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ROBUSTNESS AND STRUCTURE OF COMPLEX NETWORKS

(Order No. )

SHUAI SHAO

Boston University, Graduate School of Arts and Sciences, 2015

Major Professor: H. Eugene Stanley, Professor of Physics

ABSTRACT

This dissertation covers the two major parts of my PhD research on statistical physics and

complex networks: i) modeling a new type of attack – localized attack, and investigating

robustness of complex networks under this type of attack; ii) discovering the clustering

structure in complex networks and its influence on the robustness of coupled networks.

Complex networks appear in every aspect of our daily life and are widely studied in

Physics, Mathematics, Biology, and Computer Science. One important property of complex

networks is their robustness under attacks, which depends crucially on the nature of attacks

and the structure of the networks themselves. Previous studies have focused on two types

of attack: random attack and targeted attack, which, however, are insufficient to describe

many real-world damages. Here we propose a new type of attack – localized attack, and

study the robustness of complex networks under this type of attack, both analytically and

via simulation. On the other hand, we also study the clustering structure in the network,

and its influence on the robustness of a complex network system.

In the first part, we propose a theoretical framework to study the robustness of com-

plex networks under localized attack based on percolation theory and generating function

method. We investigate the percolation properties, including the critical threshold of the

phase transition pc and the size of the giant component P∞. We compare localized attack

with random attack and find that while random regular (RR) networks are more robust

against localized attack, Erdős-Rényi (ER) networks are equally robust under both types of
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attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree

exponent λ. The simulation results show perfect agreement with theoretical predictions.

We also test our model on two real-world networks: a peer-to-peer computer network and

an airline network, and find that the real-world networks are much more vulnerable to

localized attack compared with random attack.

In the second part, we extend the tree-like generating function method to incorporating

clustering structure in complex networks. We study the robustness of a complex network

system, especially a network of networks (NON) with clustering structure in each network.

We find that the system becomes less robust as we increase the clustering coefficient of each

network. For a partially dependent network system, we also find that the influence of the

clustering coefficient on network robustness decreases as we decrease the coupling strength,

and the critical coupling strength qc, at which the first-order phase transition changes to

second-order, increases as we increase the clustering coefficient.
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Chapter 1

Introduction

1.1 Complex Networks and Graph Theory

Networks are present in almost every aspect of our life [1–21]. A network is a set of nodes

connected by a set of links. Nodes represent the fundamental units of the system in question,

and links establish which of the nodes are connected to others. Systems taking the form

of networks include the Internet, social networks, financial networks, biological networks,

infrastructure networks, and many others. For examples, airports and flights form an

airline network, in which two nodes representing two airports are connected when an airline

exists between these two airports. Similarly, buses and stops form a ground transportation

network. The network of friendship between individuals, working relations, or network of

business relations between firms are examples of social and economic networks.

Graph theory is used for describing mathematical concepts in networks [21]. The very

first famous example of graph theory and network topology is the problem of bridges of

Königsberg, where people had been wondering for years whether all seven bridges connecting

the different parts of the town could be traveled, without passing any of them twice. Euler

realized the only important factor of the problem is the topology of the network itself, and

therefore solved the problem by concluding that to fulfill the requirement every node in the

graph should be connected by an even number of bridges. In the 1960s, two mathematicians,

Paul Erdös and Alfred Rényi, introduced the first probability model of networks– random

1
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graph model. In this model, every pair of nodes in the network are randomly connected

by a link with the same probability. The study of random graphs has led to ideas very

similar to those of statistical physics. Concepts like percolation, scaling, order parameters,

renormalization, self-similarity, phase transitions, and critical exponents from statistical

physics are all present in the field of random graphs, and are used in the study of complex

networks.

The random graph model, or Erdös – Rényi network (ER), has been widely studied for

decades. However, with the development of science and technology and the availability of

more large-scale data, it is revealed that for many real-world systems, ER model fails to

describe their properties. At the end of the twentieth century, the work of Barabási and

Albert on the World-Wide-Web (WWW) network made clear that the link connection of

these and many other networks is not completely random, and it cannot be described by

ER model. The study of these new types of networks leads to novel physical laws, which

arise owing to the new topology. By using graph theory, we can describe different types of

networks based on different topologies.

1.1.1 Erdös – Rényi (ER) networks

In an ER network, each pair of nodes in the network are randomly connected with the same

probability p. The number of nodes in the network is usually expressed with N . Degree of

a node, which is expressed in k, means number of links of a certain node. Average degree

〈k〉 represents the average number of links connected to nodes in the network. The degree

distribution is the probability distribution of degrees for each node in the whole network,

which is expressed with P (k).

For an ER network, if each pair of nodes are connected with the same probability p, it

turns out that the degree distribution follows a Poisson distribution (P (k) = e−〈k〉〈k〉k/k!).

The characteristic of an ER network is that most of the nodes have about the same number

of degrees around average degree 〈k〉.
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1.1.2 Scale-free (SF) networks

As mentioned above, it is found that the ER network model fails to describe many real-world

systems. For examples, ER model cannot help to explain why computer viruses are able to

survive in the Internet for a very long time. In 1999, Barabási investigated several real-world

networks and found that their degree distributions follow power-law distribution, and he

proposed the scale-free (SF) network model to explain networks with power-law distribution

and thus do not have a typical scale of degree.

For a SF network, the degree distribution follows a power law distribution (P (k) ∼ k−λ).

λ, which is called the power law exponent, is a constant for a network. The property of a

SF network is that most of the nodes have very low degrees, while a few nodes have very

high degrees. Those nodes with high degrees are called hubs. It was found that for most

real-world networks, like the Internet, friendship social networks, world-wide-web, scientific

citation networks, gene-regulation network, airline networks, protein-protein interaction

networks, and so on, the power law exponent λ lies between 2 and 3, which suggests some

universal mechanisms behind the formation of these networks.

1.2 Generating Function and Percolation Model

1.2.1 Generating function method

A component in the network is a group of nodes connected internally, but disconnected

from other components. For many degree distributions the network is composed of many

separate components. In each such component there exists a path between any two nodes

in the component, but no path exists between nodes in different components. The size of a

component is the number of nodes in the component. When there is a component with size

proportional to the size of the entire network, it is called the giant component (sometimes

also called percolating cluster or giant cluster).

The generating function method is a general and useful method for determining the

existence and the size of the giant component in the network. This powerful approach was
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first developed by Newman, Watts, and Strogatz to study the structure and properties of

complex networks [3]. They used the generating function method to study the size of the

giant component as well as the component size distribution.

For a complex network with degree distribution P (k), the generating function of the

degree distribution is

G0(x) =
∞∑
k=0

P (k)xk. (1.1)

The probability of reaching a node with degree k by following a specific link is kP (k)/〈k〉,

and the corresponding generating function of those probabilities is :

G1(x) =

∑
kP (k)xk−1∑
kP (k)

=
d

dx
G0(x)/〈k〉. (1.2)

H1(x), the generating function for the probability of reaching a branch of a given size by

following a link, satisfies a self-consistent equation:

H1(x) = xG1(H1(x)). (1.3)

Since G0(x) is the generating function for the degree of a node, the generating function for

the probability that a node belongs to an n-node component is:

H0(x) = xG0(H1(x)). (1.4)

The size of the giant component is P∞ = 1−H0(1).

1.2.2 Percolation model

It is well known that in grids and other organized lattices, in any dimension larger than

one, a percolation transition occurs. The percolation model assumes that sites(nodes) or

bonds(links) in the lattice are occupied with some probability p. The system is considered

percolating if a path exists from one side of the lattice to the other. The percolation phase

transition occurs at some critical density pc that depends on the type and dimensionality

of the lattice.

For complex networks, the ideas of percolation theory can still be applied to obtain

useful results. The only difference is that instead of using a spanning cluster that spans
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over the whole lattice, we now use a giant component, whose size is proportional to the size

of the entire network, to characterize the condition of percolation. The condition of the

existence of a giant component above the percolation threshold and its absence below the

threshold also applies to lattices, and therefore can be considered as more general than the

spanning property.

Percolation model can be used to study the robustness of the network. We assume

that only nodes belong to the giant component are functional in the network. When some

nodes in the network are attacked and removed for some reason, other nodes that are

connected to the network through those nodes will also be disconnected. If the attack is

severe enough, many nodes will be disconnected and the entire network might breakdown

and stop functioning. As one keeping attacking more and more nodes, phase transition will

occur at some critical threshold below which a giant component exists in the network (thus

the network is functional), and above which the network will collapse. The robustness of

the network under attacks depends crucially on the nature of the attack and the structure

of the network.

For example, the attack could be random, which means each node in the network is

attacked with the same probability 1 − p (thus the probability for each node to survive

the attack is p). If we begin with a distribution of degrees P0(k0), the new distribution of

degrees in the network after the attack will be:

P (k) =

∞∑
k0=k

P0(k0)Ckk0p
k(1− p)k0−k. (1.5)

Calculating the first two moments for this distribution, given 〈k0〉 and 〈k2
0〉 for the original

distribution before attack, we have:

〈k〉 =
∞∑
k=0

P (k)k = p〈k0〉. (1.6)

Similarly, we have:

〈k2〉 =
∞∑
k=0

P (k)k2 = p2〈k2
0〉+ p(1− p)〈k0〉. (1.7)
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And the criterion for criticality is

〈k2〉
〈k〉

=
p2〈k2

0〉+ p(1− p)〈k0〉
p〈k0〉

= 2. (1.8)

Reorganizing the above equation gives us the critical threshold for percolation:

pc =
1

〈k2
0〉/〈k0〉 − 1

. (1.9)

1.3 A Network of Networks

Previous work in network research has focused primarily on analyzing single networks that

do not interact with other networks, despite the fact that this is not the case for many real-

world scenarios. In 2010, an analytical framework for studying the percolation properties of

interacting networks has been introduced [10]. The percolation properties of a network of

networks differ greatly from those of single isolated networks. In particular, although net-

works with broad degree distributions, e.g., scale-free networks, are robust when analyzed

as single networks, they become vulnerable in a network of networks (NON) [14, 15]. More-

over, because the constituent networks of an NON are connected by node dependencies, an

NON is subject to cascading failure. When there is strong interdependent coupling between

networks, the percolation transition is discontinuous (is a first-order transition), unlike the

well-known continuous second-order transition in single isolated networks.

