betweenness and Bonacich centrality. Fig.4.7 shows that the

influence factor is not significantly correlated with the centrality measures except close-

ness. The correlation between influence factor and closeness is not surprising because the

obtained information for calculating the influence factor depends strongly on the distance

between directors and the closeness measures the average distance from one director to all

the other directors in the network. However, in addition to distance, the influence factor

also depends on the capitalization of companies, which differentiates influence factor from

closeness. This difference is reflected in the relative variance of influence factor with re-

spect to closeness which is consistently larger than 10% as shown in the inset of Fig. 4.7(c).

Indeed, when we test the methods empirically in Section VI, we find that this variance

causes big difference between influence factor measure and closeness measure in identifying

powerful people.

In addition, in Fig. 4.7, we show the effect of Na, the number of companies with which

a director is affiliated. The graphs show that directors with larger Na tend to be more

powerful by all measures. However, there is always a large overlap between directors with

different Na, which supports our argument that directors who serve on more corporate

boards are not necessarily more powerful than those who serve on fewer boards.

As discussed in Section III, the director’s network is comprised of many fully connected

clusters. Because of this specific topology, we argue that degree, K-shell, and betweenness

can not entirely reflect the influence of a director. The degree and K-shell of the directors

depend largely on the size of the boards. If a board consists of a large number of directors,

all the members of that particular board will have high degrees and will be present in the

nucleus of the network by K-shell measure, even if, as an extreme example, that board is



45

isolated from the rest of the network. Betweenness centrality of a node is defined as the

times that a node is on the shortest paths between all pairs of vertices. Because all directors

who serve only on one board will not occur on the shortest paths between other directors

and have zero betweenness, betweenness centrality does not distinguish the importance of

people who are only affiliated with one company’s board.

The influence factor is a measure affected by both nontopological properties, such as

the capitalization of the companies, and the topological properties of a director, such as

degree, closeness, etc. Moreover, the influence factor method is useful when applied to

a network consisting of many fully connected clusters. Below we test how efficient our

influence factor measure is in identifying influential people compared to TCC and existing

centrality measures.

4.6 Empirical Tests of Methods

In order to study the efficiency of a method in identifying the most influential directors from

the IRRC database, we first define an efficiency coefficient ǫ for each method as follows:

(1) Rank the directors according to the method that we want to test.

(2) Use the influential people lists made by popular business magazines as a benchmark.

(3) Examine the percentage (p) of people in the magazine lists who are included in the

top q percents of people from the database ranking, i.e. we select 10% (q = 10%) of people

who are ranked at the top of the database list and find that 30%(p = 30%) of the people in

the magazine lists appear in the top 10% of people from the database.

(4) Define the efficiency coefficient ǫ ≡ p/q. The larger the ǫ, the better the performance

of the particular method is in identifying influential directors.

4.6.1 Test: Power and influence of female directors in the US corporate

governance network

The ranking of “50 most powerful women in business” selects the 50 most powerful and

influential businesswomen in the US every year according to the criteria of Fortune. Every



46

year, about 20 out of these 50 powerful women are included in our database. To improve

the statistics, we increase the sample size by mixing the executive women of all years from

1998 to 2006, which is validated by the scaling relation for Ĩ, indicating that the influence

factor of directors in different years are comparable (see Section V). This means that the

same executives in different years are treated as different entities. We find that between

1998 and 2006, 193 entities out of 450 are included in our database.

We apply the NIF, TCC, and common centrality measures to identify the influential

female directors selected by these rankings. We plot the values of the efficiency coefficient

ǫ versus q in Fig. 4.8(a) and p versus q in Fig. 4.8(b), showing that the NIF is more

efficient in identifying powerful female directors in the network compared to the other

centrality measures. Only the performance of TCC is comparable with the NIF. The top

10% powerful female directors identified by NIF from our database contain 40% of the

directors who appear in the “50 most powerful women in business” list from Fortune.

4.6.2 Test: Power and influence of directors in the US corporate gover-

nance network for specific industries

In addition to studying the influence of directors in the overall US corporate governance

network, we also analyze the influence of directors over a certain group of companies by

assigning zero weight to those companies that we do not want to consider, as described in

section IV. Here we examine influential directors for the financial industry and the network-

ing industry.

Treasury and risk management compiles annual rankings of the “100 most influential

people in finance”, selecting powerful people from the financial industry. In our database,

companies are categorized into different economic groups, which allows us to identify the

companies that belong to the financial industry. We assign zero weight to the companies

that are not in the financial economic groups to calculate the influence factor and NIF of

directors for financial industry by Eqs.(4.1) and ( 4.2). We then calculate the efficiency

coefficient ǫ for each method and plot our results in Fig. 4.8(c) and Fig. 4.8(d). We see
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that in the financial industry, only closeness provides similar performance to NIF, while the

other centrality measures provide inferior performance to NIF. In addition, capitalization

of companies, measured by TCC, is found not to be a determining factor for influential

directors in the financial industry.

Network World publishes annual rankings of “the most powerful people in networking”.

These lists include powerful people in networking and communication technology related

industries. In the IRRC database, these industries correspond to technology and commu-

nication economic groups. To calculate the influence factor and NIF of each director for

the networking industry, we assign zero weight to the companies outside of the technology

and communication economic groups. We then calculate the efficiency coefficient ǫ for each

method and plot Fig. 4.8(e) and Fig. 4.8(f), showing that in the networking industry, lists

made according to TCC match the magazine lists better than lists made according to NIF.

However, the NIF is superior in identifying the powerful directors in networking industry

compared to the centrality measures, such as closeness, betweenness, K-shell, degree and

Bonacich centrality.

