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ABSTRACT

This dissertation concerns modeling two aspects of dynamics of complex networks: (1)

response dynamics and (2) growth and formation.

A particularly challenging class of networks are ones in which both nodes and links are

evolving over time – the most prominent example is a financial network. In the first part

of the dissertation we present a model for the response dynamics in networks near a meta-

stable point. We start with a Landau-Ginzburg approach and show that the most general

lowest order Lagrangians for dynamical weighted networks can be used to derive conditions

for stability under external shocks. Using a closely related model, which is easier to solve

numerically, we propose a powerful and intuitive set of equations for response dynamics

of financial networks. We find the stability conditions of the model and find two phases:

“calm” phase , in which changes are sub-exponential and where the system moves to a new,

close-by equilibrium; “frantic” phase, where changes are exponential, with negative blows

resulting in crashes and positive ones leading to formation of “bubbles”. We empirically

verify these claims by analyzing data from Eurozone crisis of 2009-2012 and stock markets.

We show that the model correctly identifies the time-line of the Eurozone crisis, and in the
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stock market data it correctly reproduces the auto-correlations and phases observed in the

data.

The second half of the dissertation addresses the following question: Do networks that

form due to local interactions (local in real space, or in an abstract parameter space) have

characteristics different from networks formed of random or non-local interactions? Using

interacting fields obeying Fokker-Planck equations we show that many network character-

istics such as degree distribution, degree-degree correlation and clustering can either be

derived analytically or there are analytical bounds on their behaviour. In particular, we

derive recursive equations for all powers of the ensemble average of the adjacency matrix.

We analyze a few real world networks and show that some networks that seem to form from

local interactions indeed have characteristics almost identical to simulations based on our

model, in contrast with many other networks.
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Chapter 1

Introduction

In this dissertation we will discuss some aspects of modeling dynamics and physics of “com-

plex networks” [1]. A network is an “effective” description of a system comprised of entities

(e.g. particles, people, objects, etc.) which we will refer to as “nodes”, “agents”, or “ver-

tices” and will pictorially depict them as vertices in a graph. A network tries to capture the

essence of the relations or interactions among these vertices. It’s an “effective” description

in the sense that we neglect many of the complications about relations among nodes and

replace that with one number.

A useful way to quantify many networks is to think of the “Adjacency Matrix”, i.e. A

matrix A whose elements Aij quantify the relation of node i and node j. The nonzero matrix

elements Aij are called “links” or “edges”. The adjacency matrix is said to be “unweighted”

if it only has Boolean values 0 and 1, and “weighted” if its elements are not restricted to 0

and 1. Aside from the adjacency matrix, in some real world situations the agents (nodes)

themselves may also carry some “attributes”. For instance, in a lending network of banks

to banks, the adjacency matrix is a weighted an asymmetric matrix, but the banks, which

constitute the nodes in the network, also have attributes such as “assets” or “capital” which

quantifies the total money they have available and which will play a role in tackling many

problems related to this network.

The most common type of network is an unweighted, undirected network, which can

be understood as a simple graph, with no directions on the edges. The adjacency matrix

of such networks is a symmetric binary matrix. The diagonal elements of the adjacency

matrix may be nonzero if there are “self-loops”, i.e. only if a node has a relation to itself.
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Such self-loops, are for example useful in describing self-reinforcing or self-inhibitory effects

of density of chemicals involved in biological pathways such as the autoregulatory feedback

loops in the circadian rhythm pathways in mammalian cells [2].

Examples of some real-world for which an effective description in terms of networks is

reasonable include power grids, friendship networks, online social networks such as friend-

ship on Facebook, network of followers on Twitter, financial markets and networks of eco-

nomic transactions among companies.

1.0.1 Some Definitions

The adjacency matrix is the basic building block of a network. It captures direct interactions

of two agents. In a way a network is the simplest way to quantify interactions, as it does

not capture any 3-way interactions directly. To clarify this more, consider one popular class

of networks, namely the “correlation-based” networks. These networks have an adjacency

matrix that is constructed by manipulating Pearson correlation of signals from agents. For

example one can look at the price of a stock i as a function of time pi(t) (also known as a

financial “time series”) and calculate the correlation of this with the price of another stock

Aij ∼ 〈pipj〉 ≡
1

T

∫ T

0
dtp̃i(t)p̃j(t), p̃(t) ≡ p(t)− 〈p(t)〉

σp

Such correlation-based networks will capture two-point functions, i.e. correlations of

two pi’s here, but if the underlying dynamics contains three point interactions pipjpk this

network will never capture non-trivial 3-point or 4-point interactions that cannot be reduced

to two-point functions.

Going back to the network, all network quantities that do not deal with nodes and only

deal with their connections can be constructed from the adjacency matrix Aij . One of the

simplest and lowest order quantities for each node that is derived from Aij is the “degree”

of the node ki

ki ≡
∑
j

Aij
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Now we can define the first, lowest order statistics about the network, namely the

“degree distribution” P (k) which is the distribution of all the degrees in a network. In the

later chapters we will introduce higher order “moments” of the network which are related to

statistics of higher powers of the adjacency matrix, i.e. [An]ij . Clearly, in order to exactly

quantify the properties of a network one needs to looks at statistics of as many powers n

as needed. Since by definition complex networks are complex, in order to study how well

a model describes a network there is no trivial way of matching nodes inside a model with

nodes in a real-world complex network, especially given the fact that almost always the real

data has a high level of noise. Therefore the only meaningful comparisons that may be done

between a model and a real complex network are statistical comparisons and these need to

be done on at least a few moments of the network to ensure the networks derived from a

model match with the real data. A thorough introduction to the elementary properties and

statistics of some real world networks can be found in [1].

1.1 Structure and Importance in Complex Networks

One class of problems that can be tacked in the network description of a system is whether

there exist large scale structures such as communities within complex network.

1.1.1 Communities

There are many different, inequivalent ways one can define communities in a network. A

simple method is to look for “cliques”, coined appropriately by social scientists. Cliques are

comprised of nodes that have more connections with the nodes within the clique than the

nodes outside of it. Though cliques may be useful in many social contexts, they are not the

only communities one may be interested in. Often times the network is playing a role in

transferring information or resources from one node to another. For instance in a bank-to-

bank lending network the links in the network signify the flow of money between banks. In

such scenarios a type of community one may be interested in is one which captures where

money that starts out from one bank is most likely to go. If we denote the money of bank
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i at time step t by mi(t) and assume that the lending network adjacency matrix element

Aij captures how this money flows from bank j to bank i, we have

δtmi(t) ≡ mi(t+ 1)−mi(t) = fi(t)
∑

Aijmj(t), (1.1)

where fi may be for instance related to the decision making of the banks on what fraction of

the money they borrow from others they are ready to lend to others. If we wish to find out

how the lending network “clusters” together, i.e. what the internal community structure

looks like, we need a community detection method that follows the diffusion of money in the

network. One can think of this flow of money as a diffusion or Markov process happening

on the network. If fi = 1 solving (1.1) simply yields an exponential function of the matrix

mi(t) ∼ [exp[tA] ·m(0)]i

If one chooses fi = 1/ki then we will have a random-walk through the degree-normalized

adjacency matrix. We won’t go into the details of this any further, but the take-home

message is that the communities that are important for flow processes on the network are

related to the spectrum of either the adjacency matrix or a modified matrix such as the

degree-normalized adjacency matrix or the a more general fiAij . This is because the eigen-

values of the matrix defining the flow are proportional to the life-time of their corresponding

eigenvectors. Therefore starting the flow from a part of the network that mostly contributes

to a certain eigenvector with a large eigenvalue would mean that the flow would remain dis-

tributed among the main components of that eigenvector for a long time. In this sense,

these eigenvectors quantify flow communities which are important in problems concerning

flows. Such methods of community detection are known as “Spectral clustering” methods

and were studied by Newman et al [3, 4] and many other [5, 6].

Routing on the Internet is also a type of flow and there are other simpler quantities that

can be derived from eigenvectors which we will briefly discuss below.
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1.1.2 Centrality

Another aspect of relations in a network that is useful in many contexts is the notion of

“centrality”. Centrality, in a broad sense, is a way to assign importance to nodes in the

network. Depending on what aspect of the interactions are important to us, we may choose

different centrality measures to be examined in a network. The simplest type of centrality is

the “degree centrality” which basically means ranking nodes based on their degree. Another

type of centrality which measures how much a node acts as a bridge between other nodes

is the “betweenness centrality” which ranks the nodes based on how many of the paths

connecting all other nodes needs to go through a particular node. For example, a node that

isn’t strongly connected to a lot of nodes, and thus does not belong to a clique, may be

the bridge connecting two communities to each other. Such nodes, sometimes called “weak

ties” in social science, actually play an important role in social systems and they have a high

betweenness centrality as any path from the community on one side of it to the community

on the other side has to go through this node.

Another class of centrality measures which are again related to problems where we care

about flows, as discussed above, are “eigenvector centrality” measures and various measures

derived from them. In the most basic setting in a network with a single connected compo-

nent, a flow process that happens through the adjacency matrix and which is redistributing

resources put at different nodes will, after a long time, distribute the resources based on

the largest eigenvalue eigenvector of the adjacency matrix. The reason behind this is easily

seen if one expands the initial distribution vector mi(0) of resources on nodes in terms of

eigenvectors of A, call them phiλi . At each step the flow happens by acting with Aij on

the vector mi(t). Each time this happens the eigenvectors in mi are enhanced by a factor

of their eigenvalue λ. Therefore after many successive time-steps the largest eigenvalue

eigenvector φλmaxi is enhanced more than any other.

The flow process described is agnostic to flows that return to the initial node and treats

them as any other flow. In some problems, such as routing requests on the Internet, or

ranking importance websites based on the number of times other websites link to them
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one might wish to ignore self-routing and do a smarter type of ranking. Derived centrality

measures such as the Katz centrality and Google PageRank, which are modified versions

of the eigenvector centrality, try to tackle such problems and introduce smarter rankings.

The details of their definition as well as a more thorough discussion of centrality in general

can be found in [1].

Figure 1.1: The network of interactions of characters in Victor Hugo’s “Les Miserables”
generated using Gephi graph visualization software. The thickness (i.e. the weight) of the
edges is proportional to the number of times they interact in the story and the size of the
nodes is proportional to the total number of interactions they have with other nodes. The
The colors indicate “communities” or modules or cliques, as social scientists refer to them.
These are groups of nodes which have strong connections among each themselves. There
exist many, inequivalent definitions for a community inside a network.

1.2 Dynamics, Cascades and Response in Networks

Some of these networks are dynamic. Friendship networks may evolve in time, networks

of investors and assets constantly change, and economic relations vary over time. Many

financial crises are a result of cascades of losses propagating through a financial network.

Modeling the response of networks is crucial for avoiding such crises.
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Unfortunately, the centrality measures and spectral cimmunity detection methods dis-

cussed above all assume the network connections remain the same throughout the flow

process and that they are not dynamical. Therefore, these methods cannot be applied to

highly dynamical networks such as a stock market. The relevant questions about central-

ity in this context are very different. For example one can talk about how much loss the

bankruptcy of one node in a financial market network can induce on the whole market, but

this question cannot be answered using any static network-based centrality or flow measure

discussed above. The goal of the second chapter of this dissertation is to start from the

beginning and build a theory for quantifying the “effective theory” dynamics that one might

expect from highly dynamical networks such as financial networks, and then introduce dy-

namical measures of importance of nodes based on what the dynamics would predict their

failure would mean for the system.

1.3 Network Formation and Growth

Many networks, such as co-authorship networks, friendship networks and other social net-

works grow and evolve in time. The mechanisms underlying their growth are diverse. The

third chapter of this dissertation concerns formation of such networks. We will focus on a

subset of network growth mechanisms, namely the ones that involve local interactions in

some parameter space. There exist many network models for formation of “random net-

works”, i.e. networks in which new nodes have global n=knowledge about all nodes in the

system and can decide to connect to some existing nodes based on some growth protocol.

One popular class of such models is the preferential attachment model, in which a new node

preferentially attaches to nodes with higher number of connections. The goal of the third

chapter is to examine whether having a network emerge from interactions that were local in

nature, meaning they happened due to proximity or point-like interaction of agents inside

some space and based on some physical dynamics that the nodes had in that space, will

have quantitative effects on the structure of the network. Our claim here is that, in short,

yes. Such networks have very specific structures observable in various network moments.
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1.4 Structure of Dissertation

The dissertation consists of two main chapters, and a concluding chapter. The first main

chapter is on using “effective theory” methods, such as Landau-Ginzburg models and other

phenomenological methods, for modeling response of a network to shocks and classifying

the phases of such systems. We apply these models to financial networks and identify stable

and unstable phases of the system. The second main chapter concerns networks forming

from local interactions. We propose a method that uses local stochastic field theory for

constructing networks and find the characteristics of such networks. The results are very

general and applicable for a variety of interaction mechanisms. We compare our findings

with some real-world networks and find good agreement with some.



Chapter 2

Effective Theory Modeling of Networks

Many networks are dynamic. A friendship network, for instance, evolves over time because

people make new acquaintances. In such networks, problems of interest usually concern the

formation and deletion of links between the nodes and the nodes themselves do not have

any attributes. But in many other networks, such as financial networks and power grids,

the nodes have attributes that evolve in time.

Consider, for example a financial market. As sketched in Fig. 2.1, to lowest order one

Investors

Assets

Banks

Funds

Figure 2.1: To lowest order a financial network can be thought of as as a bipartite network
of investors and funds they invest in. The thickness of the links is proportional to the
amount of the investment of each investor in each fund.

can think of this network as a bipartite network with investors in one layer and the funds

they invest in in the other layer. The key difference between this network and a friendship

network, aside from the approximate bipartite structure, is the fact that each node has

certain attributes that can change over time. The quantity of each fund that the investors

owns is the weight of the link between the investors and the fund. But the unit price of the
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fund is an attribute that is different for each fund and which changes over time. Similarly,

the net worth or total money that each investor has is an attribute specific to each investor

and it varies over time. Thus both the links and the nodes in this network have attributes

that are dynamic. There are also many single layer financial networks. Inter-bank lending

networks [7], where each bank is lending money or investing in another bank. Thus each

bank is both the investor and the fund in these networks.

Dynamical networks such as the ones described above are generally classified as “tem-

poral networks” [8–10].

There also exist numerous methods for the case where the dynamics is only happening

at the level of node attributes, while the network connections remain static. Some notable

elegant methods involve the use of the network Laplacian as an operator that defines a

Markov process for flow redistribution on the network. A good review with concrete exam-

ples for bipartite networks is [11]. This approach, however, does not tackle the case where

the links are also evolving in time.

Lagrangian models are another alternative which provide a natural language for describ-

ing the evolution of a weighted network, both the node attributes and the links. Lagrangian

control has been employed extensively in robotics for controlling a system of coupled de-

grees of freedom (see [12] and references therein). Lagrangian dynamics is essentially a

linear optimization method in which the dynamics is optimizing the global objective func-

tion defined by the Lagrangian. In economic systems the agents are also trying to optimize

their situation by, for instance, maximizing profit while minimizing risk at the same time,

given the constraints that they are subject to. Thus it is just natural to use Lagrangians to

describe evolution of economic and financial networks. Lagrangians are employed in finance

for many decision-making problems and market evolutions because of this reason [13, 14].

Extending these ideas to a complex network of financial ties, or similar networks, and

going beyond the limited scope of other works described above is the purpose of this chapter.

In this chapter we show how simple familiar methods of effective model building such as

Landau-Ginzburg theories can yield powerful results concerning how a random network may
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respond to external noise, shocks or driving forces.

2.1 Landau-Ginzburg Modeling of Dynamics

Here we build a general Lagrangian for a dynamical network. The dynamics may be both

in the weight of the links and in the functions assigned as attributes to nodes. This type

of modeling works best for first order approximation of the response of a dynamical system

near a saddle point or a local stable or meta-stable equilibrium point.

We will examine the properties of the Landau-Ginzburg type Lagrangians for describing

response dynamics of networks. Both the links and the attributes we assign to nodes will

change over time.

2.2 Model Building and Notation

Assume that we have N nodes. To each one we will assign one continuous number as their

“attribute”. We denote this attribute for node i at time t by φi(t) and denote the vector

of all φi’s by Φ. Our weighted “adjacency matrix” is a matrix describing the connections

between nodes and it will be a general N × N matrix of real or complex values. We will

denote it by A.

We will first work with real Φ and A, but generalization to complex values will be

straightforward. We wish to write down possible Lagrangians for how such a network may

react to changes from a saddle-point solution of its dynamics. Thus, essentially we are

building a Landau-Ginzburg model of response in networks. This will be essentially the

same as regular Landau-Ginzburg with Φ being the dynamic field, except that now there

is an additional set of degrees of freedom in the links A. In Landau-Ginzburg theories,

generally we start around an equilibrium and therefore the first order expansion terms go

to zero. However here, because the system is more complicated here with time-dependent

A(t) we cannot be sure that at a local saddle-point all first order derivatives are zero.

Basically this is to say that there must exist some order parameters Ψ which, if the system

is written in terms of them, the Landau-Ginzburg model would have no first order ΨT∂tΨ
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type term in it. But our initial choice Φ may not have this property1. Therefore we will

also keep track of possible first-order Lagrangian terms.

2.2.1 Possible Lagrangian Terms

Let’s start by writing the simplest scalar terms that can be formed from Φ and A. We do

not wish to go beyond two time derivatives for now. The simplest models with nontrivial

dynamics will have a single time derivative, but we wish to go up to two time derivatives

because that is what generally variations around a local minimum will contain.

Note that A is not necessarily symmetric. Let’s denote the symmetric (Hermitian for

complex values) and anti-symmetric (anti-Hermitian) part of it by:

A+ ≡
1

2
(A+AT ), A− ≡

1

2
(A−AT ).

The only lowest order scalars that can be formed are ΦTAΦ and its derivatives. Thus,

to lowest order, a Landau-Ginzburg Lagrangian for this system would look like:

L =a∂tΦ
TA∂tΦ + q1∂tΦ

T∂tAΦ + q2∂tΦ
T∂tA

TΦ

+ b1ΦTA∂tΦ + b2ΦTAT∂tΦ + cΦTAΦ

=a∂tΦ
TA+∂tΦ + q+ΦT∂tA+∂tΦ + q−ΦT∂tA−∂tΦ

+ b+ΦTA+∂tΦ + b−ΦTA−∂tΦ + cΦTA+Φ (2.1)

Although this is a quadratic Lagrangian in terms of Φ, the full Lagrangian is not quadratic

because A is also a dynamic variable.

1note that in networks we prefer not to take a linear combinations of Φ as an order parameter because it
mixes different nodes.
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2.2.2 Hamiltonian

Let’s first group terms together.

B± ≡ q±∂tA± + b±A±

B ≡ B+ +B−

bA ≡ b+A+ + b−A−

L = a∂tΦ
TA+∂tΦ + ΦTB∂tΦ + cΦTA+Φ (2.2)

The conjugate momenta are:

P ≡ πΦ =
∂L

∂∂tΦT
= 2aA+∂tΦ +BTΦ

πA± =
∂L

∂∂tA±
= q±∂t(Φ)ΦT

=
q±
4a
A−1

+ (πΦ −BTΦ)ΦT (2.3)

Now, recall that the Hamilton equations for a variable x and its conjugate p are:

∂tp = −∂H
∂q

, ∂tq =
∂H

∂p

But ∂tΦ appears in both πΦ and πA± . Therefore, doing the usual Legendre transform

H = ~p ·∂t~x−L with all three variables Φ, A± will fail to satisfy the ∂tq Hamilton’s equation

for the obvious reason that ∂tΦ appears in two terms of the Legendre transformation. We

will show the general reason in appendix A. The issue is that A± only appears to first order

in the Lagrangian and is coupled to Φ. Therefore we will only do one Legendre transform

and only write the Hamiltonian in terms of the πΦ and not πA± . This will ensure that

Hamilton’s equations will be satisfied.

The Hamiltonian becomes (assuming |A+| 6= 0):

H(P,Φ, A±, ∂tA±) =∂tΦ
TπΦ − L

=a∂tΦ
TA+∂tΦ− cΦTA+Φ
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=
1

4a
(P T − ΦTB)A−1

+ (P −BTΦ)− cΦTA+Φ

=
1

4a
P TA−1

+ P − 1

2a
P TA−1

+ BTΦ +
1

4a
ΦTBA−1

+ BTΦ− cΦTA+Φ

(2.4)

The terms without P are the potential terms. We wish to understand their behavior. The

potential energy terms are therefore:

V = ΦTV Φ, V ≡ 1

4a
BA−1

+ BT − cA+

2.3 Stability Analysis: A Simple Example

Here we want to understand what the saddle points of the above Hamiltonian are. We

will assume that there are extra dissipative terms in the equation of motion which kill all

momenta. We want to see if the system admits stable or unstable equilibria. That is we

wish to solve:

∂V
∂ΦT

= V Φ = 0

The necessary condition for this to have solutions for ΦTΦ 6= 0 is to have |V | = 0.

When the quadratic ΦTV Φ potential has a minimum for Φ, that is when generally

|V | > 0, we should be able to find stable equilibria for Φ and A. The potential will be

unstable when |V | < 0. Therefore we expect a smooth second order phase transition to

occur where |V | = 0. Let’s examine under what circumstances this happens in a solvable

case.

2.3.1 Bipartite Example with Similar Layer Sizes

Assume:

A+ =

 0 M

M 0

 , A+ =

 0 M

−M 0
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This is characteristic of a bipartite, unidirectional network. Also assume that |M | 6= 0 (i.e.

it’s a square matrix and invertible). This will have the property that:

A−1
+ A− =

−1 0

0 1

 , ⇒ A−A
−1
+ A− = −A+

Let’s first see if there may be solutions where all movements seize in A and ∂tA = 0.

This Leads to:

B± → bA

V → 1

4a

(
b2+A+ + b2−A−A

−1
+ A−

)
− cA+

=
1

4a

(
b2+A+ − b2−A+

)
− cA+ (2.5)

Where the b+b− terms cancel from A− + AT− = 0. When |A+| 6= 0 the only way to have a

saddle point for the potential is to have:

b2+ − b2− − 4ac = 0

We will discuss below how by rescaling the degrees of freedom some of the coefficients can

be absorbed into Φ, A, but let us make use of one such freedoms and scale b1 → 1. This

makes b± = (1± b2)/2. Plugging into the equation above we have:

b2 = ac

Which, when c = 0 gives b = 0.

2.4 Application to Financial Markets

Financial markets have investors on one side and assets on the other. This natural bipartite

structure and their dynamical nature makes our model a good candidate for describing their

response to shocks.