1.3.1 The model

Because previous models deal almost exclusively with individual networks treated as isolated

systems, many challenges remain. In many real-world systems an individual network is

one component within a much larger complex multi-level network (is part of a network of

networks). Node failure in one network will cause the failure of dependent nodes in other

networks, and vice-versa. This recursive process can lead to a cascade of failures throughout

the network of the networks system. The study of individual particles has enables physicists

to understand the properties of a gas, but in order to describe a liquid or a solid the

interactions between the particles also need to be understood. This is similar in network
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theory. To adequately model most real-world systems, understanding the interdependence of

networks and its effect on the structural and functional behaviors of the system is significant.

In order to model interdependent networks, we consider two networks, A and B [15] in

which the functionality of a node in network A is dependent upon the functionality of one

or more nodes in network B (see Figure 1.1), and vice-versa. The direction of a dependency

link specifies the dependency of the nodes it connects. For example, link Ai → Bj provides

a critical resource from node Ai to node Bj . If node Ai stops functioning due to attack or

failure, node Bj will stop functioning as well but not vice-versa. Similarly, link Bi → Aj

provides a critical resource from node Bi to node Aj .

We begin our attacking process by removing a fraction 1 − p of network A nodes and

all A-edges connected to these nodes. All the nodes in network B that are connected to

the removed A-nodes by A→ B links are also removed since they depend on the removed

nodes in network A. As mentioned above, when those nodes in network A are removed and

stop functioning, those nodes in network B that depend on them will also stop functioning.

The B-edges of these nodes in network B are also further removed, which will cause the

removal of additional nodes in network A that are connected to the removed B-nodes by

B → A links. As a result, a cascade of failures occurs in the network of networks system. As

nodes and edges are removed, each network breaks down into connected components. Our

assumption based on percolation theory is that only nodes in the giant component will keep

functioning, and nodes belonging to small component will become non-functional. Thus in

interdependent networks only the giant mutually-connected component is of interest.

1.3.2 Theoretical framework

Without losing generality, we now consider two partially-interdependent networks. This

framework consists of two networks A and B with the number of nodes NA and NB, re-

spectively. The nodes are randomly connected with degree distribution PA(k) in network A

and PB(k) in network B. In addition, a fraction qA of network A nodes depend on nodes in

network B and a fraction qB of network B nodes depend on nodes in network A. Here, we
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assume that a node from one network depends on no more than one node from the other

network. Also, we assume that if Ai depends on Bj , and Bj depends on Ak, then k = i (the

“no-feedback” condition).

Initially, we attack the network A by removing a fraction 1 − p of nodes (see Fig-

ure 1.2 [15]). Thus the remaining fraction of network A nodes after the initial attack is

ψ
′
1 ≡ p. Once a fraction 1− p of nodes is randomly attacked and removed from a network,

the generating function of the network remains the same, but must be computed from a

new argument z ≡ px+ 1− p, where x is the argument for the original network. Thus the

fraction of nodes that belongs to the giant component in network i is given by

P∞,i = pgi(p), (1.10)

where

gi(p) = 1−Gi[pfi(p) + 1− p], (1.11)

and fi(p) satisfies

fi(p) = Hi[pfi(p) + 1− p]. (1.12)

In the case of two networks, the remaining functional part of network A contains a fraction

ψ1 = ψ
′
1gA(ψ

′
1) of the network nodes, where gA(ψ

′
1) is defined by Eqs.(1.11) and (1.12).

Since a fraction qB of nodes in network B depends on nodes in network A, the number of

nodes in network B that become nonfunctional is (1 − ψ1)qB = qB[1 − ψ′1gA(ψ
′
1)]. So the

remaining fraction of network B nodes is φ
′
1 = 1 − qB[1 − ψ′1gA(ψ

′
1)], and the fraction of

nodes in the giant component of network B is φ1 = φ
′
1gB(φ

′
1).

Following this process, we can obtain ψ
′
t and φ

′
t, the remaining fraction of nods at each

stage of the cascade of failures:

ψ
′
1 ≡ p,

φ
′
1 = 1− qB[1− pgA(ψ

′
1)],

ψ
′
t = p[1− qA(1− gB(φ

′
t−1))],

φ
′
t = 1− qB[1− pgA(ψ

′
t−1)].

(1.13)
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Figure 1.1: Example of two interdependent networks. Nodes in network B (computer

network) are dependent on nodes in network A (power grid) for power; on the other hand,

nodes in network A are also dependent on network B for control information.

To determine the state of the system at the end of the cascade process, we set x = ψ
′
t =

ψ′t+1 and y = φ
′
t = φ

′
t+1. This is because when system arrives at the stationary state,

eventually the clusters stop fragmenting and the fractions of randomly removed nodes at

step t and t+ 1 are equal. So when we arrive at the stationary state, we have two equations

with two unknowns:

x = p{1− qA[1− gB(y)]},

y = 1− qB[1− gA(x)p].
(1.14)

The giant component of networks A and B at the end of the cascade of failures are,

respectively, P∞,A = ψ∞ = xgA(x) and P∞,B = φ∞ = ygB(y). The equations can be solved

numerically or graphically and the size of the giant component for each network can be

obtained for each p.
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Figure 1.2: Description of the dynamic process of cascading failures on two partially inter-

dependent networks. In the figure, the black nodes are the nodes that are alive, the yellow

nodes are the initially attacked nodes, the red nodes are the nodes removed because they

do not belong to the giant component, and the blue nodes are the nodes removed because

the nodes they depend upon in the other network are removed.



Chapter 2

Robustness of Complex Networks under

Localized Attacks

2.1 Introduction

The functioning of complex networks such as the Internet, airline routes, and social networks

is crucially dependent upon the interconnections between network nodes. These intercon-

nections are such that when some nodes in the network fail, others connected through them

to the network will also be disabled and the entire network may collapse. In order to under-

stand network robustness and design resilient complex systems, one needs to know whether

a complex network can continue to function after a fraction of its nodes have been removed

either through node failure or malicious attack [1–21]. This question is dealt with in per-

colation theory [21–24] in which the percolation phase transition occurs at some critical

occupation probability pc. Above pc, a giant component, defined as a cluster whose size is

proportional to that of the entire network, exists; below pc the giant component is absent

and the entire network collapses. Only nodes in the giant component continue to function

after the node-removal process.

The robustness of complex networks under attack is dependent upon the structure of the

underlying network and the nature of the attack. Previous research has focused on two types

of initial attack: random attack and hub-targeted attack. In a random attack each node in

the network is attacked with the same probability [1–3, 8, 10, 21]. In a hub-targeted attack

11
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the probability that high-degree nodes will be attacked is higher than that for low-degree

nodes [1, 3, 4, 7, 12]. An important feature of the network structure is its degree distribution,

P (k), which describes the probability that each node has a specific degree k. Networks with

different degree distributions behave very differently under different types of attack. For

instance, the Internet, which shows a power law degree distribution, is extremely robust

against random attack but vulnerable to hub-targeted attack [1, 2].

However these two types of attack—random attack and hub-targeted attack—do not ad-

equately describe many real-world scenarios in which complex networks suffer from damage

that is localized, i.e., a node is affected, then its neighbors, and then their neighbors, and

so on (see Fig. 2.1). Examples include the effects of earthquakes, floods, or military attacks

on infrastructure networks and the effects of a computer virus or malware on computer

networks. Recent occurrences of the latter include attacks carried out by cybercriminals

who create a “botnet”, a cluster of neighboring “zombie computers” in a computer network

and, by using them, are able to damage the entire network. An understanding of the effect

of this kind of attack on the functioning of a network is still lacking.

Here we will analyze the robustness of complex networks sustaining this kind of localized

attack in order to determine how much damage a network can sustain before it collapses,

i.e., to find the percolation threshold pc. We also want to predict the fraction of nodes that

keep functioning after an initial attack of a fraction of 1 − p nodes, i.e., the relative size

of the giant component (the order parameter), P∞. Note that localized attack has been

studied only on specific network structures [25] or on interdependent spatially embedded

networks [26], but a general theoretical formalism for studying localized attacks on complex

networks is currently missing.

Here we develop a mathematical framework for studying localized attacks on complex

networks with arbitrary degree distribution and we find exact solutions for percolation

properties such as the critical threshold pc and the relative size of the giant component P∞.

In particular, we apply our framework to study and compare the robustness of three types

of random networks, (i) Erdős-Rényi (ER) networks with a Poissonian degree distribution
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(P (k) = e−〈k〉〈k〉k/k!) [27], (ii) random-regular (RR) networks with a Kronecker delta

degree distribution (P (k) = δk,k0), and (iii) scale-free (SF) networks with a power law

degree distribution (P (k) ∼ k−λ) [5]. We find that the effect of a localized attack on an

ER network is identical to that of a random attack. For an RR network, we find that the

pc of a localized attack is always smaller (i.e., more robust) than that of a random attack.

However, the robustness of a SF network against localized attack is found to be critically

dependent upon the power law exponent λ. Surprisingly, a critical exponent λc exists such

that when λ < λc, for localized attack the network is significantly more vulnerable compared

to random attack, with pc being larger. While for λ > λc, the opposite is true.

2.2 The Model

Consider a random network with a degree distribution P (k), which indicates the probability

that a node in the network has k neighbors. The generating function of the degree distribu-

tion is defined as G0(x) =
∑∞

k=0 P (k)xk [28, 29]. We start from a randomly chosen “root”

node. All nodes in the random network are listed in ascending order of their distances from

this root node (see Fig. 2.1(a)). The shell l is defined as the set of nodes that are at distance

l from the root node [30, 31]. Within the same shell, all nodes are at the same distance from

the root node and are positioned randomly.

We initiate the localized attack process by removing the root node, then the nodes in

the first shell, and so on. We remove nodes in the ascending order of their distances from

the root node. Within the same shell we remove nodes randomly and, after nodes in shell

l are fully removed, we begin removing nodes in shell l + 1. We continue the localized

attack process until a fraction 1 − p of nodes in the entire network are removed. Thus a

“hole” of attacked nodes forms around the root node. The remaining p fraction of nodes in

the network are those at greater distances from the root node (see Fig. 2.1(b)). After the

initial removal of 1 − p fraction of the network nodes and all links connected to them, the

remaining network fragments into connected clusters. As in percolation theory [22, 23], only

nodes in the giant component (the largest cluster) are still functional. Nodes belonging to
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(a) (b)

(c) (d)

l=1

l=2

l=3

Figure 2.1: Schematic illustration of the localized attack process. (a) A fraction 1 − p of

the nodes are chosen to be removed, starting from the root node, its nearest neighbors,

next nearest neighbors, and so on (yellow represents the root node, red the other nodes to

be removed). (b) Remove the chosen nodes and the links. An attacked “hole” centered

around the root node is formed. (c) Only nodes in the giant component (largest cluster)

keep functioning and are left in the network. (d) Localized attack on regular lattice (here,

square lattice). For a regular lattice with N → ∞, one needs to attack all nodes in order

to collapse the network, i.e., pc → 0.
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other small clusters are considered non-functional and are also removed (see Fig. 2.1(c)).