In summary, the influence factor measure is superior to degree, betweenness, K-shell

and Bonacich centrality in identifying powerful directors for all cases. Closeness shows

similar efficiency in identifying influential directors as the influence factor measure in the

financial industry. The TCC is as efficient as the influence factor measure when studying

female directors, while TCC is more efficient than the influence factor measure when the

power of directors in the networking industry is analyzed. When considering the criteria

for creating the most powerful people lists, the above results can be explained as follows:

The “100 most powerful people in finance” list is made by interviewing executives, bankers,

economists, technology vendors and consultants, so a director who has a shorter distance

to all the other directors in the network is more likely to be known by the other directors

in the network. The “50 most powerful women in business” list and the “most powerful

people in networking” list emphasize the revenues and profits controlled by the directors and

the importance of their businesses in the global economy. Thus a director who is affiliated
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with large companies would be considered to be more important. Nevertheless, our results

show that regardless of the approach used by magazines to create powerful people lists, our

influence factor measure is always among the most efficient methods in identifying powerful

people from these lists.

4.7 Conclusion

In this paper we have analyzed the power of directors in the US corporate governance

network. To measure the influence of directors, we develop a new measure, the influence

factor, that offers an objective and quantitative way of determining the power of directors.

In our network, nodes represent directors and the links between two directors exist if the

two directors serve on at least one common corporate board. We build this network of

directors based on the Investor Responsibility Research Center directors database for the

11-year period between 1996 and 2006, and find that the director’s network is comprised of

many fully connected clusters. This network topology presents a challenge for the existing

centrality measures to properly reflect the importance of a director. The influence factor

method is based on an information-sharing process that propagates through the network,

where the amount of information obtained by a director from other directors depends on

the distance between the directors. The longer the distance between two directors is, the

more intermediaries they have between them, hence the higher the information reduction

rate is. In addition, the influence factor is also affected by the market capitalization of

the companies with which directors are affiliated. Thus, the influence factor combines the

topological and non-topological properties of directors in the network. This combination

makes the influence factor more suitable for identifying influential people in the overall

corporate governance network or specific industries compared to other centrality measures

or TCC.

In addition to determining the influence factor, we also evaluate the normalized influence

factor (NIF) of directors for different years and find a scaling relation between the NIF values

which allows us to compare the influence of directors across the years. We then compare the
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efficiency ǫ of the influence factor in identifying powerful people with the efficiencies of other

centrality measures and TCC, using popular magazine lists as benchmarks. Powerful people

lists created by magazines reflect public opinions of directors. Hence they are appropriate

to use as benchmarks when testing how well different measures reflect the influence of a

director.

We find that contrary to commonly accepted belief that directors of large companies

are most powerful, in some instances, influential directors do not serve on boards of large

companies. We also find that the influence factor measure is consistently either the best or

one of the two best methods in identifying the influential people listed in the “50 most pow-

erful women in business” from Fortune, “powerful people in networking” from Networking

World, and “100 most influential people in finance” from Treasury and Risk Management.

In some cases, closeness and TCC are in competition with the influential factor method

when the criteria for creating the most powerful people lists emphasize TCC or closeness.

However the influential factor method is still a better choice to identify the influential di-

rectors overall because of its consistency of performance in all three cases regardless of the

criteria used to create the powerful people lists.

Even though the amount of information that a director can access through the network

may not be the single aspect when determining the influence of the director, the influence

factor measure developed here properly reflects the influence of directors in the US corporate

governance network, and can be a good quantitative and objective measure to identify

influential directors in corporate networks.
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Figure 4.2: Illustration of a bipartite network and its “one-mode” projection [93]. Nodes
labeled by numbers correspond to boards, nodes labeled by letters correspond to directors.
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Figure 4.3: (Color online) Demonstration that the cumulative degree distribution function
(P (k)) of the network of directors for 4 typical years 1997, 2000, 2003, 2006 follows expo-
nential distribution P (k) ∝ exp(− k

kc
). Note that kc decreases as time evolves (inset graph)

which means that directors tend to sit on fewer boards in more recent compared to earlier
years. The CDF displays a plateau up to a degree of 8 as a consequence of the fact that 8
is the characteristic size of a board for all years studied.
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Figure 4.4: (Color online) Illustration of the distance between directors used when calculat-
ing influence factor(I) of a director. The distance between two directors is defined as the
number of intermediate companies on the shortest path between these two directors. Thus
with respect to director u, director v has a distance 1, director x has a distance 2, etc.
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Figure 4.5: (Color online) Demonstration of cumulative distribution of director’s influence
factor I and NIF Ĩ in different years. (a) Cumulative distributions of influence factor I in
different years shows dissimilar behavior. (b) Cumulative distributions of the normalized
influence factor Ĩ, collapse onto a single curve, which indicates a scaling relation for Ĩ. The
solid curve corresponds to the complement cumulative function of the Gaussian function
with a mean −0.12 and a standard deviation of 1.22. The scaling relation makes Ĩ of
directors in different years comparable.
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Figure 4.6: Percentage of overlap of top directors according to influence factor between
different realizaitons v.s. years. For each realization, we calculate the influence factor for
each director and choose the top 100 and 1000 directors out of around 10,000 directors
each year. We find the overlaping percentage of these top directors between each pair of
realizations then find the average and error bar of these overlaping percentages.
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Figure 4.7: (Color online) Comparison between the influence factor I, TCC and the existing
centrality measures for a typical year 1999. Na is the number of companies with which a
director is affiliated. We can see that directors with larger Na tend to be more powerful
by all measures. However, there is always a large overlap between directors with different
Na, which supports our argument that directors who serve on more corporate boards are
not necessarily more powerful than those who serve on fewer boards. Moreover, we find (i)
significant correlation between closeness and influence factor, (ii) some positive correlation
between TCC, Bonacich centrality and influence factor and (iii) a low correlation between
influence factor and degree, K-shell and betweenness. Inset: The relative variance of in-
fluence factor (σ(I)/ < I >) with respect to closeness. Directors are divided into 10 bins
according to their closeness, and variance σ(I) and average < I > for each bin are calcu-
lated to plot this realtive rariance versus closeness graph. Typically the relative variance is
around 14%.
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Figure 4.8: (Color online) Comparison between the efficiency ǫ of the influence factor
measure and other measures in identifying the most influential directors. We apply the
NIF, TCC, closeness, betweenness, K-shell, degree and Bonacich centrality to identify the
influential people listed by magazines. The threshold q is the top fraction of directors
after they have been sorted by descending importance, e.g. q = 0.1 for influence factor
means selecting 10% of the directors with the highest Ĩ in our database; p is the fraction
of directors in the magazines’ powerful people lists who are included in the director’s set
selected from the IRRC database by threshold q. The dashed line (p = q, ǫ = 1) is obtained
when directors are randomly selected from the database instead of being ranked. The
ratio ǫ ≡ p/q represents how efficient a measure is in identifying powerful people listed
by magazines from the IRRC directors database. Here we show three cases, “Powerful
Women in Business” from Fortune, “Influential People in Finance” from Treasury and
Risk Management and “Powerful People in Networking” from Network World. In the case
of powerful women in business TCC is as efficient as the influence factor measure, in the
financial industry closeness shows similar efficiency as the influence factor measure, while
in the case of powerful people in networking TCC is more efficient than the influence factor
measure.