The abstract exposition of the previous section can indeed be made more concrete and
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be applied to specific problems in financial networks. We will take a phenomenological

approach below and will tackle a concrete problem, namely the fragility of the network of

financial institutions who lent money to sovereign governments in Europe. Below we will

describe the problem of the Eurozone crisis of 2009 to 2011. It has all the complications of

a financial network where all elements have dynamics. In addition, the exact approach from

above proves to be hard to simulate numerically and we resort to a simplified version for

the actual computations. After describing the economic details of the problem and existing

literature, we will argue how this problem can be understood as an optimization problem

with response times, akin to many systems encountered in physics. We will then move on

to numerical solutions of the equations. The model also allows for rigorous investigation of

stability conditions for this network and we both derive these conditions analytically and

support the results through numerical simulations.

2.5 Introduction to the Eurozone Crisis of 2009–2011

Financial networks are dynamic. To assess their systemic importance to the world-wide

economic network and avert losses we need models that take the time variations of the

links and nodes into account. Using the methodology of classical mechanics and Laplacian

determinism we develop a model that can predict the response of the financial network to a

shock. We also propose a way of measuring the systemic importance of the banks, which we

call BankRank. Using European Bank Authority 2011 stress test exposure data, we apply

our model to the bipartite network connecting the largest institutional debt holders of the

troubled European countries (Greece, Italy, Portugal, Spain, and Ireland). From simulating

our model we can determine whether an network is in a “stable” state in which shocks do

not cause major losses, or an “unstable” state in which devastating damages occur. Fitting

the parameters of the model, which play the role of physical coupling constants, to Eurozone

crisis data shows that before the Eurozone crisis the system was mostly in a “stable” regime,

and that during the crisis it transitioned into an “unstable” regime. The numerical solutions

produced by our model match closely the actual time-line of events of the crisis. We also find
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that, while the largest holders are usually more important, in the unstable regime smaller

holders also exhibit systemic importance. Our model also proves useful for determining

the vulnerability of banks and assets to shocks. This suggests that our model may be a

useful tool for simulating the response dynamics of shared portfolio networks.

Recent financial crises have motivated the scientific community to seek new interdis-

ciplinary approaches to modeling the dynamics of global economic systems. Many of the

existing economic models assume a mean-field approach, and although they do include noise

and fluctuations, the detailed structure of the economic network is generally not taken into

account. Over the past decade there has been heightened interest in analyzing the “path-

ways of financial contagion.” The seminal papers were by Allen and Gale [15, 16] and these

were following by many other studies [17–22]. Economists have recently become aware that

econometrics has traditionally paid insufficient attention to two factors: (i) the structure

of economic networks and (ii) their dynamics. Studies indicate that a more thorough ap-

proach to the examination of economic systems must necessarily take network structure

into consideration [23–30].

One example of this approach is the work of Battiston et al. [31]. They study the

2008 banking crisis and use network analysis to develop a measure of bank importance.

By defining a dynamic centrality measurement called DebtRank that measures interbank

lending relationships and their importance in propagating network distress, they show that

the banks that must be rescued if a crash is to be avoided (those that are “too big too fail”)

are the ones that are more “central” in terms of their DebtRank.

Another recent event that has motivated and provided the focus for our study reported

here is the 2011 European Sovereign Debt Crisis. It began in 2010 when the yield on the

Greek sovereign debt started to diverge from the sovereign debt yield of other European

countries, and this led to a Greek government bailout [32]. The nature of the sovereign

debt crisis and resulting network behavior that we analyze here differs somewhat from

that of the US banking crisis. Here we focus on the funds that several Eurozone countries—

Greece, Italy, Ireland, Portugal, and Spain (GIIPS)—had borrowed from the banking system
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through the issuing of bonds. When these governments faced fiscal difficulties, the banks

holding their sovereign debt faced a dilemma: should they divest some of their holdings at

reduced values or should they wait out the crisis. The bank/sovereign-debt network that we

analyze in this study is a bilayer network. Although DebtRank has also been used to study

bipartite networks, e.g., to describe the lending relationships between banks and firms in

Japan [33], it does not take into account that link weights exhibit a dynamic behavior.

Huang et al. [34] and Caccioli et al. [35] analyzed a similar problem, that of cascading

failure in a bipartite network of banks vs assets in which risk propagates among banks

through overlapping portfolios (see also Ref. [36]). Although network connections in real-

world financial systems, e.g., interbank lending networks or stock markets, are dynamic,

neither of the above models [34, 35] take this into account. Other models by Ha laj and

Kok [37], which use simulated networks similar to real systems, or by Battiston et al. [38]

allow the nodes to be dynamic but not the links (see, however, Ref. [39], in which dynamic

behavior occurs when a financial network attempts to optimize “risk adjusted” assets [40]).

Our approach differs from both of these because by introducing only two parameters which

play the role of coupling constants in physics we can enable all network variables to be

dynamic. Our model is related to Caccioli et al. [35] and Battiston et al. [31] but differs in

that we allow both nodes and links to be dynamic.

We use a time-slice of the GIIPS sovereign debt holders network from the end of 2011

to focus on a simplified version of the network structure and use it to set the initial condi-

tions for our model. We start by proposing, solely on phenomenological grounds, a set of

dynamical equations. Based on our analysis we observe that:

1. When we model how a system responds to an individual bank experiencing a shock,

our analysis is in accordance with real-world results, e.g., in our simulations Greek

debt is clearly the most vulnerable.

2. The dynamics arising from our model produces different end states for the system

depending on the values of the parameters.
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In order to determine which banks play a systemically dominant role in this bipartite net-

work, we adjust the equity of each bank until it goes bankrupt and then quantify the impact

(the BankRank) of the bank’s failure on the system. We simulate the dynamics for different

parameter values and observe that the system exhibits at least two distinctive phases, one

in which a new equilibrium is reached without much damage and one in which the monetary

damage is quite significant, even devastating.

2.6 The GIIPS problem

Governments borrow money by issuing sovereign (national) bonds that trade in a bond

market (which is similar to a stock market2).

Our GIIPS data are from the 137 banks, investment funds, and insurance companies that

were the top holders in the GIIPS sovereign bond-holder network in 2011. (Hereafter we

will use “banks” to refer to all these financial institutions.) Table 2.1 shows the percentages

of the sovereign bonds issued by each GIIPS country owned by these banks. Since our

model requires knowing the equity of each bank, we reduce our dataset to the 121 banks

whose equity value was obtainable. By the end of 2011, two important Greek banks—the

National Bank of Greece and Piraeus Bank—had negative equities. Because our model only

considers banks that can execute trades based on positive capital, we also had to eliminate

these two banks from our analysis. Figure 2.2 shows the weighted adjacency matrix of this

network.3

When a country defaults on sovereign debt (or stops paying interest as it comes due)

the consequences are usually grave. To prevent cascading sovereign defaults, the European

Union, the European Central Bank (ECB), and the International Monetary Fund jointly

2The entity that issues a bond (e.g., the government in case of sovereign bond) promises to pay interest.
Governments also promise to return the face value of the loan at the “maturity” date. Bonds, unlike stocks,
have maturities and interest payments. A detailed description of some of these bond characteristics can be
found in Ref. [41]. As is the case with stocks, the value of these sovereign bonds increases when countries are
doing well, and supply and demand ultimately determine the value of the bonds. If, however, the country
becomes troubled and the market perceives that the government will not be able to pay back the debt, the
price of the bond can crash, which was the case of Greece.

3The intensity of the color is proportional to Arcsinh(A) for better visibility. For large Aiµ, arcsinh(A) ≈
log(2A).
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Table 2.1: Total amount of exposure of the banks in our data set to the sovereign debt of
the GIIPS countries

Greece Italy Portugal Spain Ireland

Total (bnEu) 96.90 420.55 48.93 333.46 32.60

% in Banks 35.37 25.62 38.04 48.12 36.39
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Figure 2.2: (Left) A sketch of the network of banks vs assets. It is a directed, weighted
bipartite graph. The thicknesses represent holding weights. Motion along the edges from
banks to assets is described with the wighted adjacency matrix A, whose entries are Aiµ,
the number of bonds µ held by bank i, and the opposite direction, assets to banks, is
described with AT . (Right) sinh−1(A) with A being the weighted adjacency matrix of the
GIIPS holdings, (weighted by amount of banks’ holdings in GIIPS sovereign debt expressed
in units of millions of Euros. The vertical axis denotes different banks (121 of them) and
they are ordered in terms of their total exposures to GIIPS debt (higher exposure is at the
bottom of the plot) Because holdings differ by orders of magnitude we have plotted sinh−1A
here.
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established financial programs to provide funding to troubled European countries. Funding

was conditional on implementing austerity measures and stabilizing the financial system

in order to promote growth and increase productivity. We use our sovereign debt data

as the initial condition for a model of cascading distress propagating through a bipartite

bank network in which banks only affect each other through shared portfolios. In order

to develop a framework for analyzing these problems that goes beyond simply determining

how distress propagates through the links, we construct a model in which dynamic change

affects both the weights of links and the attributes of nodes. Figure 2.2 shows the weighted

adjacency matrix of this network in log format.

2.7 Model and Notation

The system that we study is a bipartite network as shown in Fig. 2.2. On one side we have

the GIIPS sovereign bonds, which we call “assets,” and on the other we have the “banks”

that own the GIIPS bonds. The nodes on the “asset” side are labeled using Greek indices

µ, ν.... To each asset µ we assign a “price,” pµ(t) at time t. The “bank” nodes are labeled

using Roman indices i, j.... Each bank node has an “equity” Ei(t), a time t, and an initial

value of asset µ. Each bank in the network can have differing amounts of holdings in each of

the asset types. The amount of asset (e.g. number of bonds) µ that bank i holds is denoted

by Aiµ(t), which is essentially an entry of the weighted adjacency matrix A of the network.

In our model we begin with a set of phenomenological equations describing how each of the

variables Ei(t), Aiµ(t), and pµ(t) evolve over time. A key feature of our model is that the

weights of links Aiµ are time-dependent, and this introduces dynamics into our network.

2.8 An Optimization Problem: Minimize Risk, Maximize Profit

In a market the investors and the traders are optimizing between averting losses and max-

imizing their profit. A Lagrangian approach is a simple approach to such optimization

problems.
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2.8.1 Comment on Possible Lagrangian Terms

We know that our equations may have dissipation, but let us first try to find the most general

non-dissipative dynamical model for a system like ours, subject to certain assumptions about

simplicity. We do not have information about long term behavior of the system and the

global forces driving it to the (near) equilibrium state it may be in presently. Thus we will

not say much about the potential energy terms V (E,A, p). We wish to find the response

dynamics of this system and will assume that we are sitting near equilibrium where the

conservative forces are small, F = −∇V ≈ 0, and the potential is extremely flat, i.e. second

derivatives like ∂A∂pV are much smaller than parameters like α and β. So we will basically

neglect the potential energy terms and focus on terms with time derivatives.

Since we are interested in the dynamics of propagation of a shock in this system, we

are mostly interested in terms which define an interaction through the links in the network.

Thus terms like ETE or pT p or their time derivatives are not interesting because they don’t

define such interactions. Neither is the trace term Tr[ATA] because it does not involve the

node attributes E and p at all. Terms like ETAATE partly satisfy our criteria, but they do

not give rise to propagation from banks’ E to GIIPS holdings’ p. Plus, we want to examine

the simplest possible model. obviously it is possible to have arbitrary powers of each of

the variables E,A, p, but we will restrict ourselves to the lowest order of them which would

give rise to an interaction between the banks’ equity E and the asset prices p. The possible

interaction terms can only be the following, and their time derivatives:

ETAp, ETAATAp, ETA(ATA)np

with arbitrary power n. But since we want the simplest possible case, we are left with the

lowest order interaction, which is only:

ETAp

This is will result in a great simplification. Since we dismissed the potential energy term,
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we only need to deal with various time derivatives of this term. Following physical intuition,

we will only consider terms with up to two time derivatives, and not higher than that.

2.8.2 Time Derivative Terms In The Lagrangian

Let’s first try to quantify “exposure” to loss (i.e. risk) or profit. The net worth or “equity”,

Ei, of the investor i, is changing over time. The investors wish to increase their net worth,

so they wish to have ∂tEi > 0. From the perspective of the response of the market, though,

∂tEi is only relevant if it is “coupled” to the market. Agent i couples to the market through

its assets
∑

µAiµpµ = (Ap)i. Therefore the term relevant for the market response is the

scalar ∑
i,µ

∂tEiAiµpµ = ∂tE
TAp.

But an important part of the equity of the investors is their “assets” in the market, (Ap)i.

Thus the investors also wish to make profit in the market, meaning positive (∂tA) · p or

A · ∂tp. Similarly, the assets are only relevant if they are coupled to the equity, Ei because

the assets of agent i are only relevant if the net worth Ei is significant. Thus the relevant

terms for the response of the system are the scalars ET (∂tA)p and ETA∂tp.

Depending on the situation, these three terms may not all be positive, or negative. The

investors will optimize a linear combination of the three terms

L1 ≡ γ1∂tE
TAp+ γ2E

T∂tAp+ γ3E
TA∂tp (2.6)

In principle each investor may have a different strategy and the three parameters γ1,2,3

could be different for each investor. We will, however, assume that for the market sector in

consideration the response results from a so-called “herding effect” in which all parties react

collectively to a change, meaning that the coupling constants are similar for all investors.

Since adding a term which is a complete time derivative like −γ2∂t(E
TAp) would not

change the equations of motion, we can get rid of one term, say the second term, and just

keep two terms. Since the units of our Lagrangian do not matter, we may absorb one of the
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two constants, say γ3 (if it’s nonzero) as an overall coefficient of the Lagrangian. Thus we

are only left with a single and only work with γ ≡ −γ1/γ3, where the minus sign is just for

consistency with equations from the main text. In conclusion, the Lagrangian terms with

a single time derivative look like:

L1 ≡ γ∂tETAp− ETA∂tp

2.8.3 The Effect of Response times

In a real system no reaction happens instantaneously and there is a “response time” asso-

ciated with every reaction. This, for instance, could mean that the decision of investor i to

react to a change at time t will appear as a change in her/his portfolio (i.e. connections

Aiµ) at a later time. This could heuristically be shown by replacing, say

ET (t)A(t)∂tp(t)→ ET (t)A(t+ τ)∂tp(t) ≈ ET (t)A(t)∂tp(t) + τET (t)∂tA(t)∂tp(t). (2.7)

Thus the effect of these response times can be understood through higher order derivative

terms. We will first discuss the general case below and derive the equations of motion for

this system. After that we will first introduce a phenomenological model with equations

similar to the ones below, but more suited for numerical simulations. In the end, we

show how putting response times similar to (2.7) yields almost exactly the structure of the

phenomenological equations.

2.8.3.1 Two Time Derivatives

We may have three terms again4:

L2 ≡ a∂tET∂tAp+ b∂tE
TA∂tp+ cET∂tA∂tp (2.8)

4we may of course have both derivatives on a single variable, but that is going to result in the same
equations of motion as having them on different variables.
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Now that we have already scaled the Lagrangian to absorb γ3 we cannot absorb any of a, b

or c in that manner. However, since we have one extra time derivative in L2, and we set

γ3 → 1 in Lγ , a, b and c will have units of time. one of them can be absorbed by rescaling

t, but for now we will keep all three.

This is it. We basically wrote down all possible terms we could have in a Lagrangian

(subject to the constraints we chose for simplicity) and we ended up with only 5 Lagrangian

terms. From these we get only 3 free coefficients and one time unit (one of a, b or c). One of

these coefficients, γ, is dimensionless and should therefore be the main coupling of the theory

and states of the system definitely have to be a function of γ. The other two coefficients are

in L2 and have dimensions of time. They will determine the time scales or the “time lags”

in the model. As we can see, these very simple assumptions led to exactly the same number

of time lags that we knew should be there intuitively. Our model was slightly simpler than

this, but still very close to this. The only mismatch is that we get one coupling γ here, while

in our model we had two, namely, α and β. But below we will argue that that is because in

the model we assumed coupling to the ”rest of the world” and that coupling provides the

missing degree of freedom.

2.9 Equations Of Motion

Let’s derive the equations of motion from the action

S =

∫
dtL =

∫
dt(Lγ + L2)

Again, we are assuming that the potential energy is constant and very flat in the region we

are investigating. Variations with respect to p and E yield5

δpS : 0 = (−a+ b+ c)∂tE
T∂tA+ b∂2

tE
TA+ cET∂2

tA

5The variations and Euler-Lagrange equations are defined as:

δx(t)S ≡ ∂t
∂L

∂(∂tx(t))
− ∂L

∂x(t)

where we assume not to have higher than first time derivative ∂tx in the action
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− (γ + 1)∂tE
TA− ET∂tA (2.9)

δES : 0 = (a+ b− c)∂tA∂tp+ bA∂2
t p+ a∂2

tAp

+ (γ + 1)A∂tp+ γ∂tAp (2.10)

δAS : 0 = (a− b+ c)∂tE∂tp
T + a∂2

tEp
T + cE∂2

t p
T

+ γ∂tEp
T − E∂tpT (2.11)

Where in the last equation, there is no dot product and the combination EpT is a matrix

of the same form as AT . These are the most general form of the equations.

2.10 A Phenomenological Model for Financial Markets

2.10.1 Assumptions, simplifications and the GIIPS system

The key assumptions that differentiate our model from other banking system or dynamic

network models are:

1. The banks do not exclusively trade with each other. They may trade with an external

entity, which may be the ECB or other, smaller investors. 6

2. When there is no change in equity, price, or bond holdings, nothing happens and there

is no intrinsic dynamic activity in our financial network.

3. The model describes the short time response of the system and disregards slow, long-

term driving forces of the market.

4. We assume the agents in the system will copy each others actions, producing the

so-called “herding effect.” This is why we assume the “coupling constants” (the free

parameters) are the same for all agents.

6This is appropriate in the case of GIIPS sovereign debt because, in addition to the ECB (which buys some
of the bonds if there is a need to stabilize the system), a large number of investors hold GIIPS sovereign
debt. This is important to keep in mind because in most problems associated with banking or financial
networks agents are assumed to be trading with each other.
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2.11 Notations and Definitions

The equity Ei of a bank is defined as

Ei =
∑
µ

Aiµpµ + Ci − Li.

Here pµ is the “price ratio” of asset µ, which is the price of asset µ at time t divided by its

price at t = 0. Hence pµ(t = 0) = 1. Ci is the bank’s cash, and Li is bank’s liability. These

parameters evolve in time. Bank i will fail if its equity goes to zero,

if : Ei = 0 → Bank i fails.

We assume that the liabilities are independent of the part of the market we are considering

and are constant. For convenience we define

ci ≡ Ci − Li.

Two other dependent variables that we use are the “bank asset value” Vi ≡
∑

µAiµpµ

and the total GIIPS sovereign bonds on the market Aµ ≡
∑

iAiµ.

2.11.1 The time evolution of GIIPS holdings and their price

For changes in equity we have

δEi =
∑
µ

((δAiµ)pµ +Aiµδpµ) + δci.

Here we assume that the cash minus liability changes according to the amount of money

earned through the sale of GIIPS holdings,

δci = −
∑
µ

(δAiµ)pµ + δSi(t),
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Table 2.2: Notation
symbol denotes

Aiµ(t) Holdings of bank i in asset µ at time t

pµ(t) Normalized price of asset µ at time t (pµ(0) = 1)

Ei(t) Equity of bank i at time t.

α “Inverse market depth” factor of price to a sale.

β Banks’ “Panic” factor.

where the minus sign indicates that a sale means δAiµ < 0 and this should add positive cash

to the equity of bank i. δSi(t) is the cash made from transactions outside of the network

of Aiµ. The first term in δci cancels one term in δEi and we get (all at time t)

δEi =
∑
µ

Aiµδpµ + δSi(t). (2.12)

In the secondary market for the bonds (where issued bonds are traded in a manner

similar to stocks) the prices are primarily determined by supply and demand. We use a

simple model for the pricing that should hold as a first-order approximation. We assume

the price changes to be

δpµ(t+ τA) = α
δAµ(t)

Aµ(t)
pµ(t), (2.13)

Where coupling constant α is the market sensitivity, or in other words the “inverse of the

market depth,” i.e. the fraction of sales (δA/A) required to reduce the price by one unit

(δp/p) is equal to 1/α. We are assuming that the market is “liquid” meaning that any

amount of assets can be sold or bought without a problem. We have defined δpµ(t) ≡

pµ(t)− pµ(t− δt) is the change in price from the previous step, δAµ(t) = Aµ(t)−Aµ(t− δt)

the net trading (number of purchases minus sales) of asset µ, and τA the “response time

of the market.” We choose the same “inverse market depth” for all GIIPS holdings µ,

assuming that they belong to the same class of assets. We then define how the GIIPS

holdings are sold or bought, i.e., we define δAiµ.

We assume that if a bank’s equity shrinks it will start selling GIIPS holdings in order

to continue meeting its liability obligations, and that if a bank’s equity shrinks because of
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asset value deterioration it will sell a fraction of its entire portfolio to ensure meeting those

obligations. A bank thus determines what fraction of its equity has been lost in the previous

step and sells according to

δAiµ(t+ τB) = β
δEi(t)

Ei(t)
Aiµ(t), (2.14)

where τB is the “response time of the banks,” and β is the second coupling constant of our

model, which we call the “panic factor.” The larger the panic factor, the larger will be the

portion of GIIPS assets traded by the banks. Here we assume that banks purchase using the

same protocol as when selling and sell the same fraction of all their GIIPS assets. The above

equations can be converted to differential equations by simply replacing δF → dF/dt. If we

assume that the time lags are small, we can expand the equations with τA, τB to first-order

and get

dF (t+ τ)

dt
≈ d

dt

(
F (t) + τ

dF

dt

)
For brevity, we define ∂t ≡ d

dt . The three equations become:

(
τB∂

2
t + ∂t

)
Aiµ(t) = β

∂tEi(t)

Ei(t)
Aiµ(t) (2.15)

(
τA∂

2
t + ∂t

)
pµ(t) = α

∂tAµ(t)

Aµ(t)
pµ(t) (2.16)

∂tEi(t) =
∑
µ

Aiµ(t)∂tpµ(t) + fi(t). (2.17)

where fi = dSi/dt has the meaning of external force. where τB is the time-scale in which

Banks respond to the change, and τA is the time-scale of market’s response.7 All essential

variables of our model are summarized in Table 2.2.