Note that for localized attack on a regular lattice, as the number of network nodes N →∞,

pc → 0, i.e., one has to attack all nodes in the regular lattice in order to collapse the lattice

(see Fig. 2.1(d)).

2.3 Theoretical Framework

Consider a random network with arbitrary degree distribution P (k), which represents the

probability of a node in the network to have k links. The corresponding generating function

is defined as

G0(x) =
∞∑
k=0

P (k)xk. (2.1)

We separate the process of a localized attack into two stages: (i) at the first stage, we remove

all the nodes belonging to the attacked area but keep the links connecting the removed nodes

to the remaining nodes; (ii) at the second stage, we remove those links. Now consider the

degree distribution Pp(k) of the remaining nodes after the first stage. Following Ref. [31]

and letting Ap(k) be the number of nodes with degree k in the remaining network, we have

Pp(k) =
Ap(k)

pN
. (2.2)

With one more node being removed, Ap(k) changes as

A(p−1/N)(k) = Ap(k)− Pp(k)k

〈k(p)〉
, (2.3)

where 〈k(p)〉 ≡
∑
Pp(k)k. In the limit N → ∞, Eq. (2.3) can be presented in terms of a

derivative of Ap(k) with respect to p,

dAp(k)

dp
= N

Pp(k)k

〈k(p)〉
. (2.4)

By differentiating Eq. (2.2) with respect to p and plugging it into Eq. (2.4), we have

p
dPp(k)

dp
+ Pp(k)− Pp(k)k

〈k(p)〉
= 0. (2.5)
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The solution of Eq. (2.5) can be expressed as

Pp(k) = P (k)
fk

G0(f)
, (2.6)

and the average degree of the remaining network is

〈k(f)〉 =
fG

′
0(f)

G0(f)
, (2.7)

where f ≡ G−1
0 (p). Thus the generating function of Pp(k) is

Ga(x) ≡
∑
k

Pp(k)xk =
G0(fx)

G0(f)
. (2.8)

Now consider the second stage of removing the links of the remaining nodes which lead to

the removed nodes. The number of links belonging to the nodes on the outer shell of the

attacked hole, L(f), can be expressed as [31],

L(f) = N(G
′
0(1)f2 −G′0(f)f). (2.9)

Since loops are allowed in the random network model, those links can be connected either

to the remaining nodes or to other nodes on the same outer shell of the attacked hole. The

number of links of the remaining nodes which lead to the removed nodes is

L̃(f) = L(f)
Np〈k(f)〉

Np〈k(f)〉+ L(f)
= N [fG

′
0(f)− G

′
0(f)2

G
′
0(1)

]. (2.10)

The probability that a link in the remaining network will end at an unremoved node is

equal to

p̃ = 1− L̃(f)

pN〈k(f)〉
=

G
′
0(f)

G
′
0(1)f

. (2.11)

Because the network is randomly connected, removing the links that end at the removed

nodes is equivalent to randomly removing a 1− p̃ fraction of links of the remaining network.

The generating function of the remaining network after the random removal of a 1 − p̃

fraction of links is equal to [32]

Gp0(x) ≡ Ga(1− p̃+ p̃x) =
1

G0(f)
G0[f +

G
′
0(f)

G
′
0(1)

(x− 1)], (2.12)

where f ≡ G−1
0 (p). Note that Eq. (2.13) is the generating function of the degree distribution

of the remaining network after a localized attack.
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2.4 Comparison with random attack

We find that the generating function of the degree distribution of the remaining network

after the localized attack is (see supplementary information)

Gp0(x) =
1

G0(f)
G0[f +

G
′
0(f)

G
′
0(1)

(x− 1)], (2.13)

where p is the fraction of unremoved nodes and f ≡ G−1
0 (p). The critical probability pc

where the network collapses and the size of the giant component P∞(p) for p > pc can

be derived analytically from Eq. (2.13). The generating function of the cluster sizes in

the remaining network is Hp
0 (x) = xGp0(Hp

1 (x)), where Hp
1 (x) satisfies the transcendental

equation Hp
1 (x) = xGp1(Hp

1 (x)) and Gp1(x) = G
′p
0 (x)/G

′p
0 (1) [28]. By combining Eq. (2.13)

and the criterion for the network to collapse [2, 3], G
′p
1 (1) = 1, we find that pc satisfies

G
′′
0(G−1

0 (pc)) = G
′
0(1). (2.14)

The size of the giant component S(p) as a fraction of the remaining network satisfies

S(p) = 1−Gp0(Hp
1 (1)), (2.15)

where Hp
1 (1) satisfies Hp

1 (1) = Gp1(Hp
1 (1)). The relative size of the giant component as a

fraction of the original network is P∞(p) = pS(p).

We apply the above mathematical framework to three types of complex networks: Erdős-

Rényi (ER) networks, random-regular (RR) networks, and scale-free (SF) networks, and

compare the results of a localized attack with those of a random attack.

For an ER network with an average degree 〈k〉, the degree distribution follows a Poisso-

nian distribution P (k) = e−〈k〉〈k〉k/k! and the corresponding generating function of degree

distribution is G0(x) = e〈k〉(x−1). From Eq. (2.13) we have Gp0(x) = ep〈k〉(x−1), which is

the same as the generating function of the degree distribution for the remaining network

after a random attack. Thus the effect of a localized attack is exactly the same as that of a

random attack on an ER network (see Fig. 2.2(a)), and the critical threshold is pc = 1/〈k〉.

The size of the giant component P∞(p) satisfies P∞(p) = p(1 − e−〈k〉P∞(p)). In an RR
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Figure 2.2: Percolation transitions for (a) an ER network and (b) an RR network under

localized attack (LA) and random attack (RA), with network size N = 106, average degree

〈k〉 = 4 in ER network, and k0 = 4 in RR network. Theoretical results (solid lines) and

simulations (symbols) agree well with each other. Note that the effect of localized attack

and random attack on an ER network (see (a)) are identical (here, pc = 1/〈k〉 = 0.25),

while an RR network (see (b)) is more robust against localized attack compared to random

attack.
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Figure 2.3: Percolation properties for a SF network under localized attack (LA) and random

attack (RA). Solid lines are from theory (Eq. (2.13)) and symbols represent simulation

results with N = 106, m = 2, and 〈k〉 = 3. (a) Critical threshold pc as a function of degree

exponent λ. When λ→∞, the SF network converges to an RR network with k0 = 〈k〉 = 3,

so pc(RA) → 1/(k0 − 1) = 0.5 and pc(LA) → (k0 − 1)
− k0

k0−2 = 0.125, as confirmed in

simulations. Note that for 2 < λ ≤ 3, pc → 0 in the thermodynamic limit (N → ∞) for

random attack [2]. (b) When λ < λc, the SF network is more vulnerable to localized attack

compared to random attack. (c) When λ = λc, pc for localized attack and for random

attack are equal. (d) When λ > λc, the SF network is more robust against localized attack

compared to random attack.
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network each node is connected to k0 other nodes randomly and the generating function of

the degree distribution is G0(x) = xk0 . Using Eq. (2.14) we find that the critical threshold

for a localized attack on an RR network is

pc = (k0 − 1)
− k0

k0−2 . (2.16)

Note that for an RR network under random attack the critical threshold is pc = (k0 −

1)−1. Thus, for k0 > 2, pc under localized attack is always smaller than pc under random

attack (see Fig. 2.2(b)). This means that an RR network is more resilient against localized

attack than against random attack. When k0 � 1, random and localized attacks have

the same critical threshold (pc = 1/(k0 − 1)), since in this limit every node is a neighbor

of the root node and there is no difference between random and localized attacks. Since

limk0→2 pc = e−2 ≈ 0.135 and limk0→∞ pc = 0, one can see that pc for a localized attack

on an RR network is always within the range (0, e−2) for all k0 > 2. For p > pc, from

Eq. (2.15), the relative size of the giant component P∞(p) satisfies

(p− P∞(p))
1
k0 − p

1
k0 = (p− P∞(p))

k0−1
k0 − p

k0−1
k0 . (2.17)

For a SF network the degree distribution is P (k) ∼ k−λ (m ≤ k ≤ M), where m and

M are the lower and upper bound of the degree, respectively, and λ is the power exponent.

The critical threshold pc and the size of the giant component P∞(p) are solved numerically

by using the theoretical framework developed in Eq. (2.13) (see Fig. 2.3). We find that

the degree heterogeneity plays an important role in the robustness of SF networks against

localized attack. The critical threshold pc and the size of the giant component P∞(p) for the

percolation transition of the SF network under localized attack depends on λ. We find that

in a SF network there is a critical value λc below which a localized attack is significantly

more severe than a random attack, but when λ > λc a random attack is more severe. Indeed,

as seen in Fig. 2.3(a), for λ < λc, pc for a localized attack is significantly higher than for a

random attack. As λ increases and the network becomes less heterogeneous, pc decreases

and the network becomes more robust against localized attacks. The specific value of λc
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Figure 2.4: Degree distribution of (a) the peer-to-peer computer network with N=62586,

〈k〉 = 4.73 and λ = 4.59, and (b) the global airline route network with N=3308, 〈k〉 = 12.2

and λ = 1.57. The degree distribution of both network approximately follow power law

distribution.

depends on other parameters, such as m, M , and 〈k〉. In Fig. 2.3(b)−(d), we plot the size

of the giant component P∞(p) as a function of p and compare the results of a localized

attack with those of a random attack. One intuitive explanation for the dependence of

network robustness on λ is that, on the one hand, there is a higher probability that higher

degree nodes will be within the attacked hole, which accelerates the fragmentation of the

SF network; on the other, only nodes on the surface of the attacked hole are connected to

the remaining network and contribute to its breakdown, which mitigates the fragmentation

process. The total impact of the localized attack is the result of the competition between

these two effects. As λ increases and the SF network becomes less heterogeneous, the first

effect becomes less dominant and the network becomes more robust. Our analytical analysis

shows that for an ER network these two effects always compensate each other and yield

equal effects from both localized attack and random attack. For an RR network, on the

other hand, the degrees are all the same and therefore only the second effect exists, and

the underlying network becomes more robust against localized attack than against random

attack.
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Figure 2.5: Robustness of real-world networks against localized attack (LA) and random

attack (RA). A comparison of localized attack and random attack on a peer-to-peer com-

puter network and a global airline route network [33, 34]. The size of the giant component

P∞(p) after locally attacking 1 − p fraction of the whole network, versus p. The circles

(red) and squares (green) represent simulation results of the peer-to-peer computer network

(N = 62586, 〈k〉 = 4.73 and λ = 4.59) under random attack and localized attack respec-

tively. The triangles (blue) and the diamonds (orange) represent simulation results of the

global airline route network (N = 3308, 〈k〉 = 12.2 and λ = 1.57) under random attack

and localized attack respectively. The simulation results are the average over 100 and 1000

realizations for the computer network and the airline network respectively.
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2.5 Localized Attack on Real-world Networks

We test and compare the robustness of real-world networks against localized attack and

random attack using a peer-to-peer computer network [33] and a global airline route net-

work [34]. The degree distributions of both networks approximately follow power law (see

Figure 2.4). Figure 2.5 shows that, for both real-world networks, localized attack can col-

lapse the network much more easily: a node failure of 30% in the global airline route network

and 55% in the peer-to-peer computer network can disable the total network. When the

attack is random, however, a node failure of 98% in the global airline route network and

90% in the peer-to-peer computer network must occur before the network collapses. This

shows that a localized attack is significantly more harmful to real-world SF networks than

a random attack, supporting our theoretical results for SF networks with λ < λc.