Chapter 5

Cascading Failures in Bi-partite Graphs:

Model for Systemic Risk Propagation

5.1 Introduction

There have been dramatic advances in the field of complex networks in recent years [7,

18, 27, 48, 49, 95]. The Internet, airline routes and electric power grids are all examples of

networks in which connectivity between network components is essential.

Because of the strong connectivity, catastrophic cascading failure of nodes in networks

can happen when the system is under a shock, especially if the shocked nodes represent

hubs, or have high centrality measures in the network [6, 34, 39, 63, 96]. So, in order to

minimize the systemic risk, these networks should be designed to be robust to external

shocks. In the wake of the recent global financial crisis, increased attention has been given

to the study of the dynamics of economic systems and to systemic risk in particular. The

widespread impact of the current EU sovereign debt crisis and the 2008 world financial

crisis show that as economic systems become increasingly interconnected, local exogenous

or endogenous shocks can provoke global cascading system failure that is difficult to reverse

and that cripples the system for a prolonged period of time. Thus policy makers are

compelled to create and implement safety measures that can prevent cascading system

failures or soften their systemic impact. Based on the success of complex networks in

modelling interconnected systems, applying complex network theory to study economical

57
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systems has been under the spot light [9–14].

There are two channels of risk contagion in the banking system, (i) direct interbank

liability linkages between financial institutions and (ii) contagion via changes in bank asset

values. The former, which has been given extensive empirical and theoretical study [97–101],

focuses on the dynamics of loss propagation via the complex network of direct counterpart

exposures following an initial default. The latter, based on bank financial statements and

financial ratio analysis, has received scant attention. A financial shock that contributes to

the bankruptcy of a bank in a complex network will cause the bank to sell its assets. If the

market’s ability to absorb these sales is less than perfect, the market prices of the assets

that the bankrupted bank sells will decrease. Other banks that own similar assets could

also fail because of loss in asset value and increased inability to meet liability obligations.

This imposes further downward pressure on asset values and contributes to further asset

devaluation in the market. Damage in the banking network thus continues to spread, and

the result is a cascading of risk propagation throughout the system [102, 103]. In this paper

we model the risk contagion via changes in asset values in the banking system.

In the past 2008 financial crisis, 371 commercial banks failed between 1/1/2008 and

7/1/2011. The Failed Bank Lists from the Federal Deposit Insurance Corporation (FBL-

FDIC) records the names of failed banks and the time when the banks failed. We use this

list as an experimental benchmark to our model. The other dataset that we use is the US

Commercial Banks Balance Sheet Data (CBBSD) from Wharton Research Data Services,

which contains the amounts of assets in each category that the US commercial banks had

on their balance sheets (see Method section for more detail). We use this dataset as an

input to our model.

The contributions of this paper are as follows. We first analyse the properties of the

failed banks from FBL-FDIC, examining the weights in specific assets as well as equity to

asset ratios. We then construct a bipartite banking network that is composed of two types

of nodes, (i) banks and (ii) bank assets. Link between a bank and a bank asset exists when

the bank has the asset on its balance sheet. We also develop a cascading failure model
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to simulate the crisis spreading process in the bipartite network. We then populate the

model by the banks’ balance sheet data (CBBSD) for 2007, and run the cascading failure

model by initially introducing a shock to the banking system. We compared the failed banks

identified by model with the actual failed banks from the FBL-FDIC from 2008 to 2011, and

find that our model simulates well the crisis spreading process and identifies a significant

portion of the actual failed banks. Thus, we suggest that our model could be useful to

stress test systemic risk of the banking system. For example, we can test each particular

asset or groups of assets influence on the overall financial system i.e. if the agricultural

assets drop by 20% in value, we can study which banks could be vulnerable to failure, and

offer policy suggestions to prevent such failure, such as requirement to reduce exposure

to agricultural loans or closely monitor the exposed banks. Finally, we show that sharp

transition can occur in the model as parameters change. The bank network can switch

between two distinct regions, stable and unstable, which means that the banking system

can either survive and be healthy or completely collapse. Because it is important that policy

makers keep the world economic system in the stable region, we suggest that our model for

systemic risk propagation might also be applicable to other complex financial systems, e.g.,

to model how sovereign debt value deterioration affects the global banking system or how

the depreciation or appreciation of certain currencies impact the world economy.