7Without a time lag, these equations would be primarily constraint equations relating the first-order time
derivatives of E, p,A to each other. Note however that in simulating this dynamic system the order in which
we update the variables matters because most of the nontrivial dynamic behavior follows from this time lag
between updates.
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2.12 Comparison of the Lagrangian and the Phenomenological Model

Save for the equation (2.17) which is the result of an extra constraint on how the cash ci

changes in time, the first two equations are actually closely related to (2.10) and (2.9). This

can be seen as follows. Consider the case in (2.10) and (2.9) where

a = c ≡ τ, b = 0

The first two equations become:

δpS : ET
(
τ∂2

tA− ∂tA
)

= (γ + 1)∂tE
TA (2.18)

δES :

(
τ

γ
∂2
tA+ ∂tA

)
p = −γ + 1

γ
A∂tp (2.19)

To compare these equations with our original equations, let us approximate the second

order terms ∂2
tA on the right as Taylor expansions of first order terms:

ET
(
τ∂2

tA− ∂tA
)
≈ −ET∂tA(t− τ)(

τ

γ
∂2
tA+ ∂tA

)
p ≈ ∂tA

(
t+

τ

γ

)
p (2.20)

Thus, it is approximately as if we have:

δpS : ET (t)∂tA(t− τ) = −(γ + 1)∂tE
T (t)A(t) (2.21)

δES : A(t)∂tp(t) = − γ

γ + 1
∂tA

(
t+

τ

γ

)
p(t) (2.22)

This does not have the exact same time lags as our original model, but it is very close to

that. As we see, the coefficients a = c = τ did not modify the coupling coefficient once we

wrote the equations in the time lagged format and the only coupling that matters is the

dimensionless constant γ. As for more general choices of a, b and c, it is not hard to see

based on the same analogy that they can be interpreted as different time lag structures in

the equations and it may even be possible to generate time lags precisely like our original

model.
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The key point here is that, once we absorb the second order time derivatives as time-

lags, no matter what the lags are, the terms on both sides will superficially have just a

single time derivative, though with time lags. This and the structure of the equations (2.9)

and (2.10) ensure that once all time lags have been absorbed, the coefficient of the equation

is a function of γ only and it can only have the form that appears in equations (2.18) and

(2.19).

2.12.1 The Last Equation

The equation ∂tE = A∂tp was not discussed above and in fact it is not related to the

equations of motion or the Lagrangian discussed above. The origin of this equation come

from the assumption that we made about “cash” and “liabilities” back in equation

δci = −
∑
µ

(δAiµ)pµ.

This assumption about how cash changes with trading, while assuming the liabilities stay

fixed are “constraints” put on the system by hand. Therefore ∂tE = A∂tp is a constraint

equation and should be treated as such in the Lagrangian formulation. To include it, we

have to introduce a set of Lagrange multipliers (which in reality are representing a quantity

that couples to the cash in the system, though we are not quite sure what the real world

interpretation of this Lagrange multiplier is) Ci which have no explicit dynamics and add

the following term to the Lagrangian

LC ≡ CT (∂tE −A∂tp)

The full Lagrangian is then L2 + Lγ + LC and the equation of motion for C only imposes

the constraints ∂tE = A∂tp.
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2.13 The constants α, β

If we now compare (2.18) and (2.19) with (A.25) and (A.26) we see that we should have

α =
−γ
γ + 1

, β = −(γ + 1) (2.23)

and αβ = γ. However, as we see, this Lagrangian approach only allows for one free coupling,

γ, instead of two. We will argue below how dissipation can give us the other degree of

freedom we need. But before that, it would be instructive to know what the phase space of

our discrete time model would have looked like, had we worked with the “non-dissipative”

part of the dynamics only, meaning that we only had one coupling γ like our derivation

here.

2.14 Effect Of Dissipation

The most natural thing to expect of the “rest of the world” is to generate a drift in the

change of prices in a certain way. One simple way to implement this is to put a term

proportional to ∂tp in equation (2.19). To make the indices work, we have to add a term

like λA∂tp, where λ is like a mean-field approximation of the effect of the rest of the world

on this market. The sign of λ determines whether the drift is lowering or increasing the

prices. One way to keep these equations consistent is to have:

γ∂t(Ap) +A∂tp− λA∂tp = 0 (2.24)

− γ∂tETA− ∂t(ETA) + λ∂tE
TA = 0 (2.25)

γp∂tE
T − ∂tpET = 0 (2.26)

Comparing to (2.18) and (2.19)this yields:

α =
γ

λ− γ − 1
, β = λ− γ − 1 (2.27)
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To quantify how much this deviates from the “closed market” case we rewrite (2.27) as:

β =
−1

α+ 1
(1− λ) (2.28)

It would be instructive to know what the phase space looks like in terms of the new set

of parameters: γ, which is the relative importance of ∂tE
TAp and ETA∂tp in the dynamic

behavior, and λ, which quantifies “dissipation drift” caused by the rest of the world.

The above analysis suggests that γ and λ are natural couplings that can be used to

describe the system.

2.14.1 Derivation with Explicit Response Times in the Lagrangian

L =− ET (t)A(t)∂tp(t+ τ2) + γ∂tE
T (t)A(t+ τ1)∂tp(t)

=γ
(
τ1∂tE

T∂tAp+ ∂tE
TAp

)
+ τ2(∂tE

TA∂tp+ ET∂tA∂tp)− ETA∂tp

+ (−cA∂tp− f + ∂tE)λc +O(τ2
i ) (2.29)

Where λc is a Lagrange multiplier that enforces the last equation (2.17).

Two of the equations of motion become

δpS : ET (t)∂tA(t− τ2) = − (γ + 1) ∂tE
T

(
t− τ2

γ + 1

)
A(t) +O(u2) (2.30)

δES : A(t)∂tp

(
t+

τ2

γ + 1

)
= − γ

γ + 1
∂tA(t+ τ1)p(t) +O(u2) (2.31)

Where u ∈ {∂tp, ∂tA, ∂tE}. These equations again have a somewhat different response time

appearance than the phenomenological model, but have otherwise a structure very similar

to (2.15) and (2.16). And if we add dissipative term as we discussed before we can have

independent couplings α and β.

Now we turn to applying the phenomenological version of the model to the Eurozone

crisis. After that we will explore the phase space of that model.
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2.15 Numerical Solutions

In our simulations we use these differential equations and choose τA = τB = 1. One of them

can always be chosen as a time unit and set to one, but setting them equal is an assumption

and may not be true in reality. Our analysis showed that the choice of τA,B does not affect

the stability of the system and that the stability only depends on α, β and the shock. The

fi(t), which are changes in the equity from what banks own outside of this network, can

be thought of as external noise or driving force. We use fi(t) to shock the banks and make

them go bankrupt. We shock a single bank, say bank i, at a time by setting fi(t) = sEiδ(t),

which instantaneously reduces the equity of bank i by a fraction s, and fj = 0 for all other

j 6= i.8 Plugging fi(t) into Eq. (2.15) and integrating yields

∂tAiµ(0) = βAiµ(0) ln(1 + s). (2.32)

And we set ∂tAjµ(0) = 0 for j 6= i. This and Ei(0)→ (1 + s)Ei(0) are the initial conditions

resulting from fi(t) which we start with. In addition, we require E,A, p ≥ 0 during the

simulations. In our simulations we select s = −0.1. We also find that9 the exact value of s

does not affect the final state of the system.

2.16 Application to European Sovereign Debt Crisis

We apply our model to the GIIPS data mentioned above. Before looking at the simulations

of Eqs. (2.15)–(2.17), we estimate the values of our parameters in the case of the GIIPS

sovereign debt crisis.

2.16.1 Estimating values of γ = αβ

We use approximate versions of Eqs. (2.15)–(2.17) to estimate the product of parameters

α and β The distribution of the assets is roughly log-normal, so a small number of banks

hold a significant portion of each GIIPS country’s debt. Thus using only the equity of the

8Here δ(t) is the Dirac delta or impulse function.
9except near the stability limit, where a strong shock can push the system into the unstable regime,
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Figure 2.3: Estimates of γ = αβ over 4 months periods. Top: the shaded purple region is the
error-bars based on the standard deviations and the solid lines are the averages of different
γ calculated for each country. Bottom: Calculation of γµ for individual countries. The fact
that the values for different countries are close to each other is a sign that our assumption
of “herding” (i.e. same α and β for all GIIPS) is justified and that our model is applicable
here. As can be seen, before the height of the crisis 0 < |γ| < 1 and then it gradually
grows. At the height of the crisis 1 < γ < 2. After the crisis we see γ decrease again to
γ < 1. Later we show that at γ < 1 the system rolls into a new equilibrium, but when
γ > 1 the asset prices crash. Also note the time-line of bailouts: Greek bailout approved
2010/04 and 2010/09; Irish bailout 2010/10. This explains part of the movements in the
lower plot. The following stock tickers were used for each country (only the top 4 holders of
each GIIPS for which stock prices could be obtained from Yahoo Finance): Greece: NBG,
EUROB.AT, TPEIR.AT, ATE.AT; Italy: ISP.MI, UCG.MI, BMPS.MI, BNP.PA; Portugal:
BCP.LS, BPI.LS, SAN; Spain: BBVA, SAN; Ireland: BIR.F, AIB.MU, BEN
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dominant holders for each country µ will give us a good estimate of γ. Let us denote the set

of dominant holders by “Dom”. In our estimates we use the top 2, 3 or 4 holders for each

country10. We estimate that the response times τA, τB are at most on the order of several

days. Thus we will calculate γ = αβ over a period of four months to allow the system to

reach its new final state. Thus Eq. (2.14) allows us to write

δAµ
Aµ
≈ β

∑
i∈Dom

δEi
Ei

Aiµ
Aµ

Where the Aiµ/Aµ factor makes sure that we have a weighted average of log returns δEi/Ei

based on how large their holdings are11. Using this approximation we can relate the first

two equations12,

δpµ
pµ
≈ αδAµ

Aµ
≈ αβ

∑
i∈Dom

δEi
Ei

Aiµ
Aµ

.

Thus we can approximate γ as

γ ≈ δpµ/pµ∑
i∈Dom

Aiµ
Aµ
δEi/Ei

. (2.33)

We evaluate γ for each country µ. If the values are similar for different µ values it may

indicate that the “herding effect” is a factor. This both supports our model and suggests

that it is applicable to this problem. We evaluate γ for the time period between early 2009,

when the crisis was just beginning, and early 2011, when most government bailouts had

either been paid or scheduled.

We use the “adjusted close” value for the stock prices, which accounts for changes in

the number of outstanding shares to a degree. Thus the movements in stock prices may be

10These handful of holders hold 45% of Greek, 41% of Italian, 48% of Irish, 29% of Portuguese and 31%
of Spanish debt in our data.

11Also, for Aµ =
∑
i∈DomAiµ we will only use the the dominant holders “Dom.”

12The equity of the banks is mostly comprised of the shareholders’ equity, or common stocks. These banks
usually have multiple stock tickers, but there is generally one or two main stock tickers where most of the
equity is. We can use the movements in these main stocks to estimate δEi/Ei. For this approximation we
use the following formula:

δEi
Ei

=
Ei(tf )− Ei(ti)

(Ei(tf ) + Ei(ti)/2

where Ei(ti) is the stock price at the beginning of the period and Ei(tf ) is at the end of it.
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used as a proxy for the changes in the equity of banks. Many of the major movements (or

slope changes) in each country’s γ values seem to coincide with bailout payment dates (See

Fig. 2.3 caption).

Figure 2.3 shows the average γ values during this period with standard deviation error-

bars. The bottom of the figure shows the individual values of γ obtained using each country.

Figure 2.3 shows that before the crisis 0 < |γ| < 1, but at the height of the crisis γ > 1.

More detailed analysis of our model reveals that γ > 1 is an unstable phase in which a

negative shock to the equity of any bank will cause most asset prices to fall dramatically

to nearly zero. Similarly, a positive shock will cause the formation of bubbles. When

0 < γ < 1, on the other hand, after a shock the system smoothly transitions into a new

equilibrium and, although some banks may fail, no asset prices will fall to zero.

2.17 Simulations

We find that when values of α and β are small, e.g., |αβ| < 1, shocking any of the banks

in the network will result in the same final state (see Fig. 2.8), i.e. the final state does not

depend on which bank s shocked. It only depends on α and β. This state is a new stable

equilibrium. If we shock the system a second time the prices do not change significantly,

i.e., less than 0.1%). Figure 2.4 shows a sample of the time evolution of the asset prices

and the equity of the banks that incurred the largest losses.

Figure 2.4 shows results that seem in line with what actually happened during the

European debt crisis, although the damage shown for Ireland is less than what actually

occurred. In this figure, bailouts are disregarded. Three of the four most vulnerable banks

(MVB) shown in Figs. 2.4 and 2.5 are holders of Greek debt. In this simulation, Greek

debt is the asset that loses the most value. Note that the loss prediction produced by the

model is based solely on the network of banks holding GIIPS sovereign debt and provides

information about the economies of these countries, with Greece experiencing the largest

loss, followed by Portugal (real-world data indicates that Ireland’s loss was as severe as

Portugal’s).
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Figure 2.4: Shocking “Bank of America” with α = β = 0.6. Left: plot of Asset prices over
time. Greece incurs the greatest losses, falling to 75% of original value. Final prices are
listed in the legend. Right: Equities of the 4 “most vulnerable banks” (2 of major Greek
holders incur large losses and one Italian bank is predicted to fail due to the shock). IT043
is Banco Popolare, which has very small equity but large Italian debt holdings. The next
two are Agricultural Bank of Greece and EFG Eurobank Ergasias, which are among top 4
Greek holders.
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Figure 2.5: Simulation for larger values of α and β (values in legends are final price ratios
pµ(tf )). This time, in addition to Greek debt, Spanish and Portuguese debt show the
next highest level of deterioration. The same four banks are the most vulnerable and this
time two more of them fail. At α = β = 1.5 the damages are much more severe than at
α = β = 0.6.
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Figure 2.6: Left: Top: BankRank (2.34): Ranking the banks in terms of the effect of
their failure on the system. Top plot shows the ratio of final total GIIPS holdings in the
system to the initial total GIIPS holdings. The BankRank tells us how much monetary
damage the failing of one bank would cause. second plot on the left shows the Survival
equity ratio E∗/Ẽ, third is the initial holdings and last is the initial equity, all sorted in
terms of BankRank at α = β = 1.5. As we see, none of these three variables correlates
highly with BankRank. The ranking changes for different values of α and β. Right: Scatter
plot of the holdings divided by maximum holding (Holdings/max) versus BankRank at
four different values of α = β = [0.4, 0.6, 1, 1.5]. As we see increasing αβ decreases the
correlation between BankRank and initial holdings. BankRank at γ = αβ < 1 is correlates
well with the holdings and is anti-correlated with it. But BankRank at γ = αβ > 1 deviates
significantly from the holdings. This means that in the unstable regime γ > 1 it is no longer
true that only the largest holders have the highest systemic importance.
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Note that the new equilibrium depends on α and β. From the real world data in Fig. 2.3

we see that before the onset of the crisis αβ < 1 and thus the response of the system to

a shock is to move to a new equilibrium not far from the initial conditions (similar to

Fig. 2.4). At the height of the crisis, however, when γ = αβ ≈ 2, even a small shock can

have a devastating effect and precipitate a crisis (as in Fig. 2.5). Although many banks

incur significant losses when α and β values are at their highest, the same four banks fail.

In the SI we show the effects of rewiring the banks who lend to each country, meaning we

take Aiµ and take random permutations of index i so that the equities of banks connected to

each country changes randomly. Interestingly, such a rewiring changes the damages suffered

by GIIPS bonds entirely, meaning that Greece will no longer be the most vulnerable. This

shows that in our model, while the quantitative behavior of the system only depends on α

and β, the final prices and equities depend strongly on the network structure.

2.18 Testing the Role of the Network

Our goal is to determine how much of the above behavior is caused by the network structure

and how much by the value of the outstanding debts. To examine the dependence of the

results on network structure, i.e., to determine which banks hold which country’s debt and

how much bank equities matter, we randomize the network and redo our analysis. We do

not change the value of the total GIIPS sovereign debt held by the banks. We only rewire

the links in the network, changing the amount of debt held by each bank and the countries

to which each bank lends money.

Figure 2.7 shows an example of this randomization and how dramatically it changes the

end result, and it demonstrates two important features of the model: (i) system dynamics

are strongly affected by network structure, i.e., knowing such global variables as the equity

and exposure of individual banks is not sufficient, and (ii) real-world data seems to indicate

that it was the structure of the network of lenders to Greece that caused Greek sovereign

bonds to become the most vulnerable. This suggests that our model may be useful as a

stress testing tool for banking networks, or any network of investors with shared portfolios.
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Figure 2.7: Randomizing which bank lends to which country, while keeping total debt
constant for each country. The results differ dramatically from the real world data used in
Fig. 2.4. In this example Portugal and Italy lose the most value, while Greece is the least
vulnerable. Other random realizations yield different results.

2.19 Shocking different banks
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Figure 2.8: Shocking different banks at α = β = 0.6. The final prices turn out very similar.

Fig. 2.8 shows the final prices found from shocking different banks. They are all almost

identical. However, the small variation and the variations in the Aiµ(tf ) can be used to

construct BankRank and find that different banks have different mounts of influence.
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2.20 Systemic Risk and BankRank

We find that a bank can cause a large amount of systemic damage when its equity level is at

the bare minimum necessary to survive a shock. Banks with very low equity fail rapidly, no

longer trade, and thus no longer transmit damage to the system. Failing banks with enough

equity to survive for a significant period of time, on the other hand, continue to transmit

damage into the system and thus cause more damage than extremely weak banks. Based

on this observation we rank the banks using a “survival equity ratio”, i.e., the fraction of

actual equity a bank needs in order to survive once a shock enters the system through other

banks. The total damage done to the system varies significantly from bank to bank. To

rank the systemic importance of each bank we measure the effect their failure has on the

system. Since normally no banks other than the four mentioned above fail, we modify the

data slightly. The steps we take are as follows:

1. We increase the equity of the four failing banks to Ẽi(0) =
∑

µAiµ(0)pµ(0) to keep

them from failing and significantly damaging the system, and Ẽi = Ei for non-failing

banks. Doing so makes the system resilient to shocks when γ = αβ < 1, and the drop

in prices falls below 1% (the system has reached a stable phase). But in the unstable

regime where γ > 1 the system does still incur significant losses.

2. To assess the systemic importance of bank i, we run separate simulations with initial

conditions changed to Ẽi(0) until we find the value of E∗i such that for Ẽi > E∗i the

bank doesn’t fail, and for Ẽi < E∗i it fails. We call this E∗i /Ei the “survival equity

ratio”. Note that for any i the shock is done to the same bank j (i 6= j), selected from

the largest banks in the system. Also, note that the behavior of the system practically

doesn’t depend on j.

3. We calculate the total GIIPS holdings
∑

k(A · p)k left in the system.

We define “BankRank” of bank i to be the ratio of the final holdings to initial holdings

when Ẽi = E∗i . BankRank of i is equal to the amount of monetary damage the system
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would take if bank i fails:

BankRank of i : Ri =

∑
j(A · p)j(tf )∑
j(A · p)j(0)

∣∣∣∣∣
Ẽi=E∗i

. (2.34)

The smaller the value of Ri, the greater the systemic importance of bank i.

Fig. 2.6 on the left shows the BankRank in the unstable regime at α = β = 1.5 and how

it compares to the initial holdings, minimum ratio of equity required for survival E∗i /Ei,

and initial equities. We observe some correlation between BankRank and each of these

variables. The best correlations are between BankRank and initial holdings. On the right

of Fig. 2.6 we show the correlations of the initial holdings with BankRank. In the stable

regime where αβ < 1 the holdings correlate well with BankRank, while in the unstable

regime αβ > 1 the correlation becomes much weaker. Thus while in the stable regime

holding almost completely determine the systemic importance of a bank, in the unstable

regime this is no longer the case and many small holders will have high systemic importance.

One can also rank the banks in terms of their stability from their “survival equity ratio,”

E∗i /Ei. This ratio can serve as a stress-test for individual banks. The smaller the ratio, the

more stable is the bank.

2.21 Phase Diagram and Phase Transition

Now we do a systematic numerical analysis of different phases of this phenomenological

model. We identify to phases and what appears to be a second order phase transition

between them. We then modify the equations (2.15)–(2.17) and analytically derive the

condition for the phase transition.

2.22 Other Values of α and β and the Phases

The examples we plotted above were all from the α, β > 0 quadrant. This is what one

normally expects from this system: β > 0 means if a bank incurs a loss, they try to make

up for it by making money from selling GIIPS holdings; α > 0 means if there is selling
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pressure (more supply than demand) the prices will go down. There are, however, cases

where the opposite happens. “Contrarian” agents in a market are those who, for example,

buy more GIIPS holdings when they incur losses, hoping to recover some of their losses

by reducing the average cost of investment. The market may also sometimes behave in a

contrarian fashion, when there is an anticipation of good news that overcomes the selling

pressure, or when other investors outside our network (such as smaller investors or the ECB)

are actually exerting a buying pressure. Plots of those cases can be found in the SI in Fig.

2.9, where in general the numerical solutions in the contrarian regime lead to the following

conclusions:

1. In the third quadrant α < 0, β < 0, where both investors and market are contrarian,

losses are devastating. Many more banks fail for a small negative value for both α

and β and the asset prices quickly plummet down to zero.

2. The second and fourth quadrant where γ = αβ < 0 are almost identical. No banks fail

in these regimes, but also the amount of money lost or generated during the trading is

negligible. This makes these regimes (either the investors or the market is contrarian,

but not both) good for preventing failures, but they are very undesirable for profit

making.

2.23 The phase Space

Fig. 2.10 shows an example of the average final prices and relaxation time for the system

for various values of α and β. It seems the system has two prominent phases: One in which

a new equilibrium is reached without a significant depreciation in all of the GIIPS holdings

(upper left and lower right quadrants), and one where all GIIPS holdings become worthless

(above dashed line in the upper right quadrant and all of lower left quadrant). In the third

quadrant the transition is much more abrupt than in the first quadrant. In both quadrants

in the transition region the relaxation time becomes very large, which means that the forces

driving the dynamics become very weak. Both the smoothness and the relaxation time
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Figure 2.9: Contrarian regimes: top, both α, β < 0. Here many banks fail, even for relatively
small α, β. The losses are devastating. Our model suggests that such a regime should be
avoided. The bottom two plots show the two points α = ±β, β = ±10. The two results are
almost identical. They also show that no appreciable amount of profit or loss is generated
in these regimes, thus making them rather unfavorable for investors most of the time, but
because of their safeness could be a contingency plan (buyout of bad assets by central banks
is one such contrarian behavior).
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Figure 2.10: Left: Phase diagram of the GIIPS sovereign debt data, using the sum of the
final price ratios as the order parameter. We can see a clear change in the phase diagram
from the red phase, where the average final price is high to the blue phase, where it drops
to zero. The drop to the blue phase is more sudden in the α < 0, β < 0 quadrant than the
first quadrant. Right: The time it takes for the system to reach the new equilibrium phase.
This relaxation time significantly increases around the transition region, which supports the
idea that a phase transition (apparently second order) could be happening in the first and
third quadrants. The dashed white line shows the curve γ = αβ = 1. It fits the red banks
of long relaxation time very well. This may suggest that γ = 1 is a critical value which
separates two phases of the system.
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Figure 2.12: Top 10 banks whose failure causes the most damage to the price of each
country’s sovereign bond.

growth seem to be signalling the existence of a second order phase transition. The phase

transition in the first quadrant seems to be described well by:

γ = αβ = 1.