2.6 Localized Attack on Interdependent Networks

Here, without losing generality, we consider two interdependent networks A and B with the

same number of nodes N [10]. Within each network, the nodes are randomly connected

with degree distribution PA(k) and PB(k), respectively. Each node in network A depends

on a random corresponding node in network B, and vice versa. This means if the node in

network B upon which the node in network A depends stop functioning, the corresponding

node in network A will also stop functioning. Besides, we assume here that if a node i in

network A depends on a node j in network B and j depends on a node l in network A, then

l = i (no-feedback condition [14–16]). We start our localized attack process by initially

removing a fraction 1−p of nodes in network A shell by shell, and remove all the links that

connect to those removed nodes. Network A starts to fragment into connected components

as nodes and links are removed and nodes that are not connected to the giant component

are considered inactive and are also removed. Owing to the dependency, all the nodes in

network B that depend on the removed nodes in network A are also removed. Network B

also starts to fragment and only nodes in the giant component are kept. Then network B
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Figure 2.6: Comparison of percolation transitions for a pair of interdependent networks

under localized attack and random attack. For RR networks, each node within the networks

is randomly connected to k0 = 4 other nodes. For ER networks, the average degree of the

Poisson distribution is 〈k〉 = 4. For SF networks, the lower and upper bound of the degree

distribution are m = 2 and M = 1000, respectively. The power exponent of the degree

distribution is λ = 2.5. Solid lines are from theoretical predictions and symbols represent

simulations with network size N = 106. Note that the simulations results are in good

agreement with the theory.
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spreads damage back to network A, and back and forth, until the two networks completely

fragment or form a mutually connected giant component [10].

The only difference between the cascading process under a localized attack and the

case under a random attack is the type of initial attack on network A. After that, all the

processes are similar. If we find a network Ã with generating function G̃0(x), such that

after a random attack with removing 1 − p fraction of nodes, the generating function of

the remaining network is the same as Gp0(x), then the localized attack problem on network

A and B can be mapped to a random attack problem on network Ã and B. By using

G̃0(1− p+ px) = Gp0(x) and from Eq. (2.13), we have

G̃0(x) =
1

G0(f)
G0[f +

G
′
0(f)

G
′
0(1)G0(f)

(x− 1)], (2.18)

where f ≡ G−1
0 (p).

Next by using the framework developed in Ref. [10], we introduce a function for network A

gA(p) = 1− G̃0[1− p(1− fA(p))], (2.19)

where fA(p) satisfies a transcendental equation

fA(p) = G̃1[1− p(1− fA(p))], (2.20)

and analogous equations hold for network B. After the system of the interdependent net-

works reaches stationarity, the fraction of nodes in the mutually giant component is P∞,

which satisfies

P∞ = xgB(x) = ygA(y), (2.21)

where x and y satisfy

x = pgA(y), y = pgB(x). (2.22)

By eliminating y from the equations, we obtain

x = pgA[pgB(x)]. (2.23)
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The critical case (x = xc, p = pc) emerges when the derivatives of both sides in Eq. (2.23)

with respect to x equal each other,

1 = p2dgA
dx

[pgB(x)]
dgB
dx

(x) |x=xc,p=pc , (2.24)

which, together with Eq. (2.23), yields the solution for pc and the critical size of the giant

mutually connected component, P∞(pc) = xcgB(xc).

We can solve the above equations numerically and compare with simulation results. As

shown in Fig. 2.6, the size of the mutual giant component P∞(p) are plotted for a pair

of interdependent networks under a localized attack and a random attack. Note that the

behavior of the phase transition is first order (abrupt) in contrast of being second order

(continuous) for a single network. As expected, similar conclusion can be drawn from the

comparison of the robustness of interdependent networks system under localized attacks

and random attacks. While a pair of interdependent RR networks are more robust against

localized attack, a pair of interdependent ER networks show the same robustness under

two types of attacks. The robustness of a pair of interdependent SF networks is dependent

on the heterogeneity of the degree distribution, i.e., λ. Most real-world coupled networks

(2 < λ ≤ 3) are easier to collapse under a localized attack than under a random attack.

2.7 Summary

To conclude, we have developed a mathematical framework for studying the percolation of

localized attacks on complex networks with an arbitrary degree distribution. Using gener-

ating function methods, we have solved exactly for the percolation properties of random

networks under localized node removal. Our results show that the effects of localized attack

and random attack on an Erdős-Rényi network are identical. While a random-regular net-

work is more robust against localized attack than against random attack, the robustness of

a scale-free network depends on the heterogeneity of the degree distribution. When λ < λc,

the SF network is found to be significantly more vulnerable with respect to localized attack

compared to random attack. When λ > λc, the opposite is true. Our results can provide
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insight into understanding the robustness of complex systems and facilitate the design of

resilient infrastructures.



Chapter 3

Robustness of Fully Interdependent

Networks with Clustering

3.1 Introduction

In a system of interdependent networks, the functioning of nodes in one network is depen-

dent upon the functioning of nodes in other networks of the system. The failure of nodes

in one network can cause nodes in other networks to fail, which in turn can cause further

damage to the first network, leading to cascading failures and catastrophic consequences.

Power blackouts across entire countries have been caused by cascading failures between

the interdependent communication and power grid systems [35, 36]. Because infrastruc-

tures in our modern society are becoming increasingly interdependent, understanding how

systemic robustness is affected by these interdependencies is essential if we are to design

infrastructures that are resilient [37–40]. In addition to research carried out on specific

systems [13, 41–46], a mathematical framework [10] and its generalizations [11, 12, 47] have

been developed recently. These studies use a percolation approach to analyze a system of

two or more interdependent networks subject to cascading failure [48, 49]. It was found that

interdependent networks are significantly more vulnerable than their stand-alone counter-

parts. The dynamics of cascading failure are strongly affected by the structure patterns of

network components and by the interaction between networks. This research has focused

almost exclusively on random interdependent networks in which clustering within compo-

28
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nent networks is small or approaches zero. Clustering quantifies the propensity for two

neighbors of the same vertex to also be neighbors of each other, forming triangle-shaped

configurations in the network [50–52]. Unlike random networks in which there is very lit-

tle or no clustering, real-world networks exhibit significant clustering. Recent studies have

shown that, for single networks, both bond percolation and site percolation in clustered

networks have higher epidemic thresholds compared to the unclustered networks [53–58].

Here we present a mathematical framework for understanding how the robustness of

interdependent networks is affected by clustering within the network components. We

extend the percolation method developed by Newman [53] for single clustered networks to

coupled clustered networks. We find that interdependent networks that exhibit significant

clustering are more vulnerable to random node failure than networks without significant

clustering. We are able to simplify our interdependent networks model—without losing its

general applicability—by reducing its size to two networks, A and B, each having the same

number of nodes N . The N nodes in A and B have bidirectional dependency links to each

other, establishing a one-to-one correspondence. Thus the functioning of a node in network

A depends on the functioning of the corresponding node in network B and vice versa. Each

network is defined by a joint distribution Pst (generating functionG0(x, y) =
∑∞

s,t=0 Pstx
syt)

that specifies the fraction of nodes connected to s single edges and t triangles [53]. The

conventional degree of each node is thus k = s+ 2t. The clustering coefficient c is

c =
3× (number of triangles in network)

number of connected triples

=
N
∑

st tPst

N
∑

k

 k

2

Pk

. (3.1)

3.2 Site Percolation of Single Clustered Networks

We begin by studying the generating function of remaining nodes after a fraction of (1− p)

nodes is randomly removed from one clustered network. After the nodes are removed, we

define t′i to be the number of triangles of which node i is a part, d′i to be the number
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Figure 3.1: Size of giant component g(p) in single networks with degree distribution Eq. (3.7)

and average degree 〈k〉 = 4, as a function of p, the fraction of remaining nodes after random

removal of nodes. Curves are from theory Eq. 3.8, symbols are from simulation.

of single edges that form triangles prior to attack, and n′i to be the number of stand-

alone single edges prior to attack. This network is thus defined by the joint distribution

Pn′,t′,d′ . The probability that a node has n′ single edges from single edges is the sum of

all the probabilities that nodes with more than n′ single edges will have exactly n′ edges

remaining, which is Q1(n′) ≡
∞∑
s=n′

 s

n′

 pn
′
(1 − p)s−n′ . Similarly, the probability that a

node has t′ triangles is the sum of all the probabilities that nodes with more than t′ triangles

will have exactly t′ triangles remaining. Since the probability that a triangle will survive is

p2, the sum is Q2(t′) ≡
∞∑
t=t′

 t

t′

 p2t′(1 − p2)t−t
′
. The probability that a triangle corner

will have one edge broken is 2p(1−p)
1−p2 and the probability that it will have both edges broken

is (1−p)2
1−p2 . Thus the probability that a node had d′ single edges forming triangles prior to
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their destruction is Q3(d′) ≡

 t− t′

d′

 [2p(1−p)
1−p2 ]d

′
[ (1−p)2

1−p2 ]t−t
′−d′ . Combining these three,

we have the corresponding generating function

G(x, y, z, p) =
∑
n′,t′,d′

Pn′,t′,d′x
n′yt

′
zd
′

=
∞∑
n′=0

xn
′
Q1(n′)

∞∑
t′=0

yt
′
Q2(t′)

t−t′∑
d′=0

zd
′
Q3(d′)Ps,t

= G0(xp+ 1− p, yp2 + 2zp(1− p) + (1− p)2). (3.2)

We define s′ = n′ + d′ to be the total number of single links of a node after attack.