5.2 Properties of Failed Banks.

To build a sound banking system network and systemic risk cascading failure model, we

need to study the properties of the failed banks. The asset portfolios of commercial banks

contain such asset categories as commercial loans, residential mortgages, and short and long-

term investments. We model banks according to how they construct their asset portfolios

(upper panel of fig. 5.1). For each bank, the CBBSD contains 13 different non-overlapping

asset categories, e.g., bank i owns amounts Bi,0, Bi,1, ..., Bi,12 of each asset, respectively.

The total asset value Bi and total liability value Li of a bank i are obtained from CBBSD

dataset. The weight of each asset m in the overall asset portfolio of a bank i is then defined
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as wi,m ≡ Bi,m/Bi. From the perspective of the asset categories, we define the total market

value of an asset m as Am ≡
∑

iBi,m. Thus the market share of bank i in asset m is

si,m ≡ Bi,m/Am.

Figure 5.1: Bank-asset bipartite network model with banks as one node type and assets as
the other node type. Link between a bank and an asset exists if the bank has the asset on its
balance sheet. Upper panel: illustration of bank-node and asset-node. Bi,m is the amount
of asset m that bank i owns. Thus, a bank i with total asset value Bi has wi,m fraction of its
total asset value in asset m. si,m is the fraction of asset m that the bank holds out. Lower
panel: illustration of the cascading failure process. The rectangles represent the assets and
the circles represent the banks. From left to right, initially, an asset suffers loss in value
which causes all the related banks’ total assets to shrink. When a bank’s remaining asset
value is below certain threshold (e.g. the bank’s total liability), the bank fails. Failure of
the bank elicits disposal of bank assets which further affects the market value of the assets.
This adversely affects other banks that hold this asset and the total value of their assets
may drop below the threshold which may result in further bank failures. This cascading
failure process propagates back and forth between banks and assets until no more banks
fail.

To study the properties of failed banks between 2008 and 2011, we focus on the weight

of each bank’s assets. For certain assets, we find that the asset weight distributions for all

banks differ from the asset weight distributions for failed banks. Figures 5.2(a) and 5.2(c)
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show that, unlike survived banks, failed banks cluster in a region heavily weighted with

construction and development loans and loans secured by nonfarm nonresidential properties.

Failed banks have less agricultural loans in their asset portfolios compared to survived

banks (fig. 5.2(d)). These results confirm the nature of the most recent financial crisis of

2007–2011 in which bank failures were largely caused by real estate-based loans, including

loans for construction and land development and loans secured by nonfarm nonresidential

properties [104]. In this kind of financial crisis, banks with greater agricultural loan assets

are more financially robust [105]. Figure 5.2(e) shows that failed banks tend to have lower

equity to asset ratios, i.e. failed banks generally had higher leverage ratios than survived

banks during the financial crisis of 2008-2011 [106].
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Figure 5.2: Comparison of probability density functions (PDF) of weight of typical assets
and equity ratios between all banks and FDIC listed failed banks for 2007. (a) PDF of the
weight of loans for construction and land development in banks’ total asset. (b) PDF of the
weight of loans secured by 1-4 family residential properties in banks’ total assets. (c) PDF
of the weight of loans secured by nonfarm nonresidential properties in banks’ total assets.
(d) PDF of the weight of agriculture loans in banks’ total assets. (e) PDF of banks’ equity
to asset ratios. Blue circles curves represents PDFs of all banks, red triangles represents
PDFs of those banks that are on the FDIC failed bank list.
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5.3 Cascading Failure Propagation Model.

To study the systemic risk of the banking system as complex networks, we construct a

cascading failure model based on the facts presented in the previous section.

We first build a bipartite network which contains two types of nodes, banks on one

hand and bank assets on the other. Link exists between a bank and an asset when the

bank has the asset on its balance sheet. No links between banks or between assets exist.

To simulate the cascading failure process, we develop and apply the following model with

three parameters p, η and α (illustrated in fig. 5.1):

1. We initially shock certain asset m, reducing the Total Market Value of asset m to

p fraction of its original value, p ∈ [0, 1]. The smaller the p is, the larger the shock.

When p is 0, the total market value of asset m is wiped out. When p is 1, no shock

is imposed.

2. When the market deteriorates, each bank i that owns the shocked asset m will expe-

rience Bi,m(1− p) reduction in value, where Bi,m is the amount of asset m that is on

bank i’s balance sheet.

3. When the total asset value of a bank declines to a level below the level of promised

payments on the debt, it causes distress or default. The total asset value that triggers

an incidence of distress lies somewhere between the book value of total liabilities and

short-term liabilities. In the corporate sector default analysis, Moody’s Analytics

used the sum of short-term debt, interest payments and half of long-term debt [107–

109] as the distress barrier. However, in the past financial crisis, external aid from

other financial institutes or from the government played a significant role in distorting

this distress barrier, thus even when a bank’s total value of assets was below its

liabilities, the bank could still survive. We describe these combined effects using

random number r that is uniformly distributed in range [0, η], where η ∈ [0, 0.5] is a

parameter controlling tolerance of a bank’s assets being below its liabilities. We define

the distress barrier to be (1− r) ·Li, such that a bank fails when Bi < (1− r) ·Li. For
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such distress barrier with evolving randomness, the probability P(Bi, Li) for a bank i

to fail can be written as

P (Bi, Li) =















0 if Bi ≥ Li

(Li −Bi)/(ηLi) if η 6= 0, Li > Bi > (1− η)Li

1 if (1− η)Li > Bi

(5.1)

4. We assume that when a bank i fails, the overall market value of each asset m that the

failed bank owns suffers αBi,m value deduction, where α ∈ [0, 1] is a third parameter

in the model that describes the market’s reaction to a bank failure. The unit price

of asset m becomes
Am−αBi,m

Am
of its original price. That is because the failed banks

need to sell assets to meet their liabilities and the market’s ability to absorb this sale

is not perfect, which leads to price decrease of the affected assets. The loss of the

market value of each asset m is proportional to Bi,m, the amount of asset m that the

failed bank i owns. Depending on the liquidity of an asset, α can be between 0 and 1.