But this result is not exact and below we derive a more precise form for this equation, which

is:

γ = 1 + f0, (2.35)

where f0 is the magnitude of the initial shock fi(t) = f0δ(t) for a fixed i that’s being shocked.

Analytical derivations of this are the subject of another paper which we are working on.

2.24 Robustness of the Ranking

Fig. 2.11 compares the BankRank for three different values of positive α and β. Some

banks’ BankRanks change slightly, but the overall results are similar.

Fig. 2.11 shows how the ranking changes as α and β increase. At small αβ the ranking



48

has high degree of correlation with holdings, basically meaning that the larger the money

a bank holds, the more important it is. For large αβ, however, this ranking changes signifi-

cantly and some smaller players become much more important than before. Fig.2.12 shows

the top 10 banks whose failure at α = β = 1 causes the largest damage to each of the 5

GIIPS assets.

2.25 BankRank and stability

From examining the simulations more closely and from numerical analysis of the differential

equations (2.16),(2.15) and (2.17) in networks of few nodes, presented below, we see that

as expected the equations have either stable or unstable solutions. Stable ones are those

where the initial shock is dampened quickly and the system goes to a new equilibrium,

without any of the variables E,A, p either collapsing exponentially to zero or blowing up

exponentially. Such behaviors in response to sudden rise or sudden fall in E in a 1 bank vs

1 asset system is shown in figure 2.13. A phase diagram using ∂tE of the 1 by 1 system is

shown in figure 2.14.

2.26 Analytical results from the 1 Bank vs 1 Asset system

Here we present the analytical solution to the 1 by 1 model and derive the curve where the

phase transition is happening in figure 2.14. At any time t the equations for a 1 by 1 system

become

(∂t + τB∂
2
t )A

A
= β

∂tE

E
= β

A∂tp

E
(∂t + τA∂

2
t )p

p
= α

∂tA

A
(2.36)

Below we will try to find the condition for a phase transition in the solutions to these

equations.

We can try to eliminate A and E. We first need to find the expression for ∂2
tA/A first.
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Figure 2.13: Numerical solutions to the differential equations in a 1 bank vs 1 asset system.
The upper plots show a “stable” regime, where after the shock none of the variables decays
to zero or blows up, but rather asymptotes to a new set of values. The lower plots are in
the “unstable” regime where positive or negative shocks either result in collapse or blowing
up or collapsing of some variables.

Figure 2.14: Phase diagram of the 1 bank vs 1 asset system, responding to sudden rise in
E. Black denotes regions where ∂tE = A∂tp was very large at late times, and light orange
where it was close to zero. This is only plotting the α, β > 0 quadrant (left is a log-log plot,
right is the regular linear scale diagram). The overlay are two fit functions for the phase
transition curve. While αβ = 1 is not a very good fit for large β and small α, it fits fairly
well for large α’s and we analytically prove this below.
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Taking another derivative from the second equation yields

(∂2
t + τA∂

3
t )p

p
− (∂t + τA∂

2
t )p∂tp

p2
= α

∂2
tA

A
− α

(
∂tA

A

)2

(2.37)

combining this with the first equation results in:

(∂t + τA∂
2
t )p

p
+ τB

(∂2
t + τA∂

3
t )p

p
= γ

A∂tp

E
+O

(
(∂tp)

2
)

[
τAτB∂

2
t + (τA + τB)∂t +

(
1− γAp

E

)]
∂tp = O

(
(∂tp)

2
)
, (2.38)

where the nonlinear term is again quadratic in p (thus a generalized form of the Fisher

equation) and looks like

O
(
(∂tp)

2
)

=τB
(1 + τA∂t)∂tp∂tp

p

− ατB
((1 + τA∂t)∂tp)

2

p
(2.39)

Below we will also show that in the stable regime the non-linearity in the frequency, namely

the γAp/E term, is of the order O(∂tA∂tp) and thus remains small if we show that at small

times the behavior of ∂tp in the stable regime is oscillating around zero.

This time the dynamics is richer and we have a damped oscillator with a driving force

coupled to p and nonlinearities of type ∼ (∂tp)
2. Taking the return u ≡ ∂tp as the funda-

mental variable, the nonlinearities are roughly of type u2 + a∂tu
2. In short, the equations

are

[
τ∂2

t + ∂t + ω2
]
u = O

(
u2, ∂tu

2
)

1

τ
=

1

τB
+

1

τA
, ω2 =

1− γApE
τB + τA

,

p(t) =

∫ t

u(t′)dt′ (2.40)

Although ω2 depends on A, p and E, we can use an approximate time dependent exponential
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ansatz u ∼ u0 exp[λt]. The solutions to λ are:

λ± =
−1±

√
1− 4τω2

2τ

When ω2 > 0 and 1 − 4τω2 < 0 there will be oscillatory solutions. For example when

γApE < −1, which only happens for negative γ we have such oscillatory solutions. This is

consistent with the simulations which showed the oscillatory behavior was in the αβ < 0

quadrants. For the stability, however we care about the real solutions.

When ω2 < 0, which happens when γApE > 1, we will have two real solutions with

opposite signs. The presence of the positive root signals an instability because the solution

diverges. For a delta function shock of magnitude f at t = 0 we found that:

E0 → E0(1 + f)

Having initially scaled to E0 = A0 = p0 = 1, the condition for existence of the positive root

becomes:

t = 0 : γ >
E

Ap
= (1 + f)

This dependence on the shock magnitude is normal, as a strong enough kick can kick a

particle out of a local minimum. The shock can be arbitrarily small and therefore the

absolute condition for stability is as we anticipated

unstable at: γ > 1 (2.41)

Now the question is, which solution does the system pick when it is shocked. The return

∂tp is

∂tp(t) = u(t) = u+e
λ+t + u−e

λ−t

Since at t = 0 the initial conditions dictated ∂tp(0) = 0 we have

u+ = −u−
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And therefore both solutions appear with equal strength. It follows that whenever one of

the solutions (u− in our case) is positive the solution diverges. When f > 0 a bubble forms

and grows exponentially and when f < 0, because our variables are non-negative, the price

just crashes to zero. This proves that the sufficient condition for stability is γ < 1. Also

note that the nonlinear terms are all proportional to ∂tp and therefore at t = 0

O
(
u2(0), ∂tu

2(0)
)

= 0

and so the solution is exact at t = 0.

2.26.1 Validity of perturbation theory near the phase transition

For the above solution to be valid we must confirm that the corrections are small. We

must find a small parameter that exists in the neglected terms which allows perturbative

solutions to be viable. We had two sets of nonlinearities: (1) O
(
(∂tp)

2
)
; (2) γAp/E.

2.26.1.1 the non-linearity O
(
(∂tp)

2
)

First let us examine the nonlinear terms in O
(
(∂tp)

2
)
. Note that the instability happens

when the larger root λ− becomes positive. Thus near the transition we have

4τω2 � 1

λ+ ≈ −
1

τ
+ ω2

λ− ≈ −ω2 (2.42)

And so being close to the phase transition means λ− � 1/τ . The consequence of this is

that for O
(
(∂tp)

2
)

we get (using the u+ = −u− found above)

τA∂t)u =τAu+

(
λ+e

λ+t − λ−eλ−t
)

≈τAu+

(
λ+e

λ+t − λ−eλ−t
)

O
(
u2
)

=τB
u(1 + τA∂t)u

p
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− ατB
((1 + τA∂t)u)2

p

≈τB
u(1 + τAu+(λ+ − λ−))u

p

− ατB
((1 + τA∂t)u)2

p

(2.43)

2.26.1.2 The non-linearity γAp/E

We wish to examine if the assumption that in the stable regime ∂tA, ∂tp, ∂E remain small

is a consistent assumption, thus making perturbative expansion valid. Any term above

non-linear in ∂tA, ∂tp, ∂E is thus higher order in this approximation. We wish to find the

part of γAp/E∂tp that is linear in the first time derivative. In the stable regime changes

are slow and thus a short time after the shock we can expand the variables in Taylor series

near t = 0. Again, we will rescale the variables at t = 0 to E0 = p0 = A0 = 1. Using the

(2.17) ∂tE = A∂tp we get

A(t)p(t)

E(t)
∂tp =

A0p0 + t(∂tA0p0 +A0∂tp0)

E0 + tA0∂tp0
∂tp

≈ 1

E0
(A0p0 + t(∂tA0p0)) ∂tp

= ∂tp+O(∂tA0∂tp) ≈ ∂tp (2.44)

Thus the assumption of smallness of the derivatives is consistent and we may use per-

turbation theory and safely discard the non-linear terms in finding the stability conditions.

This way the stability condition is just having a positive ω2 in (2.41). One can also check

the stability by explicitly using the exponential ansatz found above as is given in what

follows.

2.27 Proof for γ = 1 using properties of the phase transition

Since we have coupled second order equations, the solutions may be estimated using an

exponential ansatz as follows. Equations (2.15) and (2.16) are second order and therefore
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will naturally have two solutions for A and p. Also, since ∂tE = A∂tp, E will also have two

modes. Therefore the exponential ansatz must have at least two exponents. Thus for each

of the three variables X = E, p,A we have:

E ∼ X0 +X1 exp[wX1t] +X2 exp[wX2t]

In principle the exponents can be time-dependent, but we will first try and see f there

are asymptotically exponential solutions. Thus we assume that they vary slowly with time.

By choosing the units of E, p,A to be such that at t = 0 + ε, p = A = 1 and the shocked

equity is E = 1 + f , the boundary conditions that we had become:

A0 = 1−A1 −A2, p0 = 1− p1 − p2, E0 = 1 + f − E1 − E2

and:

∂tE(0) = 0 = wE1E1 + wE2E2 = 0

= A∂tp = wp1p1 + wp2p2

∂tA(0) =
β

τB
ln(1 + f) = wA1A1 + wA2A2 (2.45)

At the phase transition we expect the greater exponents, which we take to be wX2, to

become small relative to other time-scales in the problem, i.e. τA, τB, and change sign from

negative (which would result in exponential decay) to positive (which results in divergence

of E, p,A). This means that close to the phase transition:

|wX2| � |wX1|, wX2 �
1

τA
+

1

τB

From the initial conditions, this results in:

|E1| = |
wE2

wE1
E2| � |E2|, ⇒ E0 = 1 + f −

(
1− wE2

wE1

)
E2 ≈ 1 + f − E2

|p1| � |p2|, ⇒ p0 ≈ 1− p2 (2.46)
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For A we have a little more details.

A1 =
β

wA1τB
ln(1 + f)− wA2

wA1
A2 ≈

β

wA1τB
ln(1 + f)

Which for small shocks f � 1 reduces to:

A1 ≈
β

wA1τB
f

Now back to the equations (2.15)-(2.17). First let us reexamine the third equation (2.17).

The effect of a delta function shock f(t) = f0δ(t) is the above ∂tA and E(+ε) = (1 + f0).

Since |wX2| � |wX1 and wX1 < 0 we can neglect exp[wX1t]. The last equation becomes:

∂tE = wE2E2

(
ewE2t − ewE1t

)
≈ wE2E2e

wE2t

= A∂tp =
(
1 +A1

(
ewA1t − 1

)
+A2

(
ewA2t − 1

))
wp2p2

(
ewp2t − ewp1t

)
≈
(

1 +
β

wA1τB
f +A2 (wA2t)

)
wp2p2e

wp2t

(2.47)

For arbitrary t this relation can only hold if wE2 = wp2. Thus we define:

w ≡ wE2 = wp2

Let us also get an estimate for wA1, the smaller exponent in A. We will go very close

to the transition line where wX2 ≈ 0. From Eq. (2.15) we have:

(τB∂t + 1)∂tA

A
= β

∂tE

E
≈ βwE2e

wt

E
≈ 0

With an exponential ansatz the left hand side is:

(τBwA + 1)wA = 0

The greater root is wA2 = 0 and the smaller root is wA1 = 1/τB. Even away from the
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transition line we approximately have:

wA1 + wA2 ≈
1

τB

Thus we can approximate the expression for A1 to:

A1 ≈
β

τB
ln(1 + f) ≈ βf

This way Eq. (2.17) becomes

E2 ≈ (1 + βf +A2 (wA2t)) p2 ≈ (1 + βf)p2 (2.48)

Eq. (2.15) becomes

(τBwA2 + 1)wA2A2e
wA2t

1 + βf
(
et/τB − 1

)
+A2wA2t

≈ β wE2e
wt

1 + f + E2wt
(2.49)

Which again only holds if wA2 = w. Thus

wA2 = wE2 = wp2 = w

Again, note that the condition for being close to the transition point was:

w � 1

τA
+

1

τB

Discarding higher than linear order terms in w and looking at times t/τB � 1 yields:

A2

1− βf
= β

E2

1 + f
+O(w) (2.50)

Performing the same procedure on Eq. (2.16) results in (since w � 1
τA,B

)

(τAw + 1)wp2e
wt

1 + p2wt
≈ α wA2e

wt

1 + βf
(
et/τB − 1

)
+A2wA2t

p2 = α
A2

1− βf
+O(w) = αβ

E2

(1 + f)
+O(w)
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≈ γ 1 + βf

1 + f
p2 +O(w) (2.51)

And so, the condition for the phase transition becomes:

γ =
1 + f

1− βf

Now, taking the shock to zero f → 0 results in a phase transition at:

Phase Transition at: γ = 1 (2.52)

2.28 Mean Field and Application to Stock Markets

The most famous type of financial network is the stock market. Too lowest order the stock

market has the same structure as the one we worked with above. The problem in analyzing

the stock market is that, unlike the dataset we had for the Eurozone crisis, suitable data

about the investors is very hard to come by. Thus we need to infer things like the investors’

equities Ei or their portfolio Aiµ in an indirect way. The first step in doing such an inference

could be to work with a “mean field” version of the models described above in which we

assume the network is uniform and thus get rid of the indices i for instance. This way we

can try to eliminate the two unknown investor variables E and A and work only with the

stock prices, which is available publicly. This allows us to get a rough idea what the model

predicts about the behavior of the prices and check the claims of the model empirically from

stock market data.

Below w show that using extra mean field assumptions the equations of motion can be

simplified further to yield an approximate equation for the movements in stock prices.

2.28.1 About the Stock Market

The question of what drives stock price movements is a fundamental one in the theory of

financial markets, and one which has profound implications for forecasting and managing

financial crises. We describe a model of stock market return dynamics based on investor
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behavior which accurately describes the daily return responses observed in real-world mar-

kets. Our model is similar to one previously proposed by us for describing the response

of banking asset networks to shocks. The model has natural ”calm” regimes, where mar-

ket movements are slow and losses and profits are small, and ”frantic” regimes, in which

returns are exponential and either bubbles form or crashes happen. As in real markets,

these regimes are distinct and separated by a phase transition. We confirm this behavior by

analyzing stock market data for a wide range of financial institutions across different time

periods. Our model is micro-economic in nature and accounts for the network of investors

in the market, provides systemic information about macro-economic behavior, and incor-

porates in a natural way both endogenous and exogenous factors which influence market

behavior. In particular, we use this model to probe quantitatively the impact of external

financial news on price dynamics, and develop a theoretical framework for testing the effi-

cient market hypothesis. In addition to providing fundamental insight into the dynamics of

prices, our model can identify parameters which serve as an early warning tool for detecting

system-wide dynamics which lead to crashes.

2.28.2 Linear Response and the Stock market

The dynamics of process in the stock market is surely complicated. But we can still do a

systematic analysis of the system by viewing it as a driven stochastic system. The easiest

thing to check would be to what degree the prices of stocks behave like a perturbed linear

system, obeying an equation of the type

[∆t]∂tp(t) ≈ F (t) (2.53)

where ∆t is a complicated, time-dependent differential operator and F (t) is a general force

term encoding everything that is happening outside the market (i.e. as economist would

say, “exogenous” factors). F (t) could depend on economic news or changes that force the

prices to move. But we will assume that the lowest order effect of the investor behavior

and thus the dynamics of the financial network is mostly captured by ∆t. First we want to



59

know if assuming an operator that is approximately independent of p (thus working with

the linear part of the equation) yields an equation that is consistent with real world stock

market data. For this aim, let us first see what the model we worked with in the previous

sections can say about the stock market and then see how we can check the behaviour in

the stock market data.

2.29 Modeling Stock Market Dynamics using the Market Response model

We can think of a stock market as an approximately bipartite, weighted network, with

investors on one side and the stocks they own on the other side. We propose to model the

response dynamics of this system with the same model we used for the Eurozone crisis.

Since we would also like to quantify the effect of exogenous factors such as news, we will

slightly modify the equations. Similar to the GIIPS model, Ei represents the “equity” (net

worth) of investor i, pµ the value of each share of stock µ, and Aiµ the number of shares of

stock µ that investor i owns. All of these variables are time-dependent. The general form

of the equations with exogenous factors included would be

δA(t+ τA)

A
= β

(
δE(t+ τE)

E
+ S

)
δp(t+ τp)

p
= α

(
δA(t)

A
+ S

)
δE(t) = Aδp(t) (2.54)

Where τx are response times. S here can represent any external force, such as the

“sentiment” SN towards the stock from the news (i.e. if there was more good news or bad

news about it), or how often it occurred in the news ON . We assume that it affects both

the trading of the brokers (first equation) and the bidding on the prices. However, the

psychological factors α and β could also be affected by the news and maybe they could even

be the primary way through which news affects the prices:

α = α(ON , SN , ∂tON , ∂tSN ), β = β(ON , SN , ∂tON , ∂tSN )
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For small τx the first two equations become second order equations in ∂t. We want to

get rid of E and find an effective equation for p.

2.29.1 Case 1: τA = 0

First suppose that τA = 0. The equity E is comprised of assets Ap plus some cash c:

E = Ap+ c, ∂tc = ∂tAp

Let’s also assume that Ap� c, i.e. most of the capital is in the form of these assets E ≈ Ap.

∂tA

A
= β

(∂t + τE∂
2
t )E

E
+ βS

(∂t + τp∂
2
t )p

p
= α

∂tA

A
+ αS

∂2
tE = ∂tA∂tp+A∂2

t p (2.55)

Defining γ = αβ we have:

(∂t + τp∂
2
t )p

p
= γ

(∂t + τE∂
2
t )E

E
+ (γ + α)S

= γ
A∂tp+ τE(∂tA∂tp+A∂2

t p)

Ap+ c
+ (γ + α)S

≈ γ ∂tp+ τE((∂t + τp∂
2
t )p∂tp/p+ ∂2

t p)

p
+ (γ + α)S

(2.56)

Cleaning this equation up yields:

((1− γ)∂t + (τp − γτE)∂2
t )p− (γ + α)Sp = γτE(∂t + τp∂

2
t )p∂t ln p

(2.57)
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This equation includes an interesting non-linear term. But aside from that the linear part

has the form:

[(1− γ) + (τp − γτE)∂t] ∂tp = (γ + α)Sp+O
(
(∂tp)

2
)

O
(
(∂tp)

2
)

= γτE(∂t + τp∂
2
t )p∂t ln p (2.58)

When the force term Sp with its coefficients are much smaller than the left hand side,

the equation has phase transitions around γ = 1 and γ = τp/τE where ∂tp will have goes

from converging (stable damped) to diverging (bubble forming) solutions. The exponential

solution in absence of S is:

∂tp ∼ exp

[
− 1− γ
τp − γτE

t

]
2.29.2 Case 2: τE = 0

First suppose that τE = 0. Again, we will use E ≈ Ap.

Eq1 :
(∂t + τA∂

2
t )A

A
= β

∂tE

E
+ βS = β

A∂tp

Ap
+ βS

Eq2 :
(∂t + τp∂

2
t )p

p
= α

∂tA

A
+ αS (2.59)

Take αEq1 + Eq2 + τA∂tEq2

− ατAp∂tS +
ατA (∂tA)2

A2
p

− (α+ γ)Sp− τAu
2

p
− τAτpu∂tu

p

+
[
τAτp∂

2
t + (τA + τp) ∂t + (1− γ)

]
u = 0 (2.60)

Where u = ∂tp. From Eq2 we can also get rid of ∂tA/A

+ τAτp∂
2
t u+ (1− γ − 2τAS)u



62

+ (τA + τp − 2τAτpS) ∂tu

=(−ατAS + α+ γ)Sp+ ατAp∂tS

+
τA
αp

(
(α− 1)u2 + (α− 2)τpu∂tu− (τp∂tu)2

)
(2.61)

In short, the equations are:

[
τ∂2

t + η∂t + ω2
]
u = aSp+ b(∂tS)p+O

(
u2, ∂tu

2
)

1

τ
=

1

τA
+

1

τp
, η = 1− 2τS, ω2 =

1− γ − 2τAS

τA + τp
,

a =
γ + α− ατAS

τA + τp
, b =

τAα

τA + τp
, p(t) =

∫ t

u(t′)dt′

O
(
u2, ∂tu

2
)

=
τA
(
(α− 1)u2 + (α− 2)τpu∂tu− (τp∂tu)2

)
αp(τA + τp)

(2.62)

This time, we first need to find the expression for ∂2
tA/A first:

(∂t + τA∂
2
t )A

A
= β

∂tE

E
+ βS = β

A∂tp

Ap
+ βS

(∂2
t + τp∂

3
t )p

p
− (∂t + τp∂

2
t )p∂tp

p2
= α

∂2
tA

A
− α

(
∂tA

A

)2

+ α∂tS (2.63)

(∂t + τp∂
2
t )p

p
+ τA

(∂2
t + τp∂

3
t )p

p
= γ

∂tp

p
+ (γ + α+ τAα∂t)S +O

(
(∂tp)

2
)

[
τpτA∂

2
t + (τp + τA)∂t + (1− γ)

]
∂tp = (γ + α)Sp+ τAα(∂tS)p+O

(
(∂tp)

2
)

(2.64)

Where the nonlinear term is again quadratic in p (thus a generalized form of the Fisher

equation) and looks like:

O
(
(∂tp)

2
)

= τA
(∂t + τp∂

2
t )p∂tp

p
− ατA

(
(∂t + τp∂

2
t )p
)2

p
(2.65)

This time the dynamics is richer and we have a damped oscillator with a driving force cou-
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pled to p and nonlinearities of type ∼ (∂tp)
2. Taking the return u ≡ ∂tp as the fundamental

variable, the nonlinearities are roughly of type u2 +a∂tu
2. But the thing to note is that the

frequency depends on (1 − γ) again. For γ < 1 it has the usual stable damped oscillator

solutions, while γ > 1 will result in instabilities and divergent solutions. So interestingly,

the phase transition at γ = 1 is still there and doesn’t seem to be affected by the choice of

time-lags.