The joint degree distribution after attack is P ′s′,t′ which satisfies P ′s′,t′ =
∑s′

n′=0 Pn′,t′,d′ , with

d′ = s′ − n′. The generating function of P ′s′,t′ is

G0(x, y, p) =
∑
s′,t′

P ′s′,t′x
s′yt

′

=
∞∑
s′=0

s′∑
n′=0

∑
t′

Pn′,t′,d′x
s′yt

′

=
∑
n′,d′,t′

Pn′,t′,d′x
n′yt

′
xd
′

= G(x, y, x, p). (3.3)

Therefore, the generating function of the remaining network after attack is

G0(x, y, p) = G0(xp+ 1− p, yp2 + 2xp(1− p) + (1− p)2). (3.4)

The size of the giant component g(p) of the remaining network according to Ref. [53] is

g(p) = 1−G0(u, v2, p), (3.5)

where

u = Gq(u, v
2, p), (3.6)

v = Gr(u, v
2, p),

andGq(x, y, p) = 1
µ
∂G0(x,y,p)

∂x , Gr(x, y, p) = 1
ν
∂G0(x,y,p)

∂y where µ and ν are the average number

of single links and triangles per node, respectively.
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As an example, consider the case when (1− p) fraction of nodes are removed randomly

from a network with doubly Poisson degree distribution

Pst = e−µ
µs

s!
e−ν

νt

t!
, (3.7)

where the parameters µ and ν are the average numbers of single edges and triangles per ver-

tex, respectively. According to Eq. (3.1), the clustering coefficient is c = 2ν
2ν+(µ+2ν)2

. Then,

G0(x, y) = eµ(x−1)eν(y−1) andG0(x, y, p) = Gq(x, y, p) = Gr(x, y, p) = e[µp+2p(1−p)ν](x−1)eνp
2(y−1),

and u = v = 1− g(p), leading to

g(p) = 1− e[µp+2p(1−p)ν]g(p)eνp
2(g(p)2−2g(p)). (3.8)

This equation is a closed-form solution for the giant component g(p) and can be solved

numerically. The critical case appears when the derivatives of the both sides of Eq. (3.8)

are equal. That leads to the critical condition 〈k〉pc = 1, which is independent of clustering.

However the degree distribution of the doubly Poisson model changes as we keep the average

degree and change the clustering coefficient. When the degree distribution is fixed, the

critical threshold actually increases as clustering increases [56, 57]. Furthermore, Fig. 3.1

shows the resulting giant component as a function of p. Note that single networks with

higher clustering have smaller giant components.

3.3 Degree-Degree Correlation

When constructing clustering in a network, it is usually impossible to avoid generating

degree-degree correlations. To better understand the effect of clustering on degree-degree

correlations, we present an analytical expression of degree correlation as a function of the

clustering coefficient for a doubly Poisson-clustered network—see Eq. (3.7).

The degree-degree correlation [59] can be expressed as

ρD =
N1N3 −N2

2

N1

N∑
i=1

d3
iN

2
2

(3.9)
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Figure 3.2: Degree-degrees correlation as a function of the clustering coefficient for Poisson

network (Eq. (3.7)) with average degree 〈k〉 = 3 and 4. Curves are from theory (Eq. 3.10)

and symbols from simulations.

where Nm is the total number of m hop walks between all possible node pairs (i, j) including

cases i = j.

The generating function of the degree of a node in the network is
∞∑

s,t=0
Pstz

s+2t =

G0(z, z2). Let qst be the fraction of nodes with s single edges and t triangles that are reached

by traversing a random single link, where s includes the traversed link and rst is the frac-

tion of nodes with s single edges and t triangles reached by traversing a link of a triangle,

qst =
sPs,t

〈s〉 , rst =
tPs,t

〈t〉 . Their corresponding generating functions are Gq(x, y) = 1
〈s〉

∂G0(x,y)
∂x x

and Gr(x, y) = 1
〈t〉

∂G0(x,y)
∂y y. Moreover, N3 =

∑
i

∑
j
aijN2(j), where N2(j) is the total num-

ber of two-hop walks starting from node j. The number of three-hop walks from a node

i is equal to the total number of two-hop walks starting from all of its neighbors. Thus,

N3 =
∑
j
kjN2(j), where the number of two-hop walks starting from a node j with degree kj
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will be counted kj times in N3. Equivalently, N3 = N
∑
st

(s+ 2t)Ps,tN2(s, t), where N2(s, t)

is the number of two hop walks from a node with s single edges and t triangles. The gen-

erating function of the number of single edges and of triangles reached in two hops from

a random node is G2(x, y) =
∑
st
Ps,t · Gsq(x, y) · G2t

r (x, y). The generating function of the

total number of links and of triangles reached within three hops starting from all nodes is

G3(x, y) = N
∑
st
Ps,t · (Gq(x, y))s(s+2t) · (Gr(x, y))2t(s+2t). The number Nk of k-hop walks

can be approximated by its mean in a large network

N1 = N〈k〉,

N2 = N
∂G2

∂x
|x = 1, y = 1 + 2N

∂G2

∂y
|x = 1, y = 1

N3 =
∂G3

∂x
|x = 1, y = 1 + 2

∂G3

∂y
|x = 1, y = 1

When both s and t follow a Poisson distribution,

G0(x, y) = eµ(x−1)eν(y−1)

Gq(x, y) = G0(x, y)x

Gr(x, y) = G0(x, y)y.

In this case,

N1 = N〈k〉

N2 = N 〈k〉
(
〈k〉

1− c
+ 1

)
N3 =

(
〈k〉3 + 2〈k〉2 + 4ν〈k〉+ 〈k〉+ 6ν

)
N

N∑
i=1

d3
i =

(
〈k〉3 + 3 〈k〉2 + (6ν + 1) 〈k〉+ 6ν

)
N,

which together with Eq. (3.9) leads to

ρD =
c− c2 − 〈k〉c2

1− c+ 〈k〉c− 2〈k〉c2
, (3.10)

where c is the clustering coefficient, Eq. (3.1).
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Figure 3.2 shows the relation between the degree correlation and the clustering coefficient

c for a Poissonian network [see Eq. (3.7)], for two given average degrees (〈k〉 = 3 and 4).

The figure shows a positive degree-degree correlation across the entire range, which means

the model is assortative [56]. The degree-degree correlation increases until c achieves half

of its maximum and then decreases to zero when c reaches its maximum. When c is 0 or

the maximum, the nodes connect to either all single links or all triangles, respectively.

3.4 Percolation on Interdependent Clustered Networks

To study how clustering within interdependent networks affects a system’s robustness, we

apply the interdependent networks framework [10]. In interdependent networks A and B,

a fraction (1 − p) of nodes is first removed from network A. Then the size of the giant

components of networks A and B in each cascading failure step is defined to be p1, p2, ...,

pn, which are calculated iteratively

pn = µn−1gA(µn−1),n is odd,

pn = µngB(µn),n is even,
(3.11)

where µ0 = p and µn are intermediate variables that satisfy

µn = pgA(µn−1), n is odd,

µn = pgB(µn−1), n is even.
(3.12)

As interdependent networks A and B form a stable mutually-connected giant component,

n → ∞ and µn = µn−2, the fraction of nodes left in the giant component is p∞. This

system satisfies

x = pgA(y),

y = pgB(x),
(3.13)

where the two unknown variables x and y can be used to calculate p∞ = xgB(x) = ygA(y).

Eliminating y from these equations, we obtain a single equation

x = pgA[pgB(x)]. (3.14)

The critical case (p = pc) emerges when both sides of this equation have equal derivatives,

1 = p2dgA
dx

[pgB(x)]
dgB
dx

(x)|x=xc,p=pc , (3.15)
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which, together with Eq. (3.14), yields the solution for pc and the critical size of the giant

mutually-connected component, p∞(pc) = xcgB(xc).

Consider for example the case in which each network has doubly-Poisson degree distri-

butions as in Eq. (3.7). From Eq. (3.13), we have x = p(1− uA), y = p(1− uB), where

uA = vA = e[µAy+2y(1−y)µA](uA−1)+νAp
2(v2A−1),

uB = vB = e[µBx+2x(1−x)µB ](uB−1)+νBp
2(v2B−1).

If the two networks have the same clustering, µ ≡ µA = µB and ν ≡ νA = νB, p∞ is then

p∞ = p(1− eνp2∞−(µ+2ν)p∞)2. (3.16)

The giant component, p∞, for interdependent clustered networks can thus be obtained

by solving Eq. (3.16). Note that when ν = 0 we obtain from Eq. (3.16) the result obtained

in Ref. [10] for random interdependent ER networks. Figure 3.3a, using numerical simula-

tion, compares the size of the giant component after n stages of cascading failure with the

theoretical prediction of Eq. (3.11). When p = 0.7 and p = 0.64, which are not near the

critical threshold (pc = 0.6609), the agreement with simulation is perfect. Below and near

the critical threshold, the simulation initially agrees with the theoretical prediction but then

deviates for large n due to the random fluctuations of structure in different realizations [10].

By solving Eq. (3.16), we have p∞ as a function of p in Fig. 3.3b for a given average de-

gree and several values of clustering coefficients and in Fig. 3.4a for a given clustering and

for different average degree values. As the figure shows, when higher clustering within a

network is introduced, the percolation transition yields a higher value of pc (see inset of

Fig. 3.3b).

When clustering changes in this doubly Poisson distribution model, degree distribution

and degree-degree correlation also change. First, to address the influence of the degree

distribution, we study the critical thresholds of shuffled clustered networks. Shuffled clus-

tered networks have neither clustering nor degree-degree distribution but keep the same

degree distribution as the original clustered networks. The brown dashed curve in Fig. 3.3b
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represents the giant component of interdependent shuffled clustered networks with original

clustering c = 0.2. The figure shows that the difference in pc between the c = 0 network

and the shuffled c = 0.2 network is only 0.01, while the difference between the c = 0 and

the c = 0.2 networks is 0.12. In addtion, c = 0.2 clustered networks has no degree-degree

correlation (Fig. 3.2), which means the 0.12 shift of pc is due to clustering and not to

a change in degree distribution. We also show the critical thresholds of interdependent

shuffled clustered networks as the red dashed line in the inset of Fig. 3.3b. Note that the

change of degree distribution barely shifts the critical threshold. We next discuss the ef-

fect of the degree-degree correlation on the change of critical threshold. From Ref. [61],

the degree assortativity alone monotonously increases the percolation critical threshold of

interdependent networks. Because in our case degree-degree correlation first increases and

then decreases (see Fig. 3.2), while critical the threshold of interdependent networks in-

creases monotonously as clustering increases, we conclude that clustering alone increases

the value of pc. Thus clustering within networks reduces the robustness of interdependent

networks. This probably occurs because clustered networks contain some links in triangles

that do not contribute to the giant component, and in each stage of cascading failure the

giant component will be smaller than in the unclustered case.