When an asset is extremely liquid, the market value of the asset will not be adversely

affected by asset sales, α = 0. When the market is extremely illiquid, then the value

of asset could potentially have zero value. Thus the aggregated total market value of

asset Am will be reduced to Am −Bi,m, which corresponds to α = 1.

5. Further deterioration of asset values can then contribute to failure of more banks.

Thus the damage in the bipartite network spreads between banks and assets bidirec-

tionally until the cascading failure stops.

Usually financial crises start with a burst of economic bubbles. The correspondence

of the model’s initial shock parameter p in reality can be described as the drop of certain

asset value at the beginning of a crisis. For example, when the dot-com bubble burst, the

technology heavy NASDAQ Composite index lost 66% percents of its value, plunging from

the peak of 5048 in March 10, 2000 to the 1720 in April 2, 2001.
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5.4 Empirical Test and Analysis.

To empirically test our model, we introduce a shock into the banking system by reducing

(1 − p) percentage of the value of a single asset m. We then monitor the progression of

bank failure until the cascading process stops. We examine two distinct groups of banks

1) all the analyzed banks from CBBSD dataset, and 2) the banks from the FDL-FDIC

failed bank list. We then study the fraction of banks that were identified as survived by our

model in both groups. We plot both of these fractions versus the sizes of initial shocks in

fig. 5.3, for parameter η = 0. The four plots correspond to four typical assets being initially

shocked respectively. Figure 5.3(a) and figure 5.3(c) show that when the commercial real

estate loans, i.e. loans for construction and land development and loans secured by nonfarm

nonresidential properties, suffer initial shock respectively, the survival rate of the banks from

the first group (all banks), according to our model, is distinctly above the survival rate of

the second group of banks (FBL-FDIC failed banks list). This illustrates that when the

commercial real estate loans are initially shocked, the model can identify the actual failed

banks efficiently. Figures 5.3(b) and 5.3(d) show that when we impose initial shock on loans

secured by 1-4 family residual properties or agricultural loans, the model does not clearly

separate the two groups of banks. This result indicates that the commercial bank failures

during the 2008 financial crisis stems from value deterioration of commercial real estate

loans.

To quantitatively test the efficiency of the model in identifying failed banks, we use

the receiver-operating-characteristic (ROC) curve analysis, which plots the fraction of true

positives out of the positives and the fraction of false positive out of the negatives for a

binary classifier system. ROC curve analysis is a standard method in signal detection theory

as well as in psychology, medicine and biometrics [110]. We choose a parameter combination

of p, η and α to run the model to determine which banks fail, and compare this prediction

with the FDIC list of failed banks. The true positive rate is defined as the fraction of the

actual failed banks that are also identified as failed in our model. The false positive rate is
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Figure 5.3: Fraction of survived banks after cascading failures as function of the initial loss
of value of certain asset, with η = 0. Blue dashed lines represent the fraction of survived
banks out of all banks, and the red solid lines represent the fraction of survived banks out
of the 278 failed banks from FDIC failed bank list. The parameter α is changed from 0
to 0.1 by 0.01 to produce 10 lines for each case. (a) Initial shock is imposed to loans for
construction and land development. The red solid lines are significantly lower than the
blue dashed lines separating clearly the failed banks from the set of all banks. (b) Initial
shock is imposed to loans secured by 1-4 family resid. properties. The red solid lines and
blue dashed lines are entangled. (c) Initial shock on loans secured by nonfarm nonresid.
properties. The red solid lines are distinguishably lower than the blue dashed lines, similarly
as in the case under (a). (d) Initial shock on agricultural loans. The red solid lines are
slightly higher than the blue dashed line, not showing clear distinction between failed and
non failed banks.

the fraction of banks that are not on the FDIC list of failed banks but are identified as failing

by our model. Each point in the ROC curve corresponds to one parameter combination. A

complete random guess would give points along the diagonal line from the left bottom to

the top right corner. The more a point is above the diagonal line, the stronger predictive

power the model has.
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We firstly impose the initial shock to the construction and land development loans and

plot the ROC curves in the top row of fig. 5.4. As fig. 5.4(a) shows, when the false-positive

rate is below 0.2 we have a relatively high true-positive to false-positive ratio. For example,

the four black dots in fig. 5.4(a) represent the false-positive rate and true positive rate

pairs (0.06, 0.5), (0.1, 0.61), (0.15, 0.72) and (0.2, 0.78) respectively. The pair (0.06, 0.5)

corresponds to the parameter combination (α, η, p) = (0.14, 0.26, 0.6), which means using

this parameter combination, the model can identify 50% of the actual failed banks that

are on the FBL-FDIC with cost of 6% false positive prediction. Overall, the ROC curve is

bended well above the diagonal curve, which means the model captures a significant portion

of the real-world behavior and has predictive power.

However, fig. 5.4(a) alone is not enough to justify our complex networks model as nec-

essary model to describe the systemic risk in this banking system. If all of the actual failed

banks owned a large amount of loans for construction and land development, then these

banks will fail in the model in the first round of failure after this type of asset is initially

shocked. In that case, we only need to look at the weight of this asset in the banks’ portfolio

to identify the failed banks. However, we find that the failure of banks does not only occur

because of the initial shock to specific assets, but also because of the amplified damage by

positive feed back in the complex banking network. The interdependency between banks

and the complexity of network structure are crucial to this amplified damage in the system.