In short, the equations are:

[
τ∂2

t + ∂t + ω2
]
u = aSp+ b(∂tS)p+O

(
u2, ∂tu

2
)

1

τ
=

1

τA
+

1

τp
(2.66)

ω2 =
1− γ
τA + τp

, a =
γ + α

τA + τp
, b =

τAα

τA + τp
(2.67)

p(t) =

∫ t

0
u(t′)dt′ (2.68)

The amazing point is that this equation has shocking resemblance to the empirical equation

we found for the return based on the analysis we did using the Green’s function. In addition,

though, this equation tells us how this model expects the News Sentiments to enter, which

is the rough two terms, one from S and one from ∂tS, but both multiplied into p itself.

We have not checked for this type of appearance yet. Also, γ and α may themselves be

functions of S and occurrences O. Moreover, this equation provides a natural nonlinear

term, which start becoming significant close to a phase transition to the “frantic” state and

thus can be used to model the behavior near the transition.

2.29.3 Auto-correlations and Green’s Function

How do we verify the claim that the stock market follows the stochastic equations with a

random force as described in the section above? Clearly we cannot simulate or predict the

stochastic fluctuations in the stock prices. But just as in Brownian motion, we can use

Linear response. A version of the Kubo formula may apply here is the forces are sufficiently

random and memory-less, i.e. correlations at different times decay faster than any other
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time-scale in the system (random Gaussian noise)

∫
dyF (y)F (t+ y) ≈ σ2

F δ(t) (2.69)

For the linear part of the equation we have

u(t) ≡ ∂tp(t)[∆t]u(t) = F (t)

u(t) =

∫
dλG(t;λ)F(λ). (2.70)

Here G(tf ; ti) is the Green’s function for the linear part of the operator [∆t]. if the process is

memory-less, the Green’s function is a “propagator” that may be used as above to propagate

the state from ti to tf . In these memory-less settings we have a Markov process and we

have

∫
dλG(ti;λ)G(λ; tf ) ≈ G(ti; tf ) (2.71)

If the forces approximately satisfy (2.69) within a time-window of interest we can use the

usual linear response procedure and conclude

∫
dλu(λ)u(t− λ) =

∫
dλdxdyG(λ; y)F(y)G(t− λ;x)F(x). (2.72)

In the general case, this can’t be simplified further. If, however, we have simpler case where

the Linear operator ∆t has approximately no explicit time dependence over a certain time

window of interest, then the Green’s function will only be a function of the time difference

∆t ≈ ∆t+a ⇒ G(ti; tf ) ≈ G(ti + a, ; tf + a) ≈ G(tf − ti) (2.73)

over such time windows, the auto-correlation above simplifies significantly and becomes

the familiar expression for any quadratic field theory. Using (2.69) we have
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∫
dλu(λ)u(t− λ) =

∫
dλdxdyG(λ− y)F(y)G(t− λ− x)F(x)

=

∫
dλdx′dy′G(y′)F(λ− y′)G(t− x′)F(x′ − λ)

=

∫
dy′dx′G(y′)G(t− x′)

∫
dλF(λ− y′)F(x′ − λ)

=

∫
dx′G(x′)G(t− x′)

= G(t). (2.74)

Thus the auto-correlations of the “return” u(t) = ∂tp(t) contains all the information about

the linear and slowly varying part (this is to say, time-independent part) of the differential

operator ∆t. Some more discussion of this can be found in appendix A.10. Let us now

examine this in real data.

2.30 Autocorrelation in Cumulative News Data

Let us first make a comment about the driving forces in the market. An important thing

that investors look at are financial news. We want to briefly discuss whether the news data

has some of the qualities that we expect from a random Gaussian F or if more care needs

to be taken.

We had access to some compiled financial news through collaborators (owners of the

website http://newstream.ijs.si/). The news, both occurrence and sentiments, exhibit pe-

culiar patterns. For instance, take the occurrence weighted sentiment data and sum all the

sentiments for all corporate entities and call it Sc:

Sc(t) =
∑
i∈Ont

Si(t)

Now we will perform some auto-correlation computations. First we compute the convolution
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Figure 2.15: Convolution of the daily change in cumulative news sentiments with itself. It
exhibits strong seven day and 3.5 day patterns, which suggest that the trend of increase
and decrease in the cumulative sentiment repeats itself weekly and has a more or less fixed
weekly pattern. Red curve is the fit and blue triangles, connected by dashed lines, are the
actual Sentiment change convolutions.

of Sc(t) with itself to get a sense of its lagged aut-correlation:

Conv(∂tSc, ∂tSc) =

∫
dy∂tSc(t)∂tSc(t− y)

The result is shown in Fig. 2.15. As we can see there are very strong and clear 7-

day patterns which persist. The fitted red curve includes the leading frequency terms

(ω0 = 2π/(7days)):

fit = 2.50× 1010

(
sin(ω0t) +

1

2
[sin(2ω0t) + cos(2ω0t)]

)

The above features in the cumulative news is because of the weekly cycle of business days.

Although news about individual companies does not show such auto-correlation, we should

be weary of this feature. In particular, since this will violate our assumption about decay

of correlations in F beyond 7 days, we cannot trust auto-correlations in returns u = ∂tp as

a proxy for ∆t beyond a business week, i.e. 5 days.
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2.31 Fitting Bank Correlations

We analyzed the stock prices for a number of bank stocks. Contrary to common wisdom,

there do exist many persisting correlations between stock prices from one day to the next and

they are well-known. However, there does not exist any conclusive theory about the reason

why they exist and some argue that they are artifacts of non-synchronicity in trading [42].

There is no consensus on this matter yet. We argue here that from the point of view of

stochastic processes the auto-correlation can contain information about the linear part of

the dynamics as shown above. Especially if the pattern is consistent over various snapshots

of the data then it must be taken seriously and the linear part of the dynamics plays an

important role.

We analyzed many stocks and from the analysis of daily data (end of day prices only

and not the movements within a day) it seems that the best fit for auto-correlations has

a very familiar form, namely that of a damped harmonic oscillator whose frequency slowly

changes over different months.

fit :

∫
dt∂tP (t+ ∆t)P (t)∫

dt∂tP (t)2
≈ exp

[
−∆t

2τ

]
cos(ω∆t)

This may arise if ∂tP satisfies a damped oscillator equation as follows:

(
τ∂2

t + ∂t +m
)
∂tP (t) = F (t)

∂tP (t) =

∫
dy

∫
dk

2π

F (y)eik(t−y)θ(t− y)

(−τk2 + ik +m)

Poles at: k =
−i±

√
4τm− 1

2τ

ω ≡
√

4τm− 1

2τ

∂tP (t) =

∫
d∆te−∆t/(2τ) cos(ω∆t)F (t−∆t) (2.75)

We computed the cosine correlation for a few of the corporate classes and found that

τ and ω are within similar ranges. For the class of Banks, we found that while τ ≈ 0.4, ω
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Figure 2.16: Auto-correlations of stock returns ∂tp for a number of banks. The horizontal
axis shows the number of days of lag δt in the auto-correlation

∫
∂tp(t)∂t(t + δt)dt. Left:

The mean, with one standard deviation error bars, of the auto-correlations of stocks of
10 banks which showed the most largest negative auto-correlation for a lag of 1 days.
The stocks consisted of:UBI.MI, HBANP, 0005.HK, SDA, PHNX.L, ALBKY, PXQ.MU,
MBFJF, NHLD, ZIONW. UBI, Huntington Hldng, HSBC, Sadia S.A., Phoenix Grp, Alpha
Bank, Phoenix Sat TV, Mitsubishi UFJ, National Hldg, Zions Bancorp.. Right: 10 bank
stocks with the most positive value of auto-correlations after one day: KBC.L, WBC.AX,
DUA, HBA-PG, DTT, ANZ.AX, ERH, HBC, CSCR, DVHI. The solid curve is a fit using
a damped harmonic oscillator, which would be consistent with what our model predicts the
return on stock prices to do.

varies significantly (units):

τ ≈ 0.4(days) T =
2π

ω
∈ [2.3, 7.0](days)

Figure 2.17 shows the frequency squared evaluated for 5 important U.S. banks. As we

see, not only do the individual banks mostly have a positive and very slowly varying ω2,

interrupted occasionally by important dips into ω2 < 0 which is the unstable phase, the 5

bank stocks also show a high degree of “herding”, i.e. similar values of ω2 for all five banks

with small standard deviations.

2.31.1 Instabilities in the Stock Market

Note that having a ω2 < 0 does not necessarily mean a crash. It only means that the

the state is unstable and thus not sustainable. We can examine whether or not certain

stocks were in a “crisis” state and were crashing, or that they were forming a “bubble”
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Figure 2.17: The value of frequency squared ω2 for 5 important large banks. The top shows
the mean (green) and the standard deviation (width of the purple band) across the 5 banks.
The top shows the mean (green) and the standard deviation (width of the purple band)
across the 5 banks. Bottom shows ω2 for individual banks.

which is characterized by period of exponential gain in value. Figure 2.18 shows this for

some important stocks during the crisis of 2007-2008. We can see that before the crisis the

Citigroup (the red dots denoted by C) had periods of exponential drop during the crisis in

the left plot (where both ω2 < 0 and ∂tp < 0, i.e. the third quadrant). The right plot is

from after the banking bailout. No other bank has such a prominent presence in the third

quadrant as the Citigroup and, as we know, Citigroup was the only one that went bankrupt.

As you can see Bank of America (BAC) had some exponential growth periods (where both

ω2 < 0 and ∂tp > 0, i.e. the fourth quadrant), recovering from the crisis.
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Figure 2.18: Stock price behavior before and after the 2007-2008 crisis. the vertical axis is
ω2 and the horizontal axis is the return ∂tp. the lower half denotes the unstable part. the
lower right shows “bubbles” and exponential growth, while the lower left represents “crash”
and exponential decay of stock price.



Chapter 3

Networks of Local Interactions

Many networks form out of local interactions. Many friendships form from face-to-face

encounters (locality in real space). Many collaborations are a result of similarity in the

topic of research (locality in an abstract space). The Goal of this chapter is to lay the

foundation for a general framework that could be used for modeling such “networks of

local-interactions”.

Many physical interactions are local and we have powerful tools, especially in field

theory, for modelling with local interactions.

3.1 Introduction

Network growth models generally disregard how proximity and dynamics of agents affect the

probability of establishing links. In popular models such as Erdös-Rényi, Watts-Strogatz

[43], or Barabási-Albert (BA) [44] the interactions among nodes do not depend on any

physical or network “distance.” In some networks, such as social networks, the links are

generally established only if nodes make contact, either through physical proximity or in

the virtual world. It has been found that the probability of people contacting each other

through phones fall with the distance and that it can be described by the so-called “gravity

model” [45]. Some studies also suggest that physical proximity plays an important role in

scientific collaborations [46].

Many real-world networks are either scale-free or at least have a fat-tailed degree dis-

tribution [47]. It has been shown that scale-free networks have very short average path

lengths, L ∝ log logN , for N nodes, and are therefore “ultra-small-world” [48]. In Watts-
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Strogatz networks, the small world property is generated by randomly adding long range

links to an otherwise locally clustered network. This may appear to suggest that locality

is not conducive to the small-world property, much less to the scale-free property which

implies even shorter average distances between nodes.

Contrary to this, as we show below, it is possible to generate scale-free networks based on

locally interacting agents under natural circumstances. The model we propose is a geometric

model, in that the agents reside on a metric space and interactions depend on metric

distances. In this model, agents stochastically traverse the space and form connections only

when they encounter each other at designated centers. The global characteristics of the

network are then determined by the spatial distribution of these rendezvous points (RP).

As such, it is naturally suited for describing contact networks of people over cities.

An important feature of our model is that it produces a relatively high clustering coef-

ficient akin to those observed in some biological networks, including neuron firing correla-

tions [49] and protein-protein interactions [47]. There do exist models capable of producing

arbitrary degree distributions or relatively high clustering [50–53],

but BA-like models have very low clustering unless substantially modified [54].

The framework we introduce here is very general. The model may be solved for agents

moving according to a variety of different stochastic processes. For any such process, given

any desired degree distribution, we can analytically solve the spatial rendezvous point dis-

tribution that results in that degree distribution and vice versa. In this paper, we both

derive the general results for arbitrary dynamics and solve and simulate a concrete example

of friendship networks in cities modelled through random walkers in a harmonic potential.

We first outline the general idea and state the main results. We then compare this to

data about cities and analyze cell phone data from Shanghai.

3.2 General Properties of Networks of Local Interactions

Fokker-Planck equations are essentially classical field theory equations for stochastic pro-

cesses. The machinery of perturbative field theory is well suited for describing local interac-
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tions among weakly interacting stochastic agents. Therefore, we will build our model using

field theory. Consider Locally interacting agents1 whose dynamics can be described using

Fokker-Planck equations2. Consider N � 1 agents. Denote the initial location in the n di-

mensional space of agent i by xi. Then each agent i has assigned to it a probability density

φ̂i(x, t) of being found in the infinitesimal vicinity of point x at time t. In general, without

interactions among agents, the Fokker-Planck equation of the above process is linear, with

possible source terms Ji(x, t) = δ(t− t0)δn(x− xi)

Lx,tφi(x, t) = Ji(x, t) (3.1)

The probability of agents i, j, ... interacting locally is conditioned upon them all being

present at a point in space and thus, to first order, depends on the product of V ∼ φiφj ....

Such local interactions modify the Fokker-Planck equation to

Lx,tφi(x, t) = Ji(x, t)−
δV
δφi

(3.2)

3.2.1 The Network and its Adjacency Matrix

A network can be understood in terms of the connections between agents i and j. Since

each agent i is defined through some stochastic dynamics captured by the operator Lx,t, the

probability distribution of agents i, j with i 6= j are independent random variables and thus

uncorrelated, unless there is an interaction V that connects the two. Thus the correlation

of the ensemble average of the locations of the agents, i.e. their probability distributions φi

over all space would reduce to a simple product

if: V = 0 ⇒ 〈φiφj〉 = 〈φi〉 〈φj〉

and conversely if they are coupled through an interaction their probability distributions will

be correlated. Thus we conclude that a natural candidate for the adjacency matrix A of a

1We assume interactions are rare (weakly interacting) so that perturbation theory is applicable.
2Any other linear equation of motion works just as well
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network of the interactions of such agents is the amount of correlation in their probability

densities. With no interaction, φi and φj are independent and so the ensemble average,

time averaged to time T , 〈〉T , of their product would be 〈φiφj〉T = 〈φi〉T 〈φj〉T . Thus we

define

Aij(T ) ≡ 〈φiφj〉T − 〈φi〉T 〈φj〉T (3.3)

This Aij measures the ensemble average of how correlated the two densities are, up to time

T .

Since we assume that V in Eq. (3.2) represents weak interactions, we can use pertur-

bation theory to evaluate Aij . Note that when dealing with N agents with N � 1 we can

have a natural 1/N suppression in some correlation functions.

3.3 General potential derivations

We want the interaction potential to be finite, so that the whole system has finite energy or

action. Since φi are probability distributions of the agents over space we have
∫
ddxφi = 1.

Consider a simple case where we have a two-point interaction of the form

V ∼
∑
ij

Γijφiφj

Now suppose an extreme case where the way agent i interacts with another agent j is

independent of i, j and space-independent. In this case the total number of interactions of

agent i with other agents is given by

Γij ∼ c, ⇒
∑
j

Γij ∼ Nc

However, it is unrealistic to say that when there are 1000 peaople at a convention, each

person interacts with all of them. In fact for the case of people it has been suggested that

we can only have meaningful relations with about 150 other people [55], a number known as

“Dunbar’s Number”. Therefore, in a big convention with N people, each person is expected
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to only interact with ∼ 150/N of them, so that total number of interactions remains around

150. This suggests that the γij = c ∼ c′/N and that the interactions are normalized by a

factor of 1/N for each sum over indices j. With this argument, the general potential should

have a form

V =

∫
dxdt

[
1

N

∑
i,j

f
(2)
ij φiφj +

1

N2

∑
i,j,k

f
(3)
ijkφiφjφk + ...

]
(3.4)

in which
∫
ddxfij..k ∼ c with c being independent of N and generally c� N . The adjacency

matrix becomes

Aij(T ) =A(xi, t0, xj , t0;T )

=
1

N

∫
dny

∫ T

dtG(xi, t0, y, t)fij(y, t)

×G(xj , t0, y, t) +O

(
1

N2

)
(3.5)

where G is the propagator or Green’s function of Lx,t, defined by

Ly,tG(x, t0, y, t) = δn(y − x)δ(t− t0)

and fij is the ensemble average of the interactions

fij = f
(2)
ij +

∑
k

f
(3)
ijk 〈φk〉T + . . . (3.6)

Recall that 〈φk〉T represents the time average of the distribution φk, which is the ensemble

average of the spatial distribution of agent k up to time T .

3.3.1 Two-point Interactions and “Rendezvous Points”

Usually in field theory a φ2 term is referred to as a “mass term”. The way it contributed to

the propagator G(x; y) is through a geometric series which for a quadratic action basically

detrmines the location of the poles or resonances. In the momentum space this is generally
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understood as follows

S[φ] ∼
∫
φ†(∇2 +m2)φ ⇒ G̃(p) ∼ i

p2 −m2

A similar thing is, of course, still true in the case we are discussing here. However, there

is an important difference with what is generally done, namely the fact that the “effective

mass” term fij(x)φi(x)φj(x) can have space and time dependent mass fij . In fact, as we

will argue below, most interesting networks emerge only if we break the spatial symmetry.

The meaning of fij is how likely it is for agents i, j to interact at different points in space.

In the simplest case, we can assume that fij is independent of i, j (no preference among

agents) and think of it as the density of meeting places or “rendezvous points” (RP’s) in

space

Γ(x, t) ≡ fij(x, t)

N
, for all i, j (3.7)

In the context of a city, fij could be the density of work places, universities, cafes and so

on. We want the distribution of these meeting places or “rendezvous points” (RP’s) Γ(x, t)

to determine the strength of their interaction, beside the probability of finding agents i and

j in the same place in space. Such an interaction is of form

V(x, t) =
1

N

∑
i 6=j

Γ(x, t)φi(x, t)φj(x, t) (3.8)

The 1/N factor enables us to evaluate Aij(T ) perturbatively.

Aij(T ) =A(xi, t0, xj , t0;T )

=
1

N

∫
dny

∫ T

dtG(xi, t0, y, t)Γ(y, t)

×G(xj , t0, y, t) +O

(
1

N2

)
, (3.9)

where G is the propagator or Green’s function of Lx,t, defined by

Ly,tG(x, t0, y, t) = δn(y − x)δ(t− t0).
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3.4 Degree and Degree Distribution

For convenience, we define the short-hand notation

PxyQyz ≡
∫

dny

∫ T

dtyP (x, tx, y, ty)Q(y, ty, z, tz) (3.10)

The degree of a node, ki, is the total number of other nodes that it connects to. Here we

will abuse the notation and instead use ki for the ensemble average of the degrees.

The initial distribution of the nodes position of nodes can be written as

J(x, t) =
∑
i

Ji(x, t) (3.11)

The degree ki of node is then a function of its position and time

ki(T ) = k(xi, t0;T ) =
∑
j

Aij(T )

=

∫
dny

∫ T

dtA(xi, t0, y, t;T )J(y, t) (3.12)

Using (3.10) we can write

ki = AixJx = [AJ ]i ,

Aij = GixΓxxGjx =
[
GΓGT

]
ij

(3.13)

In this notation we use i, j, k, ... for the initial coordinates and x, y, ... for generic points.

Thus note that

Gij = G(xi, t0, xj , t0) = δn(xi − xj) (3.14)

Additionally, if the systems enjoys certain spatial symmetries, such as spherical symmetry,

the degree –and thus also the degree distribution– will have the same symmetry. With

spherical symmetry we have

P (k)|dk(r, t)| = dN(r, t0) =

∫
dtJ(r, t)Ωn−1r

n−1dr
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P (k(r, t)) = Ωn−1r
n−1

∣∣∣∣ Jr
∂rArxJx

∣∣∣∣ (3.15)

Where the number of points should be at time t0 because that’s is the initial location used

in calculating the degrees k and not the location where they possibly make contact with

others. Since J(r, t) ∝ δ(t− t0) its integral yields N at the correct time.

3.4.1 Note on Anlaytical Solutions

Note that since the dynamics is not unitary (L 6= L † ) The propagator G of L is not

necessarily the propagator of L †, i.e. L †G 6= I. There exists, however, another operator

such that (note the indices)

LxyGzy = L xyGyz = δxz (3.16)

which we will explicitly find in the examples below. Acting with L ij on (3.13) we find an

important relation between the Rendezvous Points Γ(r, t) and the degrees

L ijkj = ΓiiG
T
ilJl = ΓiiJi

Γxx = Γ(x, t)θ(t) =
L xyky
Jy

(3.17)

where we have used (3.14).

3.5 Higher-Order Moments of the Network

To characterize a network one has to explore the details of connections among nodes. The

degree sequence ki and its distribution P (k) are just the first order moments, i.e. they

can be extracted from first power of Aij . Higher order moments generally encode more

information and are crucial for understanding the network structure. The first such higher

order moment that is generally considered is called the “degree-degree correlation” or degree

assortativity, which compares the average degree of the first neighbors k
(1)
i of a node i to
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ki. The mth neighbor average degree, k
(m)
i is

k
(m)
i =

1

k
(m−1)
i

∑
j

Aijk
(m−1)
j =

1

k
(m−1)
i

[AJk(m−1)]i (3.18)

where Jxy = δxyJx. Acting with L on this yields

L ii

(
k

(m)
i k

(m−1)
i

)
= ΓiiJik

(m−1)
i (3.19)

3.5.1 Degree-Degree Correlation and Clustering

This is a generalization of (3.17) and allows us to in principle calculate any network moment

analytically, or put bounds on them. For example, k
(1)
i versus ki shows the degree-degree

correlation, and k(2) puts a bound on the local clustering ci defined as

ci ≡
2×# of triangles involving i

ki(ki − 1)
=

[A3]ii
ki(ki − 1)

(3.20)

Since k
(2)
i =

∑
j [A

3]ij/k
(1)
i we have

ci ≤
k

(2)
i k

(1)
i

ki(ki − 1)
(3.21)

These relations should hold for any network arising from general Fokker-Planck or con-

tinuity equation with weak interaction. Now let us turn to concrete examples.