We also study the effect of the mean degree 〈k〉 on the percolation critical point. Fig-

ures 3.4a and 3.4b both show that, when clustering is fixed, the percolation critical point of

interdependent networks decreases as the average degree 〈k〉 of network increases, making

the system more robust. Figure 3.4b also shows that a larger minimum average degree is

needed to maintain the network against collapse without any node removal as clustering

increases.

3.5 Summary

To conclude, based on Newman’s single network clustering model, we present a generating-

function formalism solution for site percolation on both single and interdependent clustered

networks. We also derive an analytical expression, Eq. (3.10), for degree-degree correlation
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as a function of the clustering coefficient for a doubly-Poisson network. Our results help

us better understand the effect of clustering on the percolation of interdependent networks.

We discuss the influence of a change of degree distribution and the degree-degree correlation

associated with clustering in the model on the critical threshold of interdependent networks

and conclude that pc for interdependent networks increases when networks are more highly

clustered.
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Figure 3.3: (a) Size of mutually connected giant component as a function of cascading failure

steps n. Results are for c = 1, p = 0.64 (below pc), p = 0.66 (at pc) and p = 0.7 (above pc).

Lines represent theory (Eqs. (3.11) and (3.12)) and dots are from simulations. Note that at

pc there are large fluctuations. (b) Size of giant component, p∞, in interdependent networks

with both networks having clustering via degree distribution Eq. (3.7) and average degree

〈k〉 = 4, as a function of p. Dashed lines are number of interactions (NOI) before cascading

failure stops obtained by simulation [60]. The star curve is for shuffled c = 0.2 network,

which keeps the same degree distribution but without clustering and without degree-degree

correlation. Inset: Green squares and solid line represents critical thresholds, pc, of interde-

pendent networks as a function of clustering coefficient c. Red dashed line represents critical

threshold of shuffled interdependent networks which originally has clustering coefficient c.

The shuffled networks have zero clustering and degree-degree correlation, but has the same

degree distribution as the original clustered networks. In all figures, symbols and dashed

lines represent simulation, solid curves represent theoretical results.
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Figure 3.4: (a) Size of giant component as a function of p for fixed clustering coefficient

c = 0.1 and different average degrees. From right to left 〈k〉 = 3, 4, 5, ..., 9. (b) Critical

threshold pc as a function of average degree for different clustering coefficients. The solid

curves are for interdependent networks and the dashed curve is for single networks. Symbols

and curves represent simulation and theoretical predictions respectively.



Chapter 4

Robustness of a Partially Interdependent

Network of Clustered Networks

4.1 Introduction

Clustering, the propensity of two neighbors of the same node to be also neighbors of each

other, has been observed in many real-world networks [50, 51, 62, 63]. For example, in a

social network, if B and C are friends of A, they have a high probability of also being

each other’s friends. The average of this probability over the whole network is called the

clustering coefficient. Empirical studies show that in many real-world networks, e.g., the

Internet, scientific collaboration networks, metabolic and protein networks, and movie actor

networks, the measured clustering coefficient is of the order of 10%, significantly higher than

that of random networks [52].

Many computational models have been proposed to generate the clustering coefficient in

networks, but all have been limited to numerical analysis [64–68]. Newman recently devel-

oped an analytical approach that incorporates clustering into random graphs by extending

the generating function method, a widely used analytical tool in network research [53]. He

considered two properties for each node—single links and triangles—and constructed a joint

distribution for both. The clustering coefficient can be tuned by changing the ratio between

the average number of single links and triangles. This approach enables us to evaluate

analytically many properties of the resulting networks, such as component size, emergence

41
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and size of a giant component, and other percolation properties.

Previous studies of clustering have focused on single network analysis, but real-world

networks interact with and depend on other networks. In 2010, Buldyrev et al. [69] devel-

oped a theoretical framework for studying percolation in two fully interdependent networks

and observed an unusual first-order (abrupt) percolation transition that differed from the

known second-order (continous) phase transition in a single network. Parshani et al. [11]

generalized this framework to partially-interdependent networks and found a change from

a first-order to a second-order phase transition when the coupling strength was reduced

below a critical value. Since 2010, there have been many studies of interdependent net-

works, sometimes called “networks of networks” [49, 70–86]. With respect to percolation

properties, when interdependent nodes in the network of networks are treated as identical,

the special cases is the multiplex network (from dynamical point of view, on the other

hand, these two could be very different) [87–89]. Recently, Huang et al. [90] developed an

approach to site percolation on clustered networks and studied the robustness of a pair of

fully interdependent networks with clustering within each network.

Here we generalize the framework of Huang et al. [90] and extend it (i) to the study of

percolation in two partially interdependent networks with clustering within each network

and (ii) to the study of a network of clustered networks (NON), i.e., a network consisting

of more than two interdependent clustered networks. We study how clustering within the

networks influences such percolation properties as the critical shreshold pc at which the giant

component collapses, the sizes of the giant components ψ∞ and φ∞ in the two networks,

the critical coupling qc at which the first-order phase transition changes to a second-order

phase transition, and the dynamics of cascading failure between two clustered networks.

Simulation results agree well with theoretical results in all cases.

In Sec. V we also examine two joint distribution models for incorporating clustering

into random graphs, i.e., (i) the model proposed by Newman [53], in which a double-

Poisson distribution (see Sec. III) is assumed for the joint degree distribution, and the

average degree is kept constant while the clustering is changed, and (ii) the clustering
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model developed by Hackett et al. [91], in which a different joint distribution keeps both

the average degree and the degree distribution constant while the clustering is changed.

We discuss the similarities and differences in the percolation properties of the networks

generated by these two distribution models. The model presented by Newman is studied

both analytically and via simulations (Secs. III and IV), and the model presented by Hackett

et al. is studied using only simulations (Sec. V).

4.2 The Model

In our model we consider two networks A and B that have the same number of nodes N.

Within each network the nodes are connected with joint degree distribution PA(s, t) and

PB(s, t), which specifies the fraction of nodes connected to s single links and t triangles in

networks A and B, respectively [53]. The generating functions [28, 32] of the joint degree

distributions are

GA0(x, y) =
∞∑

s,t=0

PA(s, t)xsyt,

GB0(x, y) =
∞∑

s,t=0

PB(s, t)xsyt.

(4.1)

The conventional degree of a node is k = s + 2t and the conventional degree distributions

of the networks are

PA(k) =
∞∑

s,t=0

PA(s, t)δk,s+2t,

PB(k) =

∞∑
s,t=0

PB(s, t)δk,s+2t.

(4.2)

The clustering coefficient is defined in [28] as

c ≡ 3× (number of triangles in network)

number of connected triples
=

3N∆

N3
, (4.3)

where 3N∆ ≡ N
∑

st tP (s, t) and N3 = N
∑

k

(
k
2

)
P (k).

Our initial attack is the random removal of a (1− p) fraction of nodes from network A.
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The generating function of the resulting network is [90]

G
′
A0(x, y) ≡ GA0(x, y, p)

= GA0(xp+ 1− p, p2y + 2xp(1− p) + (1− p)2),
(4.4)

and the fraction of nodes belonging to the giant component in the remaining network is

gA(p) = 1−GA0(u, v2, p), (4.5)

where u, v satisfy

u = GAw(u, v2, p), v = GAr(u, v
2, p). (4.6)

The functions GAw(x, y, p) and GAr(x, y, p) are defined as

GAw(x, y, p) ≡ 1

〈s′〉
∂GA0(x, y, p)

∂x
,

GAr(x, y, p) ≡
1

〈t′〉
∂GA0(x, y, p)

∂y
,

(4.7)

where 〈s′〉 = ∂GA0(x,y,p)
∂x

∣∣
x=1,y=1

and 〈t′〉 = ∂GA0(x,y,p)
∂y

∣∣
x=1,y=1

. Similar equations hold for

network B.

We next consider the interaction between clustered networks A and B [11]. Assume a

qA fraction of nodes in network A is dependent on nodes in network B and a qB fraction

of nodes in network B is dependent on nodes in network A. This means that if a node

in network B upon which a node in network A depends fails, the corresponding node in

network A will also fail, and vice versa. We also assume that a node from one network

may be dependent on no more than one node from the other network and if a node i in

network A is dependent on a node j in network B and j depends on a node l in network A,

then l = i (a no-feedback condition [49, 70, 71]). After n steps of cascading failures, ψn and

φn are the fractions of nodes in the giant components of networks A and B, respectively.

After the two-network system reaches staionarity, the sizes of giant components in the two

networks are [11]

ψ∞ = xgA(x), φ∞ = ygB(y), (4.8)
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where the two variables x and y satisfy

x = p{1− qA[1− gB(y)]},

y = 1− qB[1− pgA(x)].
(4.9)

4.3 The Double-Poisson Distribution

As an example, consider two Erdős-Rényi (ER) networks [92–94] with clustering, in which

the number of single links s and triangles t of a node obey a double-Poisson distribution

Pst=e
−〈s〉 〈s〉s

s! e
−〈t〉 〈t〉t

t! (s and t follow a Poisson distribution independently) [53]. Here 〈s〉

and 〈t〉 are the average number of single links and triangles per node, respectively. Assuming

that in network A 〈s〉 = 〈s〉A and 〈t〉 = 〈t〉A, then the generating functions in Eq. (4.4) and

Eq. (4.7) become

GA0(x, y, p) = GAw(x, y, p) = GAr(x, y, p)

= e[〈s〉Ap+2p(1−p)〈t〉A](x−1)+〈t〉Ap2(y−1),
(4.10)

and the same holds for network B. Denoting fA(x) = 1− gA(x) and fB(y) = 1− gB(y), we

now have

fA(x) = exp{〈t〉Ax2(1− fA(x))2 − 〈k〉Ax(1− fA(x))},

fB(y) = exp{〈t〉By2(1− fB(y))2 − 〈k〉By(1− fB(y))},
(4.11)

where 〈k〉A and 〈k〉B are the average degrees for networks A and B, respectively (〈k〉A =

〈s〉A + 2〈t〉A, and 〈k〉B = 〈s〉B + 2〈t〉B). By combining Eq. (4.9) and Eq. (4.11) and

eliminating x and y, we obtain two transcendental equations for fA and fB,

fA =e〈t〉Ap
2(1−fA)2(1−qAfB)2−〈k〉Ap(1−fA)(1−qAfB),

fB =e〈t〉B(1−fB)2{1−qB [1−p(1−fA)]}2−〈k〉B(1−fB){1−qB [1−p(1−fA)]}.
(4.12)

By substituting the parameter vector (〈k〉A, 〈t〉A, 〈k〉B, 〈t〉B, qA, qB, p), we can solve for fA

and fB, and thus find the size of the giant components in network A, ψ∞, and network B,

φ∞. By substituting the double-Poisson distribution into Eq. (4.3), the clustering coeffi-
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cients in the two networks become

cA =
2〈t〉A

〈k〉2A + 2〈t〉A
,

cB =
2〈t〉B

〈k〉2B + 2〈t〉B
.