To demonstrate our findings we conduct separately ROC curve analysis for the first-step

prediction (bank failures caused directly by the initial shock on an asset) as well as for the

consecutive-steps prediction (bank failures caused by a cascading failure process) as shown

in figs. 5.4(b) and 5.4(c). We find that in addition to the first-step effective predictions,

the consecutive-steps of the model further efficiently identify failed banks that can not be

identified by the first-step (ROC curve is above the diagonal line). Fig. 5.4(d) further shows

the number of failed banks correctly identified through the first and consecutive steps of the

cascading failure simulation for the four parameter combinations selected from fig. 5.4(a)

(black dots in the figures). In all four cases, the number of failed banks predicted by
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(a) Prediction by the entire cascading
failure process.
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(b) Prediction by the first cascading
failure step.
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(c) Prediction by steps other than the
first step.
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(d) Number of failed banks identified
through different stages of cascading
failure.
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(e) Prediction by the entire cascading
failure process.
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(f) Prediction by the first cascading fail-
ure step.
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(g) Prediction by steps other than the
first step.
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Figure 5.4: ROC curves of the prediction of failed banks by our cascading failure model
when the loans for construction and land development are initially shocked (top figures) and
when the loans secured by nonfarm nonresidential properties are initially shocked (bottom
figures), based on 2007 data. Each point of the ROC curves corresponds to one combina-
tion of parameters (α, η, p). (a)(e) ROC curve of predictions made by the entire cascading
failure process, (b)(f) of predictions made by the first cascading failure step and (c)(g) of
predictions made by the other than the first cascading steps. The color of a dot represents
the number of failed banks correctly identified by the model with the corresponding param-
eters combination. (d)(h) For fixed false positive rates of 5%, 10%, 15%, and 20%, we find
parameter combinations with maximum true positive rates in fig. (a), and show the number
of failed banks identified by the first step (red) and the number of failed banks identified by
the other steps in the cascading failure process (white). The black dots in (a)(b)(c) show
the positions of four combinations respectively.

the consecutive steps represents a significant fraction of the total number of failed banks

identified. This result shows that some banks did fail only because of the the complex

interconnections between banks in the system, which contributes to the risk contagion in

the system. Thus, our model captures the complexity feature of the banking system and

can offer prediction better than predictions made only based on balance sheet but without

considering interactions between banks.

In addition to construction and land development loans, we also test our cascading

failure model by simulating initial shock on other assets. The ROC curves in the bottom
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row of fig. 5.4 show that the loans secured by nonfarm nonresidential properties, when

initially shocked, have lower predictive power (smaller true-positive to false-positive ratio)

compared to the case when initial shock is imposed on loans for construction and land

development. ROC curve tests for assets of loans secured by 1-4 family residential properties

and agricultural loans, as shown in figs. 5.5(a) and 5.5(b), exhibit curves that are almost

diagonal, indicating that initial shocks on these two assets have no predictive power on the

failure of the banks in the 2007–2011 financial crisis. A truly random behavior would render

points along the diagonal line (the so-called line of no discrimination) from the bottom left

to the top right corners.
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Figure 5.5: ROC curves of predictions of failed banks by our cascading failure model when
(a) loans secured by 1-4 family resid. properties and (b) agricultural loans are initially
shocked respectively. The straighter the ROC curve is, the closer it is to random case,
meaning the less predictive power in regard to the failure of the commercial banks during
the 2007-2011 financial crisis.

The above ROC curve results suggest that the construction and land development loans

and the loans secured by nonfarm nonresidential properties were the two asset types most

relevant in the failure of commercial banks during the 2007–2011 financial crisis. It is largely

believed that the past financial crisis is caused by residential real estate assets. However, we

do not find evidence that loans secured by 1-4 family residential properties are responsible

for commercial banks failures. This result is consistent with the conclusion of ref. [104]
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that the cause of the commercial banks failure between 2007-2011 were largely caused by

commercial real estate-based loans rather than residential mortgages.

Our final exploration is of the percolation-like property exhibited by the bank-asset

bipartite network. Complex networks usually exhibit percolation phase transitions. As the

dependent parameter changes, the giant component of connected clusters in the network can

drop to zero at the critical point. In the bank-asset bipartite network model we go beyond

the giant component of connected clusters and study all survived banks. Thus, percolation

theory can not be applied. However, we find that a percolation-like phenomenon also

exists in this model. We study the number of survived banks after the cascading failure

process, tuning one parameter and keeping the other two parameters fixed. We find that

the number of survived nodes in networks can change dramatically with a small change

of parameters. The parameter combination is chosen as the first example in figure 5.4(d),

α = 0.14, η = 0.26, and p = 0.6. We show that the fraction of surviving banks changes

smoothly as parameters p and η change (see figs. 5.6(a) and 5.6(c)). But as α changes,

the fraction of surviving banks changes abruptly at a critical point and displays a first-

order-like abrupt phase transition (fig. 5.6(b)). We show that the first-order-like phase

transition also exists for p and η for a certain parameter combination pool. As an example,

we choose another parameter combination (α = 0.35, η = 0.2, and p = 0.6). We show in the

right panel of fig. 5.6 that a first-order-like phase transition exists for all three parameters,

which means the system is at risk of abrupt collapse. Figure 5.6(d) shows that, when the

initial shock parameter p for an asset is below a certain threshold, even if the other asset

market values are undamaged, almost all banks default because the cascading failure of

this single asset (construction and land development loans) significantly affects the overall

financial system. Figure 5.6(e) shows that when the effect of bank failures on asset market

values is sufficiently large, the whole banking system is at risk of collapse. Figure 5.6(f)

shows that when η is large, i.e., when the bank distress barrier of default is more relaxed,

the robustness of the system improves significantly. Thus, the bank-asset bipartite network

behaves differently for different parameter combinations. Figure 5.7 plots the phase diagram
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for this bank network. Two different regions exist for parameters p and α. In region I, the

bank network system is in a stable state, i.e., after cascading failure a significant number

of banks will still survive. In region II, the cascading failure process contributes to the

collapse of the entire bank network. Given that the bank network as a complex system

exhibits these two distinct states, it is extremely important that policy makers institute

rules that will keep the banking system in the stable region.
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Figure 5.6: Survival rate of banks when asset 0 ( loans for construction and land devel-
opment ) is initially shocked as function of one parameter with the other two parameters
fixed. Average over 300 independent realizations with 95% confidence interval. Left panel:
parameter combination α = 0.14, η = 0.26 and p = 0.6; right panel: parameter combination
α = 0.35, η = 0.2 and p = 0.6.