3.6 Examples: Network of interacting random walkers

Consider a flat 2D space with area V = L2. Place N � 1 random walkers in this space.

For simplicity we will work in units where N
V → 1. Let φi(x, t) denote the probability

density of finding random walker i at point x and time t. Thus, without any interaction

the Fokker-Planck equation is the sourced diffusion, or heat equation

(∂t −∇2
x)φi(x, t) = Ji(x, t) (3.22)
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i
j

φi φj

Γij

Figure 3.1: Two isotropic randm walker interacting through a space and time-dependent
interaction function Γ(x, t)

where we require agent i to begin its walk at time t = t0 and position xi by setting the

source term to

Ji(x, t) ≡ δ(t− t0)δ2(x− xi). (3.23)

With this source, the solutions of (3.22) are in fact the retarded Green’s functions

φi(x, t) = G(x, t;xi, t0). In the case of 2D diffusion, this is given by

G(x, tx; y, ty) =
θ(tx − ty)

4π(tx − ty)
exp

[
− |x− y|

2

4(tx − ty)

]
. (3.24)

Defining the operator Lx,t ≡ ∂t −∇2
x and its conjugate L †

x,t = −∂t −∇2
x we have

Lx,tGi(x, t; y, s) = L †
y,sGi(x, t; y, s) (3.25)

= δ(t− s)δ2(x− y) (3.26)

We assume that bonds are formed between two agents only when they meet at designated

locations (coffee-shops, universities, work place, etc) in space, which we call “rendezvous

points” or RP’s, characterized by a time-dependent spatial distribution Γ(x, t). Once two

agents meet at an RP, there is a small chance λ that they form a bond. Therefore, the
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k(r, t, T )
Γ(r, t)†

kmax(T−t) = 4π(T−t) kmax(T−t) = πc

γ = 1∗ θ(T−t)
4π(T−t) e

r2

4(T−t) δ2(~r)δ(T − t)

γ = 1 kmaxe
− πr2

kmax 4πe−
ρ2

4

4
(
c− r2

)
πc3

e−
r2

c

γ = 2
k2max

πr2 + kmax

32π

(
ρ4 + 4ρ2 + 16

)
(ρ2 + 4)3

4π
c2

(
c− r2

)
(2r2 + c)3

γ = 3
[

k3max

2πr2 + kmax

]1/2
23/2π

(
3ρ4 + 8ρ2 + 16

)
(ρ2 + 2)5/2

4π
c3/2

(
c− r2

)
(2r2 + c)5/2

†(ρ ≡ r√
T−t ) 0 2 4 6 8 10

ρ = r/
√
T − t

0.0

0.2

0.4

0.6

0.8

1.0

Γ
(r
,t

)

γ = 1

γ = 2

γ = 3

Figure 3.2: The spatial degree function k(r, t, T ) and RP distribution function Γ(x, t) for
various exponents in 2 spatial dimensions. The models are characterized by kmax = kmax(T−
t) taken here to be linear: kmax(s) ∝ s.

probability that agents i and j have become connected by time T > t0 is given by

Aij(t0, T ) =λ

∫ ∫ T

t0

dtd2xGi(x, t;xi, t0) (3.27)

× Γ(x, t)Gj(x, t;xj , t0) +O(λ2). (3.28)

The Aij may be interpreted either as elements of the weighted dense adjacency matrix of

the network of connections, or as bond probabilities, in which case the matrix A defines an

ensemble of unweighted random graphs.

3.6.1 General power-law example

We will now derive the conditions for Γ(r, t) for which the degree distribution becomes a

power-law, possibly changing over time with an overall factor p(T − t0) and with upper and

lower cutoffs (which we will discuss shortly)

P (k; t0, T ) = p(T − t0)k−γ , k ∈ [1, kmax] . (3.29)
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The maximum degree kmax is chosen such that the expected number of nodes of degree kmax

is one, i.e. P (kmax) = 1. Therefore from (3.29)

kmax ≡ p(T − t0)1/γ . (3.30)

Now, in order to solve for Γ(r, t), we integrate (3.55) to find k(r, t, T ) and plug it in (A.54).

We obtain

Γ(r, t) = L †
~r,t

[
π(γ − 1)r2 + p(T − t)1/γ

p(T − t)

] 1
1−γ

(3.31)

For arbitrary γ > 1, and

Γ(r, t) = L †
~r,t

{
p(T − t) exp

[
πr2

p(T − t)

]}
(3.32)

for γ = 1.

3.6.2 Clustering

The degree distribution is only one of many measures characterizing a graph. The simplest

among higher order measures of graph connectivity is the global clustering coefficient C

which measures the degree to which the graph is clustered [47]. Clustering may also be

measured at the vertex level using the local clustering ci [47] defined as the number of

triangles involving node i divided by the total number of such triangles possible given the

degree ki

ci ≡
# of triangles

ki(ki − 1)
(3.33)

By definition ci ≤ 1. Figure ?? (right) shows the local clustering as a function of degree for

the three scale-free models we simulated.
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3.6.3 Explicit Analytical Bounds for Higher Network Moments of the Inter-

acting Random Walkers

We can use the same method we discussed before in the derivation of the recursive relation

(??) and find explicit expression for the degree-degree correlation (i.e. nearestneighbor

degree as a function of degree) and bounds on the clustering for the specific settings of

interacting radom walkers discussed above.

3.6.3.1 A2 and degree-degree Correlation

Degree-degree correlation measures how much the degree of a node and that of its first

neighbors correlate. It is intimately related to the second moment of the adjacency matrix

A. Let us denote the average degree of the neighbors of node i by
〈
k1
i

〉
. We have

〈
k1
i

〉
=

1

N

∑
j

Aijkj =
1

N

∑
jk

AijAjk (3.34)

We had defined Lx,t ≡ ∂t − ∇2
x and its conjugate L †

x,t = −∂t − ∇2
x. The Greens function

convention was

Lx,tGi(x, t; y, s) = L †
y,sGi(x, t; y, s) = δ(t− s)δ2(x− y) (3.35)

For brevity let us define the infinite dimensional matrices

Gxi ≡ G(x, tx;xi, t0), Γxy ≡ δn(x− y)δ(tx − ty)Γ(x, t)

and their matrix products as appropriate integrals

OxyOyz ≡
∫ T

dty

∫
dnyO(x, tx; y, ty)O(y, ty; z, tz)

This way we can write the Adjacency matrix as
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Aij(t0, T ) =

∫ T

t0

dt

∫
d2xGi(x, t;xi, t0) (3.36)

× Γ(x, t)Gj(x, t;xj , t0)

=G†ixΓxyGyj =
[
G†ΓG

]
ij

(3.37)

So in
〈
k1
i

〉
which comes from A2 we wil have a G†G

〈
k1
i

〉
=

1

N

∑
j

Aijkj =
1

N

∑
jk

[
G†ΓG

]
ij

[
G†ΓG

]
jk

=
1

N

∑
jlyk

[
G†Γ

]
ij
GjyG

†
yl [ΓG]lk (3.38)

But note that in
∑

y GjyG
†
yl the pint y was one of the origins of the random walkers

Gjy = G(j, tj ; y, t0)

and since they all start at the same time t0 there won’t be a time integral involved in the

sum over y above. This product GG† actually reduces to a single propagator (as it roughly

represents two subsequent propagations). To see this explicitly note that

1

t2
(x2 − y)2 +

1

t1
(x1 − y)2 =

1

τ

(
y − τ

(
x2

t2
+
x1

t1

))2

+
(x1 − x2)2

t1 + t2
1

τ
=

1

t1
+

1

t2
. (3.39)

Therefore

∑
y

Gx1yG
†
yx2 =

∫
dny (4π∆t1)n/2 (4π∆t1)n/2 exp

[
−(x1 − y)2

4∆t1
− (x2 − y)2

4∆t2

]

=

∫
dny (4πτ)n/2 exp

[
−1

τ

(
y − τ

(
x2

∆t2
+

x1

∆t1

))2
]

× (4πt+)n/2 exp

[
−(x1 − x2)2

t+

]
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= (4πt+)n/2 exp

[
−(x1 − x2)2

t+

]
=G(x2, t2;x1, 2t0 − t1) (3.40)

Where ∆ti = ti − ty, t+ = ∆t1 + ∆t2 and τ = (∆t−1
1 + ∆t−1

2 )−1. Let’s call this extended

propagator G+. Using this we can estimate
〈
k1
i

〉
〈
k1
i

〉
=

1

N

∑
k

[
G†ΓGG†ΓG

]
ik

=
1

N

∑
k

[
G†ΓGG†Γ

]
ik

=
1

N

∑
k

[
G†ΓG+Γ

]
ik

(3.41)

Now note that the last part on the right can be written in terms of the degree function

k(x, t;T ). Recall that

k(x, t0, T ) =λ

∫ ∫ T

−∞
dtdnyGi(y, t;x, t0)Γ(y, t) (3.42)

What we have here is

∑
y

[G+Γ]xy =

∫
dtyd

nyG(y, ty;x, 2t0 − tx)Γ(y, ty)

= k(x, 2t0 − tx, T ). (3.43)

Putting this back into
〈
k1
i

〉
〈
k1
i

〉
=

1

N

∑
k

[
G†ΓG+Γ

]
ik

=
1

N

∫ T

dt

∫
dnxG(x, t;xi, t0)Γ(x, t)k(x, 2t0 − t, T )

=
1

N

∫ T

dt

∫
dnxG(x, t;xi, t0)
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× k(x, 2t0 − t, T )L †
x,tk(x, t, T ) (3.44)

Applying L †
x,t on both sides yields δ(t− t0)δn(x− xi) on the right and thus

L †
x,t

〈
k1(x, t)

〉
=

1

N
k(x, t, T )L †

x,tk(x, t, T )

=
1

N

(
L †
x,tk

2(x, t, T ) + |∇k(x, t, T )|2
)

(3.45)

We can evaluate the right hand side for spcific cases, such as power law

P [k(r)] = (k/kmax)−γ = Ωn−1r
n.

Therefore for any γ we have

∇k = nΩn−1r
n−1

(
k

kmax

)γ
r̂

3.6.3.2 A3 and bounds on clustering

Local clustering is usually defined as the number of triangles involving a node i, which is

equal to the diagonal element (A3)ii, divided by total triangles that its neighbors could

have formed, which is ki(ki − 1)/2). From the structure of A = G†ΓG it is much easier to

compute the total number of paths of length 3 starting from node i than just the number

of such paths which close on themselves. This will yield an upper bound on the clustering

because

ki(ki − 1)

2
c(ki) = [A3]ii ≤

∑
k

[A3]ik

The sum 1
N

∑
k

[
A3
]
ik

measures the average degree of the second neighbors of i. Therefore,

we will refer to it aptly as k
(2)
i . For A3 using the same convention as before we have

k
(2)
i ≡

1

N

∑
k

[
A3
]
ik

=
1

N

∑
k

[G†ΓGG†ΓGG†ΓG]ik

=
1

N

∑
k

[G†ΓG+ΓG+Γ]ik (3.46)



87

We just simplified a similar expression for k(1). Using Eq. (3.44) we can write

k
(2)
i =

1

N

[
G†ΓG+ΓG+Γ

]
ik

=

∫ T

dt

∫
dnxG(x, t;xi, t0)Γ(x, t)k(1)(x, 2t0 − t, T )

=

∫ T

dt

∫
dnxG(x, t;xi, t0)k(1)(x, 2t0 − t, T )L †

x,tk(x, t, T ) (3.47)

And similarly we have

L †
x,tk

(2)(x, t) =
[
L †
x,t

(
k(1)(x, t, T )k(x, t, T )

)
+
(
∇k(1)(x, t, T )

)
· (∇k(x, t, T ))

]
(3.48)

In the same fashion we arrive at a recursive relation for average degree of mth neighbors

L †
x,tk

(m)(x, t, T ) =
[
L †
x,t

(
k(m−1)(x, t, T )k(x, t, T )

)
+
(
∇k(m−1)(x, t, T )

)
· (∇k(x, t, T ))

]
(3.49)

Ansd if we define the average degree as k(0) ≡ k/N and k(−1) = 1 these relations remain

consistent for all non-negative powers of A.

For γ = 1 we had

k = kmax exp

[
−Ωn−1r

n

kmax

]
,

and for γ > 1

k =

[
(γ − 1)Ωn−1r

n + kmax

kγmax

] 1
1−γ

.

One can plug these into the above equation an in principle calculate the nearest neighbor

degree k(1), or the bounds on the clustering more explicitly.

This concludes our discussion of the isotropic random walkers. In the next section we

will consider a more realistic process where the stochastic agents are subject to an external

potential pushing their dynamics towards its local minima.
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3.7 Diffusion in Spherically Symmetric Potential with Interations
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Figure 3.3: Rght: Random walker in a strong harmonic potential. The walker very quickly
drift toward the center of the potential. After that, since the potential is flatter there, they
have a more stochastic behavior. People’s daily commute toward the center of a city may
also approximately be modeled through a similar process. Left: The background potential
U affects the dynamics of each random walker. But on top f this background potential,
the random walker may interact with each other. As in the prevuious section, to lowest
order this interaction will be through the “Rendezvous Point” distribution Γ similar to the
distribution of businesses over the city in which people may see each other and interact.

Now we will consider dynamical agents that move in a space under the influence of a

background potential U(x) and a random Gaussian noise η(t) with 〈η(t)η(t+ s)〉 = σ2δ(s)

and strong friction with friction constant γ. The Langevin equation for the position of the

agents is γẋ(t) = −∇U(x) + η(t). Thus we are dealing with a Markov chain, a memory-

free process. Many of the results can be extended to cases with memory and any general

continuity equation, but we won’t discuss that here.

The corresponding Fokker-Planck equation can be written as (choosing units such that

γ/D = 1)

Lx,tφi = ∂tφi −∇ ·
(
e−U∇

(
eUφi

))
= Ji −

δV
δφi

(3.50)

Suppose the interaction between different agents is a branching process. There are
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many ways to interpret this. One is agent i split into agents j and k (like the result of gene

duplication in evolution) or agent i facilitates the interaction of j and k. Such a process

depends on the product of the density of all three agents, thus assuming equal chances for

any interaction we get

V ∼
∑
ijk

φiφjφk

According to (3.6) and (3.7) Γ(x, t) =
∑

i 〈φi(x, t)〉 /N = 〈φ1〉 because to zeroth order

in 1/N all particles have the same equilibrium distribution. 〈φi〉 is like the “condensed”

density of the agents and its appearance in the correlations Aij is a simple case of the Higgs

mechanism.

The condensed 〈φi〉 has an important role in cities. Many cities that have formed around

natural resources may be modeled assuming U is the attractive potential of natural resources

such as rivers. The average density of the population 〈φi〉 then naturally determines the

density of residences and community centers over the city. Thus it is natural to assume

that 〈φi〉 determines the density of “rendezvous points” (RP’s) and chance of interaction.

In (3.50) the equilibrium density is easily found

Γ(x, t) ≈ 〈φi〉T = e−U(x) +O

(
1

N

)
(3.51)

To use our analytical results we need to find L . It is easy to show that

L †f = −∂tf − eU∇ ·
(
e−U∇ (f)

)
(3.52)

Therefore we find that L f = −e−UL † (eUf) has the desired property of (3.16).

(3.50) has a stable equilibrium solution 〈φi〉 = e−U +O(1/N). Suppose that the initial

distribution of locations xi is according to this equilibrium distribution3,

J(r, t) = J(r) = 〈φi〉 = e−U . (3.53)

3Note that the location of an individual agent is still changing over time, but their average density is
fixed.
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Since J(r) is fixed under the dynamics we have L J = 0.

3.7.1 Degree Distribution in Radially Symmetric Cases

If there exists a particular spatial symmetry, like radial symmetry we have ki(T ) = k(ri;T ).

With this symmetry the degree distribution P (k) is an implicit function of r. For P (k)

monotonic (possibly with cutoffs near k = 0 and kmax), we have

P [k(r)]|dk(r)| = |dN(r)| (3.54)

P [k(r, T )] =

∣∣∣∣dNdk
∣∣∣∣ =

dN

dr

∣∣∣∣dkdr

∣∣∣∣−1

(3.55)

where dN(r) = J(r)
√
gΩn−1dr is the number of nodes in the annulus [r, r+dr]. The absolute

value is necessary since dk/dr may be negative. This simple equation combined with (A.54)

allows us to explicitly calculate the degree distribution given Γ(x, t) or conversely, to solve

for Γ(x, t) given a desired degree distribution. As a simple example, with t0 = 0 and a

single rendezvous point activated at a single time, Γ(r, t) = δ(r)δ(t − te), equations (3.12)

and (3.55) yield

P [k(r)] =4πteθ(T − te)k−1 (3.56)

which is a power law distribution P (k) ∝ k−γ with exponent γ = 1.

counting the number of agents at radius r will yield

P (k)dk(r) = dN(r), P (k) =
dN(r)

dk(r)

This equation can be used to find the degree distribution. dN(r) = J(r)dV (r), V being the

volume, and so

P (k(r)) =

(
J(r)dV (r)/dr∫
dyJ(y)∂rA(r, y)

)
Let’s find the degree distreibution for a specific setting. Assume that the initial distri-
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bution of the agents is the equilibrium distribution described above in (3.53). We have

ki = GiyΓyyGyxJx = GiyΓyyJy. (3.57)

After long times agents lose any reference to the initial locations and the Green’s function

relaxes to the equilibrium solution

if: tx � ty ⇒ Gxy ≈ exp[−U(y)] (3.58)

Suppose there was no space-dependence in the probability of interaction of agents i, j,

meaning that Γ(x, t) = 1. Then

ki = GiyJy = Ji = e−U(xi)

Using (3.15), the degree distribution becomes

P (k(r, T )) = Ωn−1r
n−1

∣∣∣∣ Jr∂rJr

∣∣∣∣ =
Ωn−1r

n−1

|∂rU(r)|
(3.59)

If U ∼ rα we get

P (k) = crn−α = c (− ln k)
n
α
−1 (3.60)

In 2D (n=2) a hyperbolic potential U = c
√

1 + r2 will yield

∂rU =
cr

U
=

cr

− ln k

P (k(r, T )) =
π

c
|ln k| (3.61)

3.7.2 Establishments and Three-Point Interactions

The density of businesses in many cities correlates with what used the be population density

J = 〈φi〉 . Later, when a metropolitan area emerges from a city, the actual density of people
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i
j

φi

φj

j φk

Figure 3.4: Three-point interaction of stohastic agents. If one of the agents is condensed to
〈φ〉 this interaction will define a natural background, space-dependent interaction Γ ∝ 〈φ〉

at day and night varies greatly and will no longer be the old 〈φ〉. However, a business

established by i may facilitate establishing a link between j and k. This is a three point

interaction V ∼ φiφjφk. The correlation of φj and φk will then depend on f
(3)
ijk 〈φi〉T as in

(3.6). In this sense 〈φi〉 represents the density of established businesses, institutions, and

so on. Similarly, in the context of scientific collaboration, 〈φi〉 may represent the existing

body of work around a topic, which may become the source of future collaboration of j and

k. Density φi represents the the spread of interest of scientist i in the spectrum of interests

parametrized by ~x. Thus this time

Γ(x, t) = 〈φi〉 = e−U

According to (3.17)

L xxkx = ΓxxJx

∂tk +∇ ·
(
e−U∇

(
eUk

))
= e−UJ (3.62)
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Solving this for generic J may not be easy, but if J is uniform over space and all agents

start at the same time we have

J =
N

V
δ(t− t0)

In this case using the ansatz k = f(t)e−U we get

L k = e−U∂tf =
N

V
δ(t− t0)e−U

Thus we get

k(x, t) =
N

V
θ(t− t0) exp[−U(x)] (3.63)

Thus using (3.15) the degree distribution for t > t0 is

P (k) =
NΩn−1

V

rn−1

k∂rU
(3.64)

When U = crα we get

P (k) ∝ rn−α

k
∝ (ln k)

n
α
−1

k
(3.65)

Another example which is relevant for cities is a hyperbolic potential U ∝
√

1 + r2. It

has the property that the force, and thus the speed of the over-damped agents approaches

a constant at large distances –thus the agents have a maximum speed limit– instead of

blowing up, as it does for the quadratic U = r2. It also has the benefit that it becomes

quadratic near the origin. For this U we have

P (k) ∝ rn−2 ln k

k
(3.66)

Which in 2D is a power law with a log cutoff at low degrees. The distribution of agents over

this space of interest may be much more spread out than this. If the agents were spread

uniformly over space and U ∼ rα then we’ll have

k(r) =e−U
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P (k) ∝r
n−α

k
=

(ln k)
n
α
−1

k
(3.67)

For a hyperbolic potential U = c
√

1 + r2 we get

∂rU =
cr

U
=

cr

− ln k

P (k) ∝ πr

crk/U
=
π

c

ln k

k
(3.68)

3.7.2.1 Exact Results from a Generic Case

To lowest order, a generic potential U expanded around a saddle point will be quadratic4

U ∼
∑

m cm(x − xm)2 where xm are its various local extrema. If these local minima are

far enough apart, i.e. if the average densities localized at each quadratic well does not have

much overlap with others, so that 〈φi〉 ≈
∑

m exp[−(x − xm)2/σ2
m]. In such generic cases

and assuming J(r) = 1 is uniform we have

P (k) ∝(ln k)
n
2
−1

k
(3.69)

For small n such degree distributions look like a P (k) ∝ k−1 with a lower cut-off. Let us

examine the higher network moments.

3.8 Real Data Analysis

We show that many networks that seem to form from local interactions indeed fit well with

our model, while others, such as online networks where any person can follow anyone, have

different characteristics, better described by random network models such as the Barabasi-

Albert (“rich gets richer” or preferential attachment) model.
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3.8.1 Co-authorship on arXiv.org: HEP Theory vs HEP Phenomenology

Structurally, the collaboration networks in High Energy Physics Theory (HET) and High

Energy Physics Phenomenology (HEPPh) can be very different. In HET there are usually

a few hot topics and central and seminal papers about them. Everyone checks arXiv every

night and most research will be focused around big problems such as AdS/CFT or black

hole mechanics or M Theory. Every researchers often switch topics, as they require simialr

skill sets, and it is easy to collaborate on a new topic. In HEPPh, however, epople are more

specialized. They generally focus on the phenomenology of a specific class of particles. A

neutrino researcher, for example, may rarely collaborate with someone working with Kaon

experiments. The important experiments are also clustered in the same way. Therefore

it is harder for researchers to collaborate with someone in a different part of the map of

research in particle physics. This makes the HEPPh co-authorship a better candidate for a

network forming out of local interactions inside the abstract space of research interests in

particle physics than the HET network. Below we first show that the HEPPh network can

indeed be very well fitted with simulations from our model. After that we also show in Fig.