(4.13)

If we fix the other parameters and increase p, the fraction of nodes not removed in the

initial attack, a phase transition occurs at a critical threshold pc and a giant component

appears. As we decrease the coupling strength qA and qB, the behavior of this phase tran-

sition will change from first-order to second-order. A first-order phase transition, denoted

by I, corresponds to a scenario in which the size of one or both giant components in the

two networks change discontinuously from a finite value to zero. If we plot fA and fB in

Eqs. (4.12) on a two-dimensional graph, this corresponds to the scenario that two curves

fA(fB) and fB(fA) are tangential with each other (dfB(fA)
dfA

dfA(fB)
dfB

= 1) [11]. By adding this

condition into Eqs. (4.12), we can solve for fA = fAI
, fB = fBI

and p = pI . A second-order

phase transition (denoted by II), corresponding to a scenario in which the size of one or

both giant components decreases continuously to zero, is obtained by substituting fA → 1

or fB → 1 into Eqs. (4.12), which allows us to find fAII
, fBII

and pII . The critical coupling

strength qc is solved by making the conditions for both first-order and second-order phase

transitions equal.

For the sake of simplicity, we now consider the symmetrical case, 〈k〉 = 〈k〉A = 〈k〉B

and c = cA = cB. Fig. 4.1 shows the size of the giant components in networks A and B

for several clustering coefficients. In each graph the simulation results agree well with the

theoretical results obtained from Eqs. (4.12). Note that, for strong coupling, as we increase

the clustering coefficient the two interdependent networks become less robust. When the

coupling is weak, the weakening effect of the clustering on the robustness is smaller. This can

be seen in Fig. 4.2, which shows pc versus q = qA = qB for different clustering coefficients for

both 〈k〉 = 3 and 〈k〉 = 4. Note that, for the same coupling strength q, a larger clustering

coefficient yields a larger pc, making the networks less robust. In addition, the critical

coupling strength qc below which the first-order phase transition changes to a second-order
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Figure 4.1: (Color online) Size of giant components as a function of p for 〈k〉 = 〈k〉A =

〈k〉B = 4, where solid lines are from theoretical predictions, Eqs. (4.12), and symbols are

from simulations with network size N = 105. (a) and (b) For strong coupling (q = 0.8),

the sizes of giant components in (a) network A and (b) network B change abruptly at some

critical threshold pc, showing a first-order phase transition behavior. (c) and (d) For weak

coupling (q = 0.6), on the contrary, the behavior is continuous, i.e., second-order. Note that

while (c) network A collapses (d) network B does not collapse, since the initial failures are

in A and q is relatively small to cause collapse of network B. Thus, the giant component of

B is finite for all p values.
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Figure 4.2: (Color online) Percolation shreshold, pc, as a function of interdependency

strength q (q = qA = qB) for 〈k〉 = 〈k〉A = 〈k〉B = 3 and 4. Clustering coefficient c

(c=cA=cB) ranges from 0 to 0.2 for 〈k〉=4 and from 0 to 0.25 for 〈k〉=3. For each 〈k〉 and

c, there exists a critical point qc (full circles). Above qc, the system undergoes a first-order

phase transition (solid lines) and below qc, the system undergoes a second-order transtion

(dashed lines). Symbols represent simulation results and are in good agreement with the-

oretical predictions (solid and dashed lines). Note that for the same average degree 〈k〉,

increasing clustering coefficient c increases pc and yields a larger critical coupling, qc.
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increases slightly as we increase clustering coefficient.

Fig. 4.3 shows the size of the giant component in network A after each cascading step

around the critical threshold for the first-order phase transition case (Fig. 4.3(a)) and the

second-order phase transition case (Fig. 4.3(b)). Note that the simulation results for the

cascading failures agree well with analytical results (4.8) and (4.9). Different realizations

give different results due to deviations from the mean field, rendering small fluctuations

around the mean-field analytical results [61].

4.4 Network of Networks with Clustering

The framework discussed above can also be generalized to an interdependent system con-

sisting of more than two clustered networks. Here we consider two cases of NON [49, 70, 71]

composed of n interdependent clustered networks, (i) A star-like NON and (ii) a random

regular NON (see Fig. 4.4). We assume that for each pair of interdependent networks i and

j (i, j = 1, 2, ..., n), there is a fraction qji of nodes in network i which depend on nodes in

network j, i.e., they cannot function if the nodes upon which they depend fail. Similarly,

qij denotes the fraction of nodes in network j which depend on nodes in network i. We also

assume here that a node from one network may depend on no more than one node from

the other network and, if a node i in network A depends on a node j in network B and j

depends on a node l in network A, then l = i (a no-feedback condition [49, 70, 71]). After

an initial attack, only a fraction pi (i = 1, 2, ..., n) of nodes in each network will remain.

After the period of cascading failures, a fraction ψ∞,i of nodes in network i will remain

functional. The final giant component of each network can be expressed as ψ∞,i = xigi(xi)

and the unknowns xi can be found from a system of n equations [49, 70, 71],

xi = pi

K∏
j=1

[qjiyjigj(xj)− qji + 1], (4.14)
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Figure 4.3: (Color online) Size of the giant component in network A (ψn) as a function of

cascading failure steps n for 〈k〉=4, c=0.2 for (a) q = 0.8 (first-order transition) and (b)

q = 0.6 (second-order transition). The symbols (circles) and their connecting line are from

the theoretical prediction. The other lines are several random realizations from simulations

(N = 106). The value of p = 0.569 for (a) the first-order phase transtion case and p = 0.347

for (b) the second-order phase transition case are both chosen to be just below critical

thresholds obtained from theoretical predictions (pc = 0.57 for the first-order case and

pc = 0.3475 for the second-order case). One can see that in both cases the agreement

is very good. However, for first-order transition, after the plateau different realizations

fluctuate.
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Figure 4.4: (Color online) Schematic representation of two types of NONs : (a) Star-like

NON where one central network is interdependent with (n−1) other networks. (b) Random

regular NON where each network depends exactly on m (here, m = 3) other networks.

Circles represent interdependent networks and arrows represent interdependency relations.

For example, q12 represents a fraction q12 of nodes in network 2 depend on nodes in network

1.
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Figure 4.5: (Color online) Size of the giant component in the root network as a function

of p for n = 2, 3, 4 and c = 0, 0.2 for star-like NON. Average degree of each network in the

NON is 〈k〉=4. Symbols and lines represent simulations (N = 105) and theory, respectively.

where the product is taken over the K networks that are coupled with network i. Since we

consider the no-feedback condition [49, 70, 71], we have

yji =
xj

qijyijgi(xi)− qij + 1
, (4.15)

where yji is the fraction of nodes left in network j after it has suffered damage from all

networks other than network i. We next consider two analytically solvable examples of

a NON, a star-like network of ER networks and a random regular (RR) network of ER

networks, shown in Fig. 4.4.
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4.4.1 Star-like NON with clustering

For a star-like NON (Fig. 4.4(a)), we have a root network which is interdependent with other

(n − 1) networks. For simplicity, the initial attack is on the root network, and a fraction

(1 − p) of its nodes is removed. This damage spreads to the other networks, and then

returns to the root network, back and forth. Here we consider the case for n clustered ER

networks with the same average degree 〈k〉 and same clustering coefficient c (thus the same

average number of triangles 〈t〉). Assuming, again for simplicity, that for all i, qi1 = q1i = q,

Eq. (4.14) and Eq. (4.15) are simplified to two equations,

x1 = p[qg2(x2)− q + 1]n−1,

x2 = pqg1(x1)[qg2(x2)− q + 1]n−2 − q + 1.
(4.16)

For clustered ER networks, f(x) = 1− g(x) satisfies

f = exp[〈t〉x2(1− f)2 − 〈k〉x(1− f)]. (4.17)

By combining Eq. (4.16) and Eq. (4.17), we find x1, x2 and f1, f2, from which the sizes

of the giant components in the root network (ψ∞) and in the other networks (φ∞) can be

obtained.

Fig. 4.5 shows the size of the giant component in the root network for n = 2, 3, and

4 and compares two cases, c = 0 (no clustering) and c = 0.2 (high clustering). Note that

the simulation results agree well with the theoretical predictions. Our results show that the

NON becomes less robust with increasing n. For fixed n, the NON composed of networks

with a larger clustering coefficient is less robust and the effect of clustering in reducing

the robustness becomes larger as n increases. Similarly, the critical coupling qc, where the

behavior of phase transition changes from first-order to second-order decreases with n and

increases slightly with the clustering coefficient (see Fig. 4.6).

4.4.2 Random regular (RR) NON of ER networks with clustering

We now consider the case in which each clustered ER network depends on exactly m other

clustered ER networks, i.e., a random regular (RR) NON formed of clustered ER networks.
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Figure 4.6: (Color online) Critical threshold pc as a function of interdependency strength,

q, for clustered star-like NON for 〈k〉=4, n = 2, 5 and c = 0, 0.2. For each n and c, there

exsits a critical interdependency strength qc (solid symbols) that separates the first-order

(solid lines) and second-order (dashed lines) phase transitions.
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Figure 4.7: (Color online) Size of the giant component, ψ∞, as a function of p for RR NON

of clustered ER networks for fixed q (q=0.51). The average degree is 〈k〉=9, m=2, 3 and

c=0, 0.1. For m = 3, the system shows a first-order percolation transition as we change the

value of p. While for m = 2, the phase transition is second-order.

Assume that the initial attack is on each network and randomly removes a fraction (1− p)

of nodes and that the interacting strengths are all equal to q. Assume also that all ER

networks have the same average degree 〈k〉 and the same average number of triangles 〈t〉.