5.5 Discussion

In this paper, we develop a bipartite network model for systemic risk propagation and

specifically study the cascading failure process in the banking system. We first study the

properties of the defaulting banks during the 2007–2008 financial crisis, and find that they

differ from the properties of the survived banks. We then construct a bipartite banking
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Figure 5.7: Phase diagram for parameter α and p, when η = 0.26. The network is stable in
region I. Significant part of banks in the network would still survive after cascading failure.
In region II, almost all the banks in the network fail after cascading failure.

network that is composed of (i) banks on one hand and (ii) bank assets on the other. We

also propose a cascading failure model to simulate the crisis spreading process in banking

networks. We introduce a shock into the banking system by reducing a specific asset value

and we monitor the cascading effect of this value reduction on banks and on other asset

values. We test our model using 2007 balance sheet data by identifying the empirically

failed banks between 2008 and 2011, and find through ROC curve analysis that our model

simulates well the crisis spreading process and identifies a significant portion of the actual

failed banks from the FDIC failed bank database.

Furthermore, studying the cascading failure of banks step by step shows that the complex

structure of the bank network indeed contributes to the spreading of financial crisis, which

makes a complex network model necessary in describing and predicting the behavior of the

banking system. Thus, we suggest that our model could be useful to stress test systemic

risk of the banking system. For example, we can stress test the model to predict which

banks could be in danger and how many banks could fail if the agricultural assets drop
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20% in value. We then offer policy suggestions such as requirement to reduce exposure

to agricultural loans or closely monitor vulnerable banks. Then the model also indicates

possible ways to mitigate the propagation of financial crisis. From the model we know that

risk in the banking system propagates bidirectionally between assets and banks. Suppressing

propagation either way could be very helpful to mitigating such catastrophes. The first way

is to provide liquidity to the market, thus when distressed banks need to sell assets, the

market will not overreact. The second way to curb systemic risk contagion is to ensure that

banks are solvent and have healthy balance sheets, i.e. no excess leverage, higher capital

requirements, appropriate levels of liquid assets, etc. in order to be able to absorb shocks to

the asset value. Possible measures could be to pay a periodic fee to a supervising institution

during non-crisis periods in exchange for obtaining emergency liquidity, as proposed by

Perotti et al. [111].

Lastly, we show that as the parameters of the system change the bank network can

switch between two distinct regions, stable and unstable, which are separated by a so-called

phase transition boundary. We suggest that the bank network be understood in complex

system terms and that its closeness to the phase transition boundary be diligently monitored

in order to forestall system failure.

We suggest that our model for systemic risk propagation might be applicable to other

complex systems, e.g., to study the effect of sovereign debt value deterioration on the global

banking system or to analyze the impact of depreciation or appreciation of certain currencies

on the world economy.

After this work was completed, we learned of the independent work of Caccioli et

al. [112], also addressing the challenges of systemic risk due to overlapping portfolios. Their

independent results are complementary to ours.

5.6 Methods

Data Sets And Explanations. We use two data sets in this paper. The first is the Com-

mercial Banks - Balance Sheet Data (CBBSD) from Wharton Research Data Services [113]
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for the time period 1/1/1976 to 12/31/2008, which contains the amounts of 13 specific

assets and the total assets, total liabilities, and total equities for each bank. We enumerate

the assets from 0 to 12 to simplify the problem and categorize the assets into real estate

loans, other loans, and other assets. These assets are listed in Table 5.1. We study the

data for the year 2007, which contains 7,846 US banks. All banks have total assets data,

but 21,171 data spots out of the total 7, 846 × 13 = 101, 998 data spots for specific assets

are blank. For banks with complete data, it is confirmed that the total asset value equals

the sum of individual asset. The absent data causes the sum of the individual assets to be

lower than the total assets. Furthermore, in some cases, the sum of the individual assets

can be smaller than the bank’s total liabilities, which leads the banks to fail before any

shock is introduced in the model. Thus we need to ensure that the sum of the individual

asset values is equal to the total assets value, by allocating the difference between the total

asset and available individual assets to the missing assets. If a bank has more than one

missing asset, the distribution of the difference to the assets is proportional to the average

amount of these assets on the balance sheets of other banks.

The step-by-step methodology is described as follows:

1. For each bank i, we calculate the weight wi,m = Bim
Bi

of assetm in the bank’s portfolio.

2. We then calculate the average weight of each asset 〈w〉m =
∑

i wi,m

N , where N is the

total number of banks.

3. From the total asset and known specific assets, we calculate the total amount for the

unknown assets, which is (Bi −
∑

known assets Bi,m). We then distribute this total

amount to each unknown asset by their average weight (〈w〉m)ratios. For example,

if a bank i lacks data on asset x and asset y, the amount of asset x is calculated as

Bi,x = (Bi −
∑

m6=x, yBi,m) 〈w〉x∑
m=x,y〈w〉m

.