3.6 that HET has in fact a different behavior and deviates significantly from our model.

HET seems more consistent with the preferential attachment model of Barabasi and Albert

(BA). In the BA model all agents have global knowledge of who is more famous than others

and preferentially attach to those who have more connections. This is similar to what we

would expect of HET based on the fact that its researchers have a broad spectrum of skills

that allows them to collaborate with whoever has written important papers, more easily

than in the more localized space HEPPh.

3.8.2 Gowalla Geotagging Social Network

Gowalla was an online service where people could put pictures tagged with the geographical

location it was taken. People would have a network of friends based on the places they liked,

4unless, of course, it is in a critical phase, where the quadratic term vanishes and higher order terms kick
in.
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and thus people whose posts they would like to follow. Such a network does not necessarily

have local interactions, since people can follow anyone from anywhere around the world.

The question that arises is if our model which is based on locality of interactions will have

properties that are not consistent with the network from Gowalla. The data we have used

is from Stanford’s SNAP institute. As can be seen in Fig. 3.7 these online social networks

have properties different than our model. This is most visible in their higher order network

moments, the degree-degree correlation and local clustering. The degree correlations show

a descending trend, a property sometimes referred to as “disassortativity”. This is in stark

contrast to our model’s behavior and more consitent with random network model like the

preferential attachment model of Barabasi and Albert (BA) shown by green in the plots. A

similar inconsistency between our model and the data is seen in the local clusterings. For

comparison, the bottom row of the figure shows the C. Elegans Protein-protein Interaction

network (CE), which we will briefly reexamine below. The CE network has a different

behavior compared to Gowalla and is more similar to our model’s simulations.

3.8.3 Protein-Protein interactions

The results for γ = 1, 2, 3 and two different p(t) are given in Fig. 3.2. Using these results,

we can simulate the model by placing agents and RP’s on a finite area of the 2D space

with appropriate distributions, and computing the Aij . To avoid boundary effects, the

characteristic range of the random walkers σ =
√

4T must be much smaller than the system

size L. For the continuum approximation to hold, σ must be much larger than the inter-agent

distance L/
√
N. With proper normalization, Aij may be interpreted as the probability that

the unweighted edge (i, j) exists, and different realizations of the network can be constructed

accordingly. Figure 3.2 summarizes the results of simulations for scale-free distributions

with γ = 1, 2, 3. In each case, one realization of the unweighted random graph ensemble is

generated and the degree distribution computed.

Here we compare stwo protein-protein interaction (PPI) networks against our model:

the human PPI (HS PPI) and the C. Elegans (CE), a nematode. Protein-protein interaction
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data is notoriously noisy. The systematics of the way the experiments are conducted play

an important rle in the results. The data we have used here comes from freely available

datasets compiled by the Dana Farber Institute at Harvard Medical School. We do not wish

to make any general statement about these networks and just state our observations from

the analysis. The particular datasets we analyzed showed a high degree of clusetering and

“degree assortativity”, which is the property of high degree nodes being mostly conected to

other high-degree nodes (i.e. average nearest neighbor degree 〈k1〉 is an ascending function

of degree k). Out model shows the same properties, although it is not a perfect match for

either the human PPI (HS PPI) Simulations from our model show

3.9 Discussion

Our main result is that given any (monotonic) degree distribution,we can analytically com-

pute the RP distribution (or weight) resulting in a network with that degree distribution.

While we demonstrated the derivations in the case of power-law distributions, other

monotonic distributions can also be handled similarly. Furthermore, our model is general-

izable to agent dynamics other than isotropic random walks. In principle, one can solve the

model for any agent dynamics with a linear Fokker-Planck equation of the form

Lx,tφ(x, t) = J(x, t) (3.70)

where the linear operator Lx,t admits a well-defined Green’s function. Finally, the model

can be solved in higher spatial dimensions as well, with similar results.

One of the major shortcomings of many scale-free network models such as Barabási-

Albert (BA) is the fact that they possess a very small degree of clustering. In some real

world networks, especially biological networks such as Brain and gene interaction networks,

C > 20%. For a BA network of 104 nodes C is well below 1%. There have been many

attempts to remedy this by modifying the BA model (see for example [51]). Others propose

models where both clustering and degree distribution are tunable [54, 56].
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Our model, interestingly, has a naturally high degree of clustering because agents close

to the RP’s are all likely to connect and form close-knit subgraphs. Figure 3.8 illustrates

how our model compares to a particular real world network, namely the network of human

protein-protein interactions (PPI) compiled from the human interactome database [57], as

well as a BA network of the same size as the real data. The PPI network has a power-law

degree distribution with power P (k) ≈ k−2. We therefore compare it with a γ = 2 from

our model. The PPI network has an average clustering of C = 0.29 versus our model’s

C = 0.15. For the BA network on the other hand, C = 0.006. The shaded area is one

standard deviation and the thick curves are the means. Our model, though having on

average a smaller degree of clustering than the PPI data, follows the PPI data closely and

stays within one standard deviation. The BA (with the same number of nodes as PPI and

with m = 9 to produce similar density) on the other hand, deviates significantly from the

PPI data. To draw an analogy with our model, one can conceive of evolving proteins as

random walkers inside a parameter space, diverging as a result of mutations from common

ancestors distributed according to Γ(r, t). The analogy is completed if one can assume that

having originated from similar ancestors renders proteins more likely to interfere with one

another’s functions and thus to be linked in the PPI network. Establishing the viability of

this analogy requires further investigation.

3.10 Cities: Businesses as “Rendezvous Point” for Interactions over Cities

Using interacting stochastic fields inside a background landscape we present a model of city

formation and subsequent interactions of people through the established businesses in the

city.

The process inside a background potential described in the sections before is a good

candidate for modeling dynamics and interaction of people over cities. Cities usually form

around resources such as water. The water source would act like an attractive potential.

The movements of people could then be modeled through diffusion with a drift. They then

establish residences around base of the potential well where the most resources are. This
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establishment forms the city. The distribution of businesses in the city must have evoved

from these initial residences that represented the equilibrium distribution of the drifting

random walkers inside the potential well of resources such as water.

After the city forms, the businesses can play the role of our “Rendezvous points” Γ.

People generally talk to and interact with people they meet inside businesses where they

spend most of their time in. This could be the workplace, school, or cafes and bars. Figure

3.9 shows the radial distribution of businesses extracted from satellite images if night lights

for Paris and Shanghai. Our model predicts that this distribution, which can be taken to

be the interaction potential Γ of our model, determines the network structure. The network

here would be the friendship network of people living over the city. We make a simplistic

assumption and assume that population density is roughly uniform over the city. With

this somewhat unrealistic assumption we can find the analytical form of Γ which would

result in different degree distributions. In Fig. 3.9 we fit two different Γ’s to the sity light

distribution. The light distribution in Paris seems more consistent with a Γ from our model

that would result in P (k) ∼ k−1 while for Shanghai there is no conclusive result. The model

predicts the friendship network to have a degree distribution that may not ab a power-law

or one that has exponent between 1 and 2.

3.10.1 Cellphone data from Shanghai

We have data from cellphone calls that happened over Shanghai from 2010 to 2012 through

our collaborators. The first three etwork moments are shown in Fig. 3.10. The degree

distribution fits more with a log-normal distribution than a power-law. The lower degree

part of it, though can be partially fitted with a γ = 1 power-law and the upper hal can be

covered with a BA model. This does not mean that that this is the structure of the network,

but based on the observation we made in the co-authorship network we guess that there

may be a preferential attachment process describing the higher degree end of the network

and wish to check this. Interestingly, even this poorly fitted simulation in 2D with γ = 1

describes the degree-degree correlation and local clustering of the cellphone network very
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well. These two network moments also reveal a rather abrupt shift in the properties of the

network at higher degrees which make it resemble more a BA model. Thus, maybe our

guess about high degree nodes having different network formation strategies than the rest

of the network may be justified.
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degree tail fits very well with the BA. Right shows the full network’s moemnts. As we see
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Chapter 4

Concluding Remarks

In thesis I examined the utility of using some familiar concepts from theoretical physics in

modeling the dynamics and formation of complex networks. The idea of using Lagrangians

in networked systems is not new. In fact, it is a popular method in linear control theory.

However, using it from a model building perspective and constructing effective linear re-

sponse models for networks, to my knowledge, has not been widely studied before. This

type of analysis provides a powerful method for building models for response of highly dy-

namical networks which also have flow redistribution taking place on them. An example

would be financial networks and I demonstrated the use of this type of modeling for these

systems, which yields concrete results about stability of the financial network.

In the latter half of my dissertation I described a model of network formation. The

definition of the network as a correlation-based network is not a new idea. Also, networks

embedded in a metric space do exist in the context of random geometric graphs. My

contribution to this field was building a general framework that allows us to answer general

questions such as: ‘does a network that forms out of local interactions have properties that

distinguish it from non-local networks?’ as well as specific, concrete questions like: ‘if we

model people over cities as stochastic agents inside a potential well and the businesses they

frequent as the source of a space-dependent interaction between them, what will be the

most probable friendship network that emerges among them?’. I showed that, indeed, there

are analytical relations that one can derive for weakly interacting agents forming a network

out of local interactions in a metric space. I also compared simulations using this framework

with some networks that are mostly forming out of local interactions, either in real space,
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as in friendship networks, or in an abstract space, such as spectrum of interests in different

research topics. I showed that such networks are consistent with our model, while networks

that may form from non-local processes show characteristics very different from our model’s

simulations.
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Appendix A

Lagrangian and Hamiltonian in Response

Dynamics of Networks

A.0.2 Equations of motion

The Lagrangian introduced for the response of networks is complicated and has many terms.

But not all of those terms play independent roles in the equation of motion. Let us simplify

this Lagrangian. We start by using partial integration of the action to change the form of

the a2 and the b terms. For the b+ term we have:

∫
dtΦTA+∂tΦ = ΦTA+Φ

∣∣∣tf
ti
−
∫
dtΦT∂tA+Φ−

∫
dt∂tΦ

TA+Φ

⇒ 2

∫
dtΦTA+∂tΦ = ΦTA+Φ

∣∣∣tf
ti
−
∫
dtΦT∂tA+Φ (A.1)

The first term is a boundary term and doesn’t affect the equations of motion. But the

other term is effectively a new time-dependent harmonic potential term for Φ. So we could

successfully get rid of the single derivative A+ term. For A−, however, this trick will be

different. Note that: ∫
dt∂tΦ

TA−Φ = −
∫
dtΦTA−∂tΦ

Therefore the same partial integration for this term yields:

0 = ΦTA−Φ
∣∣∣tf
ti
−
∫
dtΦT∂tA−Φ

Which is trivial because both terms are automatically zero from anti-symmetry of A−. In

addition it doesn’t say anything about the value of the Lagrangian term we started from.
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Thus the b− term cannot be simplified this way. The q+ term admits the exact same

procedure and the resulting Lagrangian looks like:

L =a∂tΦ
TA+∂tΦ + ΦT

[(
−q+

2
∂2
t −

b+
2
∂t + c

)
A+

]
Φ

+ ΦT [(q−∂t + b−)A−] ∂tΦ (A.2)

A.1 Hamiltonian and Stability Analysis

We wish to find out under what conditions the above theory would admit stable solutions,

i.e. minimum of potential, and under which it would develop instabilities. We have too

many free coefficients that may be adjusted.

A.1.1 Scaling and Simplifications

Let’s first get rid of some by scaling different variables. We will absorb |a| in A+ and will

assume |A+| ≥ 0. This way a reduces to:

a = ±1, 0

After this scaling, q±/|a| has dimensions t2. We absorb |q+/a| into the time scaling and

thus we are left with q−/a which we will rename to:

τ2 ≡ |q−|
|a|

And we absorb the sign of q−/a into |A−|. The sign of q+/a still remains, but that basically

becomes the relative sign of the kinetic ∂tΦ
2 term and the ΦT (...)A+Φ term. Thus without

loss of generality we can take a = 1, 0 and just allow q+/a = ±1, 0, because we don’t care

about the overall sign of L which has to be such that it admits a minimum. If a 6= 0 we can

take the first kinetic term to be positive. And finally, for b± = (b1 ± b2)/2 we can rescale

b1 → 2 by absorbing it into Φ and then repeating the procedure above to get rid of the
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a, q± that seem to appear from the scaling. This way:

b± = 1± b

Thus, in the end we are left with three free parameters τ, b and c and a relative sign for the

first and second term, if q+ 6= 0:

L =∂tΦ
TA+∂tΦ + ΦT

[(
±∂2

t −
1 + b

2
∂t + c

)
A+

]
Φ

+ ΦT
[(
∓τ2∂t + 1− b

)
A−
]
∂tΦ (A.3)

Let us also for brevity define:

B+ =

(
±∂2

t −
1 + b

2
∂t

)
A+

B− =
(
∓τ2∂t + 1− b

)
A−

L = ∂tΦ
TA+∂tΦ + ΦTB+Φ + ΦTB−∂tΦ + cΦTA+Φ (A.4)

A.1.2 Hamiltonian

In order to analyze stability, we will need to separate the true kinetic terms (constructed

from conjugate momenta) from the potential terms. Both Φ and A are dynamic variables.

But they are coupled in a nonlinear fashion and rewriting the Lagrangian in terms of the

conjugate momenta is a bit more complicated than quadratic theories. Let’s first start from

conjugate momenta:

πΦ =
∂L

∂∂tΦT
= 2A+∂tΦ +BT

−Φ

πA+ =
∂L

∂∂tA+
= −1 + b

2
ΦΦT ∓ Φ∂tΦ

T

πA− =
∂L

∂∂tA−
= ∓τ2Φ∂tΦ

T (A.5)

Let us first assume that A+ is positive-definite, i.e. |A+| > 0 instead of |A+| ≥ 0 (if not, we

will have to work with the largest positive-definite minor of A+) to make sure A−1
+ exists.
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The Hamiltonian is:

H = ∂tΦ
TπΦ + Tr[∂tA+πA+ + ∂tA−πA− ]− L

=
1

2
(πTΦ − ΦTB−)A−1

+ πΦ + ΦTB+Φ

+
1

2
ΦTB−A

−1
+ (πΦ +B−Φ)− L

=
1

2
πTΦA

−1
+ πΦ + ΦTB+Φ +

1

2
ΦTB−A

−1
+ B−Φ− L (A.6)

We will first have to rewrite L in terms of the πi by replacing the ∂tΦ and ∂tA terms, but

since ∂tA does not appear in any of the πi we don’t need to rewrite the ∂tA terms.

L =
1

4
(πTΦ − ΦTB−)A−1

+ (πΦ +B−Φ) + ΦTB+Φ +
1

2
ΦTB−A

−1
+ (πΦ +B−Φ)

=
1

4
πTΦA

−1
+ πΦ + ΦTB+Φ +

1

4
ΦTB−A

−1
+ B−Φ (A.7)

Where we used BT
− = −B−. Putting the two together, the Hamiltonian becomes:

H =
1

4
πTΦA

−1
+ πΦ + ΦT

[
1

4
B−A

−1
+ B− − cA+

]
Φ (A.8)

Now we can finally see the “potential energy” terms and analyze the stability of solutions.

A.1.3 Potential and Its Minima

In general A− (hence also B−) and A+ need not be related to each other at all. Moreover,

B− may not be invertible either. Even when |B−| 6= 0 the potential energy is given by:

V =
1

4
ΦT
[
B−A

−1
+ B− − 4cA+

]
Φ = ΦTV Φ

=
1

4
ΦTB−

[
C + 4cC−1

]
Φ

C ≡ A−1
+ B− (A.9)

V = V T and invertible if |A+| 6= 0 and |B−| 6= 0. Where C is a general matrix has no

special symmetries, unless A−1
+ and B− either commute or anti-commute. So in order to

understand the behavior of this potential, let us start from some special cases.
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A.2 Equations of Motion

Because A only appears to first power in the Lagrangian, the variations with respect to A

yield equations involving only Φ and no A’s. These equations are:

δL
δA+

=
∂L
∂A+

− ∂tπA+ =
∂L

∂∂tA+

= ∂tΦ∂tΦ
T + cΦΦT +

1 + b

2
ΦΦT ± Φ∂tΦ

T

δL
δA−

=
∂L
∂A−

− ∂tπA− = (1− b)ΦΦT ± τ2Φ∂tΦ
T (A.10)

A.2.1 Implications and conservation laws of the variational method for finan-

cial networks

First note that the Lagrangian L = L2 +Lγ+LC for the financial network is not dissipative,

i.e. the “energy” (Hamiltonian) associated with it is conserved. If Lγ was the whole

Lagrangian, its Hamiltonian would have been:

Hγ =
∑

q=E,p,A

∂tq
∂Lγ
∂(∂tq)

− Lγ = 0

Which doesn’t seem to tell us anything at first. But when we include the kinetic terms L2

and assume that there exists a potential term and use the full action:

S ≡ S2 + Sγ + SC −
∫
dtV (x,A, p; t)

we find that the energy gets non-zero contributions:

H = HK + V

Where HK is the kinetic energy found in the canonical way from the Lagrangian terms

with time derivatives through first defining the conjugate momenta to each of the variables

E,A, p as:

πE ≡
∂L

∂∂tE
, πA ≡

∂L

∂∂tA
, πp ≡

∂L

∂∂tp
,
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and this Hamiltonian is conserved if V is not explicitly time dependent.

A.3 Generalized Langevin and logistic equations

A.3.1 Friction terms and variation

It is well known that for Langevin equations of the form ẍ + γẋ = F (x) it is not possible

to write an action whose variational minima give the Langevin equation. The point is that

the Euler-Lagrange procedure keeps the number of time derivatives constant. This means

that to get γ∂tx term we needed to have a term like γx∂tx. This term however yields:

Lγ ≡ γx∂tx

∂t
∂L

∂(∂tx)
− ∂L

∂x
= γ∂tx− γ∂tx = 0 (A.11)

Basically there is no way to have first derivative terms like ∂tx in the equation of motion

if there is only one variable. However this problem goes away if there are more than

one variables and a certain group of Langevin equations with multiple variables can be

obtained by the variational procedure from an action functional. For example consider the

Lagrangian:

L(x, y) = γx∂ty + V (x, y)

∂t
∂L

∂(∂ty)
− ∂L

∂y
= γ∂tx− ∂yV (x, y) = 0

∂t
∂L

∂(∂tx)
− ∂L

∂x
= −γ∂ty − ∂xV (x, y) = 0 (A.12)

So it is in fact possible to derive a Langevin-type equation for some systems of multiple

variables using the Euler-Lagrange procedure. Notice, however, that γ does not mean

“dissipation” or friction for the whole system here. The total energy is conserved in this

system1. To get energy loss the system must be open and one way of writing a Lagrangian

1since there is no explicit time dependence and the Noether procedure shows that the Hamiltonian is a
constant of motion. Nevertheless one of the variables could be losing energy and the other one gaining such
that total energy remains fixed.
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for such cases is through explicit time dependent terms. for instance:

Lλ ≡ e−λt
{

(∂tx)2 + V (x)
}

∂t
∂Lλ
∂(∂tx)

− ∂Lλ
∂x

= e−λt
{
∂2
t x− λ∂tx+ ∂xV (x)

}
= 0

(A.13)

Which is a familiar 1D Langevin equation. For multiple variables, we may have a combi-

nation of Lγ (which is not “dissipative” for the whole system, just taking energy from one

mode to the other) and Lλ which represents an open system. For instance:

L(x, y) = e−λt
{
∂ty∂tx+ γx∂ty + V (x, y)

}
δL

δy
≡ ∂t

∂L

∂(∂ty)
− ∂L

∂y

δL

δy
= e−λt

{
∂2
t x− (λ+ γ)∂tx− λγx− ∂yV

}
= 0

δL

δx
= e−λt

{
∂2
t y − (λ− γ)∂ty − ∂xV

}
= 0 (A.14)

This is however a very special case and most of the times it is not possible to write a

simple time-dependent Lagrangian for a dissipative system2.

A.4 Dynamics

We will start by motivating our system of equations by comparing it to perturbing a dy-

namical system that has damping (friction terms) around its equilibrium. Here we will use

our assumptions about the GIIPS problem as guidelines.

First let’s denote all three variable types collectively as ΦI ≡ (Ei, Aiµ, pµ). If the number

of banks (i indices) is Nb and number of GIIPS assets (µ) is Na, the number of φI ’s is:

N ≡ Nb +NbNa +Na = (Na + 1)(Nb + 1)− 1

2Even when it is possible to do so, it generally does not add much toward understanding the problem
more than the Langevin equations do. The only thing evident here is that the volume of a distribution on
the classical phase space of such a system shrinks with time.
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and in order to fully define the dynamics we will need N equations (one for each degree of

freedom).

A.4.1 General non-linear Langevin-type action

Generalizing the argument above, for multiple variables ΦI we may start with a term in the

action which looks like:

Lγ ≡ ΦIγ
IJ∂tΦJ

The equations of motion would then be:

∂t
∂Lγ

∂(∂tΦI)
− ∂Lγ
∂ΦI

= ∂t(ΦJγ
JI)− γIJ∂tΦJ

= γ[JI]∂tΦJ + ΦJ∂tγ
JI (A.15)

Where γ[JI] = γJI − γIJ . In our bipartite network, assuming that there are no predefined

time dependent coefficients, the term ∂tγ
IJ is nonzero only if it contains the variables

E,A, p. The lowest order possible terms we can then have in the Lagrangian are then3:

ETA∂tp, (∂tE
T )Ap, ET (∂tA)p

But since adding the total derivative term λ∂t(E
TAp) doesn’t change the equations of

motion we can always absorb the last term into the other two terms. Thus the most general

action to lowest order for this system can be written as:

Lγ = γ1∂tE
TAp+ γ2E

TA∂tp

Where one of the two constants γ1, γ2, if nonzero, can be absorbed by rescaling one of the

variables E,A, p. Thus, assuming γ2 6= 0, and defining γ ≡ −γ1/γ2 the Lagrangian is just:

Lγ = γ∂tE
TAp− ETA∂tp (A.16)

3Notice that we could not have terms like ET ∂tE,Tr[AT ∂tA], pT ∂tp because they are also total derivatives
and don’t appear in the equations of motion. Such terms belong to the symmetric part of γIJ .
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A.5 Initial conditions for simulations

We show later below that the choice of τA,B does not affect the stability of the system and

that the stability only depends on α, β and the shock. The fi(t), which are changes in

the equity from what banks own outside of this network, can be thought of as external

noise or driving force. We use fi(t) to shock the banks and make them go bankrupt.