Because of symmetry, all equations in Eqs. (4.14) and Eqs. (4.15) are reduced into a single

equation and the size of the giant component in each network is

ψ∞ = p(1− e〈t〉ψ2
∞−〈k〉ψ∞)

[1− q +
√

(1− q)2 + 4qψ∞
2

]m
. (4.18)

Fig. 4.7 and Fig. 4.8 show numerical solutions of Eq. (4.18) and simulation results. Note

that the simulations agree well with theory. For a given 〈k〉, the size of the giant component

ψ∞ in each network displays a first-order or a second-order phase transition as a function of
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p, depending on the values of q, m, and the clustering coefficient c. Fig. 4.7 shows that, for

some fixed values of 〈k〉 and q, the behavior of the phase transition can be either first-order

or second-order for different values of m. Similarly, as shown in Fig. 4.8, for fixed values of

〈k〉 and m, different values of q can cause the phase transition to be first-order or second-

order. In each scenario, when the transition is first-order the clustering within networks

reduces the resistance of the NON to random node failure, but when it is second-order the

effect of clustering is similar but very small. This again is due to the smaller coupling value

q in the second-order phase transition region. Note that for q=1 and m=1, the limit of

two fully-interdependent networks, Eq. (4.18) reduces to an equation similar to Eq. (16)

in Huang et al. [90]. The only difference is because here we initially attack all networks,

not just network A as in [90]. For 〈t〉 = 0 (the no-clustering case), Eq. (4.18) reduces to

Eq. (23) in Gao et al. [71].

By adding the condition that the first derivative of both sides of Eq. (4.18) with respect

to ψ∞ are equal, we obtain the critical threshold of the first-order phase transition, pI .

The critical threshold of the second-order phase transition pII is solved by adding the

condition ψ∞(pII)→ 0 to Eq. (4.18). If we equate pI and pII , the critical coupling qc where

the first-order phase transition changes to a second-order phase transition can be derived

analytically,

(〈k〉2 + 2〈t〉)(1− qc)2 = 2〈k〉qcm. (4.19)

By substituting c = 2〈t〉
〈k〉2+2〈t〉 , we have

qc = 1 + x−
√
x(x+ 2), (4.20)

where x ≡ m
〈k〉(1− c). Note that increasing the clustering coefficient c increases the critical

dependency qc. Note also that for c = 0, Eq. (4.20) reduces to Eq. (30) of Ref. [71].

4.5 The Fixed Degree Distribution

The double-Poisson distribution model can display the features of clustering and it is possi-

ble to solve it analytically. Although in this model the average degree does not change, the
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Figure 4.8: (Color online) Size of giant component, ψ∞, as a function of p for RR NON

composed of clustered ER networks for fixed m (m=2). The average degree is 〈k〉=9,

q=0.4, 0.8 and c=0, 0.1. The behavior of the phase transition is first-order for q = 0.8 and
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Figure 4.9: (Color online) Size of giant component in network A for two partially inter-

dependent networks with clustering. Circles, squares and diamonds represent results for a

joint degree distribution which fix the total degree distribution being Poisson as we change

the clustering coefficient (FDD). Circles, up-triangles and down-triangles represent results

for a double-Poisson distribution (DPD) with total average degree fixed. All resulted are

from simulations with N=106, 〈k〉=4 and q=0.8> qc. The behavior of the phase transition

is first-order in both cases but pc is larger for FDD.
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degree distribution does change as the clustering coefficient changes. Here we consider an-

other kind of joint distribution Pst proposed by Hackett et al. [91, 95], which also preserves

the total degree distribution P (k) for different clustering coefficients. We set

Pst = P (k)δk,s+2t[(1− f)δt,0 + fδt,b(s+2t)/2c], (4.21)

where f ∈ [0, 1] and b.c is the floor function.

Eq. (4.21) allows us to construct Pst from a given degree distribution P (k) by picking

a fraction f of nodes being attached to a maximum possible number of triangles while the

remaining (1−f) nodes are attached to single edges only. From the definition of a clustering

coefficient, we have

c = f

∑
k k(P (2k) + P (2k + 1))∑

k

(
k
2

)
P (k)

, (4.22)

hence the clustering coefficient can be adjusted by tuning the parameter f .

We investigate the effect of the joint degree distribution, Eq. (4.21), on the robustness

of partially interdependent networks by comparing the two joint degree distributions. One

is the fixed degree distribution (FDD), which is defined by Eq. (4.21) with P (k) obeying

a Poisson distribution (P (k)=〈k〉ke−〈k〉/k!). The other is the double-Poisson distribution

(DPD) discussed in Sec. III, with Pst=e
−〈s〉 〈s〉s

s! e
−〈t〉 〈t〉t

t! .

Fig. 4.9 plots the size of the giant component in network A for two partially-interdependent

networks with clustering. The joint degree distribution in each network is fixed as either

FDD or DPD. The interdependent strength q is fixed as first-order. Note that the critical

threshold pc in FDD is larger than that in DPD when the clustering coefficient is the same.

This difference in pc is caused by the broadening of P (k) in the double-Poisson distribution.

Note that for site percolation on a single clustered network, a larger clustering coefficient

leads to a higher critical threshold for both distributions [90, 91]. For a system of two in-

terdependent networks, the general trend is similar and, for both degree distributions, pc

increases as the clustering coefficient increases. Fig. 4.10 shows the size of the giant com-

ponents in partially-interdependent networks with a second-order phase transition for both

FDD and DPD. The influence of clustering on the robustness of partially-interdependent
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Figure 4.10: (Color online) Size of giant component in network A for two partially inter-

dependent networks with clustering. Circles, squares and diamonds represent results for
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are from simulations with N=106, 〈k〉=4 and q=0.6< qc. The behavior of the phase transi-

tion is second-order.
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networks is larger for FDD than for DPD, but the general trend is similar in both distribu-

tions.

4.6 Summary

We have developed a framework for studying percolation in a network formed of interde-

pendent ER networks with clustering. For each clustering coefficient, the system shows a

first-order to second-order transition as we decrease coupling strength q. As we increase the

clustering coefficient of each network, the system becomes less robust. This influence of the

clustering coefficient on network robustness decreases as we decrease the coupling strength,

and the critical coupling strength qc, at which the first-order phase transition changes to

second-order, increases as we increase the clustering coefficient. We have also investigated

the differences and similarities between two different joint degree distributions, FDD and

DPD. We have found that, although the percolation threshold is different in the two cases,

the general conclusion that an increase in the clustering coefficient causes interdependent

networks to become less robust holds.



Chapter 5

Conclusion

This dissertation is a review of the original research of me and my collaborators during my

PhD studies at Boston University. My research is focused on studying the robustness of com-

plex networks under attacks from the perspective of statistical physics. Complex networks

appear in every aspect of our daily life and are widely studied in Physics, Mathematics,

Biology, and Computer Science. Understanding the robustness of complex networks under

attacks is crucial for protecting complex systems and designing robust infrastructures. Net-

works’ robustness depends crucially on the structure of the networks as well as the nature

of the attacks. This dissertation coverers two major parts of my research on the robustness

of complex networks: i) proposing a new type of attack – localized attack and modeling

the robustness of complex networks under this type of attack; ii) discovering the clustering

structure in complex networks, and investigating it’s influence on the robustness of both

fully and partially interdependent network of networks.

In Chapter 2, we model a new type of attack which we call the localized attack. Previous

research of the robustness of complex networks has focused on two types of attacks: random

attack and targeted attack. For random attack, each node in the network is attacked and

removed with the same probability. While for targeted attack, the probability for each

node to be attacked is dependent upon the degree of each node. However, these two types

of attacks fail to describe many real-world scenarios where the damages or failures on

the networks are localized. We propose a theoretical framework to study the robustness

62
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of complex networks under localized attack based on percolation theory and generating

function method from statistical physics. We investigate the percolation properties, such

as size of the giant component in the network, critical threshold of the phase transition

where the giant component disappears. We derive the analytical expression for the above

properties and compare the result with that of the random attack. Specifically, we find that

while RR networks are more robust against localized attack, ER networks are equally robust

under both. As for scale-free networks, their robustness depends crucially on the degree

exponent λ. We also run simulations on two real-world networks to test our model: a peer-

to-peer computer network and an airline network. We find that the real-world networks are

much more vulnerable to localized attack compared with random attack. These results can

provide useful insights into the protection of networked systems and the design of resilient

infrastructures.

In Chapter 3, we present a generating function formalism solution for site percolation

on both single and fully interdependent networks with clustering. Clustering quantifies the

property for two neighbors of the same node to also be neighbors of each other, forming

triangle-shaped configurations in the networks. Unlike random networks in which there is

very little or no clustering, real-world networks exhibit significant clustering. We present a

mathematical framework for understanding how the robustness of a pair of fully interdepen-

dent networks is affected by clustering within the network components. We extended the

percolation method for single clustered networks to interdependent clustered networks. We

find that interdependent networks that exhibit significant clustering are more vulnerable to

random attacks than networks without significant clustering. We also discuss the influence

of a change of degree distribution and the degree-degree correlation associated with cluster-

ing in the model on the critical threshold of interdependent networks and conclude that pc

for interdependent networks increases when networks are more highly clustered. Our results

help to better understand the effect of clustering on the percolation of fully interdependent

networks.

In Chapter 4, we further extend our model to a partially interdependent network of
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networks with clustering within each network. For each clustering coefficient, the system

shows a first-order to second-order phase transition as we decrease coupling strength q

between networks. We find that as we increase the clustering coefficient of each network, the

system becomes less robust. The influence of the clustering coefficient on network robustness

decreases as we decrease the coupling strength, and the critical strength qc, at which the first-

order transition changes to second-order, increases as we increase the clustering coefficient

in each network. We also investigate two different joint degree distributions, FDD and

DPD. We find that although the percolation threshold is different in two cases, the general

conclusion that an increase in the clustering coefficient causes partially interdependent

networks to become less robust holds.
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[67] M. A. Serrano and M. Boguñá. Phys. Rev. E, 72:036133, 2005.

[68] S. Bansal, S. Khandelwal, and L. A. Meyers. Bcm Bioinformatics, 10:405, 2009.

[69] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin. Nature (London),

464:1025, 2010.

[70] J. Gao, S. V. Buldyrev, H. E. Stanley, and S. Havlin. Nature Physics, 8:40–48, 2012.

[71] J. Gao, S. V. Buldyrev, H. E. Stanley, X. Xu, and S. Havlin. arXiv:, 1306.3416, 2013.

[72] G. Dong et. al. Phys. Rev. E, 85:016112, 2012.

[73] J. Shao, S. V. Buldyrev, S. Havlin, and H. E. Stanley. Phys. Rev. E, 83:036116, 2011.

[74] A. Vespignani. Nature, 464:984–985, 2010.

[75] E. A. Leicht and R. M. D’Souza. arXiv:cond-mat, 0907.0894.

[76] R. G. Morris and M. Barthelemy. Phys. Rev. Lett., 109:128703, 2012.

[77] S.W. Son et al. Europhys. Lett., 97:16006, 2012.
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