The second dataset that we use is the Failed Bank List from the Federal Deposit Insur-

ance Corporation (FBL-FDIC) [114], which shows that 371 banks failed during the 1/1/2008
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– 7/1/2011 period and that only 27 banks failed during the 2000–2007 period. We use this

representative dataset to empirically test our model for the 2008 financial crisis. Of the

371 banks in the FBL-FDIC dataset, 278 banks are included in the Commercial Banks -

Balance Sheet Data dataset in 2007.
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index Balance Sheet Asset Variables Rows 〈w〉m

Real Estate Loans

0 Loans for construction and land development 6139 0.082
1 Loans secured by farmland 5932 0.038
2 Loans secured by 1-4 family residential proper-

ties
7553 0.167

3 Loans secured by multifamily (>5) residential
properties

5381 0.013

4 Loans secured by nonfarm nonresidential prop-
erties.

7495 0.150

Other Loans

5 Agricultural loans 5167 0.041
6 Commercial and industrial loans 3117 0.031
7 Loans to individuals 7504 0.097
8 All other loans 7049 0.171
9 Obligations (other than securities and leases) of

states and political subdivision in the U.S.
7559 0.046

Other Assets
10 Held-to-maturity securities 5924 0.003
11 Available-for-sale securities, total 3445 0.004
12 Premises and fixed assets including capitalized

lease
7751 0.020

Table 5.1: Description of Commercial Banks - Balance Sheet Data (CBBSD) from Wharton
Research Data Services. The third column represents the number of available rows of data
of each asset for the year 2007 before completion. The total number of banks in 2007 in the
CBBSD is 7846. 〈w〉m is the average asset weight of banks.



Chapter 6

Conclusion

This thesis covers my research on the complex networks field during the past 5 years,

including theoretical development of interdependent networks models and application of

complex networks models to study economical systems.

In the modern society, our infrastructure systems are more and more coupled. Failure

in one system will be non-linearly spread into other systems and cause dramatic cost to the

whole society. To design such large robust interdependent systems or to protect the exist-

ing interdependent systems has become more and more difficult. Interdependent networks

research offers deep insight to these issues. In the second chapter, we study the robustness

of interdependent networks under targeted attack on specific degree nodes. We introduce

a method and show that targeted-attack problems in networks can be mapped to random-

attack problems by transforming the networks which are under initial attack. It provides a

routine method (if the random-attack case is solvable) to study the targeted-attack problems

in both single networks and randomly connected and uncorrelated interdependent networks,

i.e. (i) the case of three or more interdependent networks, (ii) the case of partially coupled

interdependent networks, (iii) the case in which a node from network A can depend on more

than one node from network B. By applying the method, we find that in contrast to single

networks, when the highly connected nodes are defended, the percolation threshold pc has a

finite non-zero value which is significantly larger than zero. For example, when the degrees

of all nodes are known and nodes can only be damaged from lower degree to high degree,

76



77

pc ≈ 0.46 for coupled SF networks with λ = 2.8 and 〈k〉 = 4 while pc for the same single SF

network is 0. The implications of the study are dramatic. It indicates that current meth-

ods applied to design robust networks and improve the robustness of current networks, i.e.

protecting the high degree nodes, need to be modified to apply to interdependent network

systems. Then in the third chapter, we study how clustering influences the robustness of

interdependent networks. Since usually degree-degree correlation is inevitable when clus-

tering is brought into network, we also derive an analytical expression,for degree-degree

correlation as a function of the clustering coefficient. Such that we can study the influence

of clustering alone on the robustness of interdependent networks. We conclude that pc for

interdependent networks increases when networks are more highly clustered. This occurs

because clustered networks contain some links in triangles that do not contribute to the

giant component, and in each stage of cascading failure the giant component will be smaller

than in the unclustered case.

Complex networks models are widely studied because they offer tools to describe the

complex systems in our reality. One group of the systems that can be successfully described

by networks are the economical systems. The relationship developed between people and

institutions during business practice naturally form a network, which can serve for the good,

i.e. transfer information and influence, or serve for the bad, i.e. spread of crisis. In this

thesis, we apply the complex networks model to describe two economical systems: i)board of

directors’ network; and ii)commercial bank network. In chapter 4, we analyze the power of

directors in the US corporate governance network through complex networks methodology.

To measure the influence of directors, we develop a influence factor measure, which offers an

objective and quantitative way of describing how information and influence are transferred

through the network, which enables us to determine the power of directors. Tested by

influential people lists of popular magazines, we find that the influence factor measure is

consistently either the best or one of the two best methods in identifying influential people.

We find that contrary to commonly accepted belief that directors of large companies are

most powerful, in some instances, influential directors do not serve on boards of large
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companies. In chapter 5, we develop a bipartite network model for systemic risk propagation

and specifically study the cascading failure process in the banking system. We first study

the properties of the defaulting banks during the 2007–2008 financial crisis, and find that

they differ from the properties of the survived banks. We then construct a bipartite banking

network that is composed of (i) banks on one hand and (ii) bank assets on the other. We

also propose a cascading failure model to simulate the crisis spreading process in banking

networks. We introduce a shock into the banking system by reducing a specific asset value

and we monitor the cascading effect of this value reduction on banks and on other asset

values. We test our model using 2007 balance sheet data by identifying the empirically

failed banks between 2008 and 2011, and find through ROC curve analysis that our model

simulates well the crisis spreading process and identifies a significant portion of the actual

failed banks from the FDIC failed bank database. We show that as the parameters of

the model change the bank network can switch between two distinct regions, stable and

unstable, which are separated by a so-called phase transition boundary. We suggest that

our model for systemic risk propagation might be applicable to other complex systems, e.g.,

to study the effect of sovereign debt value deterioration on the global banking system or

to analyze the impact of depreciation or appreciation of certain currencies on the world

economy.
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