We shock a single bank, say bank j, at a time by reducing its equity 10% by putting

fi(t) = −0.1Ejδijδ(t).
4 5 Starting with ∂tpµ(−ε) = ∂tAiµ(−ε) = 0, plugging ∂tEi into

(2.15) and integrating over a small interval t ∈ [−ε,+ε] yields

∂tAiµ(+ε) ≈ βAiµ(0) ln(1 + fi(0)/Ei(0)) (A.17)

This and Ei(ε) = 0.9Ei(0) are the initial conditions we start with. In addition, we require

E,A, p ≥ 0 during the simulations.

A.6 Initial conditions after the shock

The fi(t), which are changes in the equity from what banks own outside of this network,

can be thought of as external noise or driving force. We use fi(t) to shock the banks and

make them go bankrupt. We shock a single bank, say bank j, at a time by reducing its

equity 10% by putting fi(t) = −0.1Ejδijδ(t) (δij is the Kronecker delta, or the identity

matrix elements, and δ(t) is the Dirac distribution or impulse function). Note that the

magnitude of the shock only rescales time, according to eq. (2.17) because fi → λfi is the

same as ∂t → λ−1∂t and thus τA,B → λτA,B. In short, as we show below, starting with

∂tpµ(−ε) = ∂tAiµ(−ε) = 0, plugging ∂tEi into (2.15) and integrating over a small interval

t ∈ [−ε,+ε] yields:

∂tAiµ(+ε) ≈ βAiµ(0) ln(1 + fi(0)/Ei(0)) (A.18)

4Note that the magnitude of the shock only rescales time, according to Eq. (2.17) because fi → λfi is
the same as ∂t → λ−1∂t and thus τA,B → λτA,B

5δij is the Kronecker delta, or the identity matrix elements, and δ(t) is the Dirac distribution or impulse
function.
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This and Ei(ε) = 0.9Ei(0) are the initial conditions we start with. In addition, we require

E,A, p ≥ 0 during the simulations.

With more details, for the numerical solutions we shock one bank, say i, by imposing a

10% loss on their equity

δEj(t = 0) = fj(0) = f̃ δijEj(0) = −0.1δijEi(0)

We integrate equations (2.15)-(2.17) from shortly before the shock t = −ε to shortly after

it, t = +ε and find that, if values of E,A, p are finite, then A, p will remain continuous6.

Then, integrating (2.15) with this assumption yields

6In (2.17), A cannot jump to infinity, because that would make (2.16) wrong. Also, if ∂tp absorbs the
δ(t), integrating (2.16) would require A ∝ δ(t) again. Thus the only solution is to have E absorb the fδ(t),
which means ∂tA, ∂tp <∞ and thus A, p both remain continuous.
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∫ ε

−ε
dt
(
τB∂

2
tAiµ + ∂tAiµ

)
= β

∫ ε

−ε
dtAiµ∂t lnEi

τB∂tAiµ(t) +Aiµ(t)
∣∣∣ε
−ε

= βAiµ(0) ln(1 + f̃) +O(ε)

∂tAiµ(+ε)− ∂tAiµ(−ε) ≈ βAiµ(0) ln(1 + f̃) (A.19)

Which means that if we had started with ∂tAiµ(0) = 0 the initial conditions can be changed

to:

Ei(0)→ f̃Ei(0) ∂tAiµ(0)→ βAiµ(0)
ln(1 + fi)

τB
(A.20)

A.7 Estimating γ = αβ

From examining the behavior of the model for different values of α and β we found that

the phases are roughly a function of the product γ = αβ and for α, β > 0, the curve γ = 1

seems to be approximately where the phase transition happens. The γ < 1 phase is the one

where the system reaches a new equilibrium without any of the prices collapsing to zero.

We now wish to know in which of the two phases the real GIIPS system is. We will try

to estimate the value of γ = αβ using a simplified version of the equations.

First we start by noting that the distribution of the holdings for each country is roughly

log-normal, or close to a power law, which means that a handful of the institutions hold

most of the debt. If we denote the top holders holding by A∗µ for each country we may

approximate:

Aµ ≈ c×A∗µ, c ∼ O(1)

Where the constant c to correct for the contribution of other banks. For each country we

will only look at this dominant bank. The first approximation is to assume:

δpµ(t+ τA) ≈ δpµ(t), δAiµ(t+ τB) ≈ δAiµ(t)

We guess that the response time for both banks and the market are at most of the order
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of a few days. For this approximation to be valid, we examine changes over the course of

several months.

This allows us to write:

δAµ ≈ β
∑
i

δEi
Ei

Aiµ ≈ β
δE∗(µ)

E∗(µ)

A∗µ

Where E∗(µ) denotes the equity of the dominant bank for asset µ. With this approximation,

we can relate the first two equations in the following way:

δpµ
pµ
≈ α

δA∗µ
A∗µ
≈ αβ

δE∗(µ)

E∗(µ)

Thus, we may be able to approximate γ with:

γ ≈ δpµ/pµ
δE∗(µ)/E

∗
(µ)

. (A.21)

The equity of the banks is mostly comprised of the shareholders’ equity, or common

stocks. These banks usually have multiple stock tickers, but there is generally one or two

main stock tickers where most of the equity is. We can use the movements in these main

stocks to estimate δE∗(µ)/E
∗
(µ).

For this approximation we use the following formula:

δE∗(µ)

E∗(µ)

=
Ef − Ei

(Ef + Ei)/2

where Ei is the stock price at the beginning of the period and Ef is at the end of it.

A.8 Continuous Time Dynamics

Equations (2.14)–(2.12) were phenomenological and based on intuition. Here we review

how transition to continuous time and derive the differential equations (2.15)–(2.17) for

the model. To motivate, note that or equations are in fact not first order finite difference

equations, but rather higher order. To see this note the following. We used δf(t) =



121

f(t) − f(t − 1). If the time steps would be ε instead of 1 we would have used a finite

difference derivative:

δεf(t) =
f(t)− f(t− ε)

ε
(A.22)

In our equations (2.14)–(2.12) the time lag is due to some natural time lag in the response

of banks and market to changes that happen. Therefore, in an expression like δAiµ(t + 1)

the t + 1 really means t + τ where τ is some natural lag in the response of the banks to a

change. The value of τ obviously depends on the unit we choose for time and data from

real markets seem to suggest that, for example, the lag in response in stock markets is

milliseconds. It will surely be different for a bond market or other markets where decisions

would be done in meetings etc. We will assume that τ is small in the units we work with

and only keep the leading orders in τ . Thus we will interpret such terms as:

δεf(t+ τ) ≈ τδ2
εf(t) + δεf(t)

Where δ2
εf(t) is a finite difference second order derivative.

A.8.1 Derivation in continuous time limit for the phenomenological model

We start by modifying equation (2.13). We first introduce an explicit time lag τ by changing

t+ 1→ t+ τ . We then promote (2.13) to the more constrained equation below:

δpµ(t+ 1) = α
δAiµ(t)

Aiµ(t)
pµ(t) (A.23)

where each bank i now satisfies this equation, instead of the sum of all banks. One equation

which is derived from (A.23) but which contains less information is found by multiplying

both sides by Aiµ(t) and summing over µ

Aiµ(t)δpµ(t+ 1) = α
∑
µ

δAiµ(t)pµ(t) (A.24)
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From this point on we will use a matrix notation where E and p will be columnar vectors

with entries Ei and pµ respectively, and A will be an Nb × Na matrix with entries Aiµ.

In this notation, for example ETAp is a scalar (ET denotes E transpose, i.e. a horizontal

vector) because:

ETAp =
∑
i,µ

EiAiµpµ

So (A.24) can be written as:

A(t)δp(t+ τ) = αδA(t)p(t) (A.25)

Doing similar modifications to (2.14) and (2.12) yields:

ET (t)δA(t+ τ) = βδET (t)A(t) (A.26)

δE(t) = A(t)δp(t) (A.27)

Note that here we have chosen the same time lag in both (A.25), which is about the market’s

response to trading, and (A.26) which is about how banks react. In principle these two

timescales are different and we will see below how that may naturally arise. If we only keep

the leading order of τ , the equations above become:

A
(
τ∂2

t p+ ∂tp
)

= α∂tAp (A.28)

ET
(
τ∂2

tA+ ∂tA
)

= β∂tE
TA (A.29)

∂tE = A∂tp (A.30)

Where now everything is at time t and there are no time terms with explicit time lags. We

will see how generic this equations are in the next section.

A.9 Time-dependent Mass

When we fit a damped oscillator curve to the auto-correlation of the returns, ∂tP , the fit is

generally good, but there is a significant variation in the frequency of the oscillator, while
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the damping life-time τ is more or less constant at about τ ≈ 0.4 days. We wish to extract

the mass m from the Green’s function. To extract the mass, according to the fitting to the

damped oscillator, we have:

G(∆t) ∼ exp[−∆t/(2τ)] cos(ω∆t)

ω =
1

∆t
cos−1 [exp[∆t/(2τ)]G(∆t)]

m =
(2τω)2 + 1

4τ
(A.31)

If we look at the drop after one day (∆t = 1,) it should have the value:

ω = cos−1 [exp[1/(2× 0.4)]G(1)]

A.10 Green’s Function

Given a linear equation of the form:

τ∂2
t P + ∂tP ≈ F

We can solve for ∂tP using the Green’s function:

∂tP (t) =

∫
dyG(t− y)F (y)

The Green’s function can be found from inverting the operator in the equation.

G(t) =

∫
dk

2π

eikt

iτk + 1
=

1

τ
exp[−t/τ ] ≈

∫
dy 〈∂tP (t− y)∂tP (y)〉 ≈ exp[−|t|/τ ] (A.32)

If we want to check if only the past values of F (t) affect ∂tP (t), we need to use the “retarded

Green’s function” GR. This means that if t− y < 0, GR(t− y) = 0. Therefore, we need to

include a step function into G(t):

GR(t) = θ(t)G(t)
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Using this, the lagged inner product of the prices becomes:

∫
dt∂tP (t)∂tP (t+ ∆t)

=

∫
dtdydy′GR(t− y)F (y)GR(t+ ∆t− y′)F (y′)

=
1

τ2

∫
dtdydy′F (y)F (y′) exp[−(2t+ ∆t− y′ − y)/τ ]θ(t− y)θ(t+ ∆t− y′) (A.33)

This integral can be broken down to two pieces: one where y > y′ − ∆t and one for

y < y′ −∆t. redefining t− y → y we get:

∫
dyF (y)GR(t− y) =

∫ ∞
0

dyG(y)F (t− y)

and similarly for t+ ∆t− y′ → y′. Thus we have:

∫
dt∂tP (t)∂tP (t+ ∆t)

=
1

τ2

∫
dt

∫ ∞
0

dydy′F (t− y)F (t+ ∆t− y′)e−(y+y′)/τ

=
1

τ2

∫
dt

∫ ∞
0

dydy′ exp[−(y + y′)/τ ]F (t)F (t+ ∆t+ y − y′)

=
1

τ2

∫
dt

∫ ∞
−∞

dx

∫ ∞
0

dy exp[−(2y + ∆t− x)/τ ]F (t)F (t+ x)

=
e−∆t/τ

2τ

∫ ∞
−∞

dxex/τ
∫ ∞
−∞

dtF (t)F (t+ x)

=C
e−∆t/τ

2τ
(A.34)

Where we defined x = ∆t + y − y′ which gives y + y′ = y′ − y + 2y = 2y − x + ∆t. The

constant C is the result of the remaining integrations, but as long as it is finite and nonzero

the above is suggesting that the convolution of price returns with itself should fall as an

exponential. If we also normalize the convolution by dividing out
∫
P 2(t)dt the constants

C/2τ go away and only the exponential part remains.
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A.11 More General Field-theory Networks

A.11.1 Solution for Harmonic Potential with Strong Friction

In the case of strong friction where m/γ → 0 we get essentially the Smoluchowski equation

∂tρ−D∇2ρ− 1

γ
∇ · (ρ∇V ) = 0.

For V = kx2/2 we get and inside a harmonic potential V = kx2/2 we have

∂tρ−D∇2ρ− k

γ
∇ · (~rρ) = 0 (A.35)

Since this potential has spherical symmetry we can express everything in terms of r and

the d− 1 angular coordinates θi. The line element has the form

dx2 = dxidxjgij = dr2 + r2dΩ2
d−1

We have

∇ · (∇V ρ) =
1√
|g|
∂i

(√
|g|gijρ∂jV

)
= ρr1−d∂r

(
rd−1∂rV

)
+ ∂rV ∂rρ (A.36)

and there are no angular parts because ∇V = ∂rV .

A.11.2 Mapping to Curved Space

We can absorb D and γ into x, t by putting Dt→ t and
√
Dγx→ x

∂tρ−∇2ρ−∇ · (ρ∇V ) = 0,

which using the usual trick

ρ = exp[V ]ρ̂
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becomes

∂tρ−∇ ·
(
e−V∇

(
eV ρ

))
= 0. (A.37)

Writing this in terms of the spatial metric and the rescaled density ρ̂ we get

∂tρ̂+
1

e−V
√
|g|
∂i

(
e−V

√
|g|gij∂iρ̂

)
= 0. (A.38)

In the general case, this may be a complicated equation. But in cases with spherical

symmetry we have V = V (r) and

∂tρ̂+ eV r1−d∂r

(
e−V rd−1∂rρ̂

)
+ r2gθθ

′
∂θ∂θ′ ρ̂ = 0 (A.39)

where gθθ
′

is the angular part of the metric. We can try to redefine r and absorb V into a

“warping factor” for the angular part. For example, if we want a metric of the form

dx2 = dz2 + e2zdΩ2
d−1 (A.40)

we have to have

e−V rd−1∂r =
√
g∂z = e(d−1)z∂z

!!!! See what happens with the sign of V → −V flipped now!! Thus for d > 1 and positive

potentials V > 0 with ∂rV ≥ 0 we get

exp[(1− d)z(r)]

d− 1
=

∫ ∞
r

e−V (y)y1−ddy. (A.41)

For the harmonic potential V = kx2/2 this yields

exp[(1− d)z(r)]

d− 1
=

∫ ∞
r

e−ky
2/2y1−ddy

=

(
k

2

)d/2−1 ∫ ∞
kr2/2

e−xx−d/2dx

=

(
k

2

)d/2−1

Γ

(
1− d

2
,
kr2

2

)
. (A.42)
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Here Γ(s, x) denotes the incomplete gamma function which at x→ 0 reduces to the regular

gamma function. Thus the transformation that puts the metric in the form of (A.40) is

z(r) =
1

1− d
ln

[(
k

2

)d/2−1

Γ

(
1− d

2
,
kr2

2

)]
(A.43)

the line element in (A.40) is the metric of the d dimensional Euclidean de Sitter space

EdSd. This shows that, save for the ∂tρ̂ term, the diffusion equation in strong friction

inside a harmonic potential is the equation of motion of field ρ̂ in a Euclidean de Sitter

space.

A.12 Analytical results

With this simple linear equation many network characteristics can be computed analytically.

In what follows we will first prove an important relation between degrees and the RP

distribution Γ(x, t). Then we will outline the procedure which allows one to 1) Derive the

degree distribution when Γ(x, t) is given, and more importantly 2) Find Γ(x, t) such that a

desired degree distribution such as a power-law is obtained.

A.12.0.1 Degree-Degree Correlation

The sum of the degrees of the first neighbors is given by:

∑
j

k1j
i =

∑
l,j

AijAjl

The average first neighbor degree is this divided by ki.

A.12.1 Adjacency Matrix and Partition Function

The time-ordered 2-point function
〈
φ†i (x, 0)φi(y, t)

〉
is the usual propagator, or Green’s

function for φi which yields the probability of a particle moving from point x to point y

in the time interval 0 to t. But now consider 〈φi(x, tx)φj(y, ty)〉. For regular diffusion in

absence of interactions this function is zero, even for i = j, just as it is in the case of
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Schrödinger’s equation. Intuitively, it measures the total joint probability of agents i, j

interacting somewhere in space any time after max{tx, ty}. Since in cases such as regular

diffusion any i, j will eventually meet after long enough time, it is useful to evaluate such

two point functions up to a time T . We will denote this by 〈φiφj〉T . Based on this, it is

natural to try to form a network based on these two point correlation functions. In such

networks, the ensemble average of the adjacency matrix entries Aij would be simply (for

brevity, we will use Aij for the ensemble average of the adjacency matrix entries)

Aij(T ) = A(xi, ti;xj , tj ;T ) ≡ 〈φiφj〉T (A.44)

The weak interaction V(~φ, ~φ†) –meaning that agents rarely interact– is what allows φi, φj to

interact. Since φi are probability densities and since interaction between i, j only happens

if they are both present in a neighborhood, we expect V to have at least a term proportional

to the product7 φiφj .

As an example, if the agents are subject to strong friction with negligible mass and are

diffusing under the action of a random Gaussian noise ση(t) with variance σ2 and inside a

potential U(x) the Langevin equation for the positions is γẋ(t) = ση(t) −∇U(x) where γ

is the friction constant. The Fokker-Planck equation arising from this is

∂tφ̂i −D∇2φ̂i −
1

γ
∇ ·
(
φ̂i∇U

)
= 0 (A.45)

with D = σ2/γ. The potential U can be absorbed into the spatial metric of the space ĝµν

to yield a new metric gµν such that, as shown in the appendix A.11.2,

φi ≡ e
U
γD φ̂i,

√
g ≡ e−

U
γD

√
ĝ (A.46)

The example above does not include any interaction among different agents i 6= j. In order

for a network to form we must have some type of interaction between agents. To discuss

7Weakness of interaction then also means that to first order these φi, φj are independent and thus the
interaction only depends on the product of the probabilities.
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interactions, it is easier to start with a Lagrangian with the Fokker-Planck equation being

its classical equation of motion.For example, the equation above can be derived from the

non-unitary Euclidean action8 of complex fields φ and φ†

I =V

∫
dt
√
gdnx

[
1

2

(
~φ†∂t~φ− ~φ∂t~φ†

)
−D∂µ~φ†∂µ~φ

+ V(~φ, ~φ†)

]
+

∫
dt
√
gdnx

(
~φ · ~J† + ~φ† · ~J

)
=
V

2

∫
dt
√
gdnx

[
~φ†Lx,t

~φ+ ~φ · ~J† + V(~φ, ~φ†)

]
+ h.c. (A.47)

where µ signifies the spatial coordinates, n the number of spatial dimensions, g the

determinant of the spatial metric gµν , and h.c. is the Hermitian conjugate. The factor V ,

the volume of the space, makes the action dimensionless. The source currents Ji, J
†
i will

be used to impose initial conditions for the distribution of the agents. Lx,t is the operator

producing the dynamics in absence of V and may in principle be more involved than the

expression in the action above. We will not restrict ourselves to the one given above and

work with a general Lx,t. The φi will satisfy the familiar Fokker-Planck equations, while

φ†i satisfy the time-reversed equations9. The partition function is given by the Euclidean

path integral

Z[J, J†] =

∫
[d~φ][d~φ†] exp [−I] (A.48)

Note that, just like any O(N) field theory, the sum over φi inside the action means that

the non-interacting part of the action is N times the action of a single φ. So like all O(N)

models 1/N acts as ~ and the semi-classical limit is where N � 1. Thus all of the machinery

of field theory and be used for calculating n-point correlation functions. In particular we

can calculate transition probabilities of various φi or φ†i into each other.

8This action is for the strong friction limit. A generalized action may also be found for other regimes,
though the form maybe more involved.

9This is evident from the fact that t→ −t, ~φ† ↔ ~φ is a symmetry of the action.
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A.13 Analytical Results

The correlation function used as Aij is special. As noted above, it vanishes when V(~φ, ~φ†) =

0. From perturbative field theory and since the regular propagators are time ordered
〈
φiφ
†
j

〉
we see that to have nonzero probability of two agents colliding somewhere in space we will

need an interaction proportional to φ†iφ
†
j . Consider the case where (φi = φi(x, t))

V(~φ, ~φ†) =
Γ(x, t)

N

∑
i 6=j

(
φiφj + φ†iφ

†
j

)
. (A.49)

For this interaction we can find an exact expression for Aij

Aij(T ) = 〈φiφj〉T =
δ2 lnZ

δJ†i δJ
†
j

∣∣∣∣∣
J†→0

=

(
Lx,t +

Γ(x, t)

N

)−1

(xi, ti;xj , tj ;T )

=

∫
dy

∫ T

dtL −1(xi, ti; y, t)
Γ(y, t)

N

×L −1(xj , tj ; y, t) +O

(
1

N2

)
. (A.50)

L −1(x, tx; y, ty) is the propagator, or the Green’s function of the operator Lx,t

Lx,tL
−1(x, tx; y, ty) = δn(y − x)δ(ty − tx).

The full expansion of Aij can be found in the supporting information.

The interaction (A.49) is the simplest interaction leading to nonzero Aij . It is also the

only possible such interaction at tree level. If we include loops, and fluctuations around

a ground state, e.g. Higgs mechanism, we can have contributions from other interaction

terms. We will use a cubic interaction with condensation in an example below.

The case where Γ(x, t) = 1 in (A.49) is what is known in the literature as vicious

random walks [58]. They have the property that any tweo agents i, j annihilate each other

upon meeting. The case of such random walks inside harmonic potentials has also been

studied [59].
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A.13.1 Degree Function

~J and ~J† are the source current for the nodes and can spawn the nodes from desired locations

and at desired times.

Ji(x, t) = δ(x− xi)δ(t− ti)

With slight abuse of notation, let J(x, t) ≡
∑

i Ji be the density distribution of the points

xi over space and time. The degree ki is then a function of position and time

ki(T ) = k(xi, ti;T ) =
∑
j

Aij(T )

=

∫ √
ĝdnxdtA(xi, ti, x, t)J(x, t). (A.51)

Note that this is a normal integral over space and time and therefore involves the normal

spatial metric ĝµν and not the modified gµν . If we assume that the xi are distributed

according to the equilibrium solution of (A.45), which is J(x, t) = exp[−U/γD], we retrieve

the determinant of the rescaled metric gµν and

k(xi, ti;T ) =

∫
√
gdnxdtA(xi, ti, x, t). (A.52)

Using
∫ √

gdnxjL −1(x, t;xj , tj) = 1 for diffusion we obtain

k(xi, ti, T ) =
1

N

∫
√
gdnx

∫ T

−∞
dtL −1(xi, ti;x, t)Γ(x, t)

+O

(
1

N2

)
(A.53)

where k(xi, ti, T ) is the degree, measured at time T, of an agent starting at position xi at

time ti. Applying L †
xi,t0

on both sides of (A.53) thus yields the first important result

L †
x,tk(x, t, T ) =λθ(T − t)Γ(x, t) (A.54)

where θ(x) is the Heaviside step function. The significance of Eq. (A.54) is in that it relates

the node degrees to the RP distribution. This allows us for instance to solve for the RP
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distribution required for an arbitrary degree distribution as we now proceed to do.

Let us now focus on rotationally symmetric RP distributions Γ(r, t).
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